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Supplementary Information

1 Metastability Near Saddle Points

Abundance of Saddles in Complex Systems Our main assumptions on complex networks is that

steady states are “frequently” saddle points. In this section, we provide a mathematical justification

for this assumption. Suppose we are given a large system of ODEs

x′ = f(x) (2)

for x ∈ R
n andn ≫ 1. Assumex∗ is a steady state (or equilibrium point,f(x∗) = 0) for (2).

Denote the linearization (or Jacobian)Df(x∗) byAn ∈ R
n×n which generically provides the local

stability of x∗ using the Hartman-Grobman Theorem4. Eigenvalues ofAn with negative/positive

real parts correspond to stable/unstable eigendirections. Under the hypothesis that the system is

complex, heterogeneous and its size is large it is reasonable to assume17 thatAn is a random matrix

with independent identically distributed (iid) entries given by a complex random variablez with

mean zero and varianceσ2. Let {λi}
n
i=1 denote the eigenvalues ofAn and define the empirical

spectral distributionµn of An by

µn(s, t) :=
1

n
#{k ≤ n : Re(λk) ≤ s and Im(λk) ≤ t}.

where# denotes the cardinality of a set. Recently it has been proven (see37 and references therein)

that, under suitable boundedness assumptions on the moments of z, the circular law conjecture

holds which states thatµn converges to the uniform distribution over the unit disk

µ∞(s, t) :=
1

π
mes({w ∈ C : |w| ≤ 1,Re(w) ≤ s and Im(w) ≤ t})
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where ’mes’ denotes Lebesgue measure. Hence, asymptotically asn → ∞, if λ is an eigenvalue

of An then

P(Re(λ) < 0) =
1

2
= P(Re(λ) > 0).

This implies thatx∗ is stable with probability(1/2)n, completely unstable with probability(1/2)n

and a saddle point with probability1 − (1/2)n−1. Therefore, the probability thatx∗ is a saddle

point tends to one asn → ∞.

It is extremely important to note that the argument here is based upon certain mathematical

assumptions to make it rigorous. However, it is strongly expected that if weweakenthe assump-

tions in various ways, we still find saddle points frequentlyin high-dimensional systems. In fact,

let us point out that the idea to characterize instability inlarge-scale systems using random matrix

theory is well-known38 but is still a topic of very recent interest39. However, previously one only

had the semi-circular law available that required the symmetry of An or one had to rely on struc-

tured matrices, for example certain types of food webs17. These assumptions are usually too strong

for complex dynamical networks, which can be highly heterogeneous and yield unstructured, non-

symmetric ODEs. This makes the recent progress on proving the full circular law conjecture

important in our context. As discussed above, one expects that the results can be generalized even

further to include even larger classes of complex systems. Furthermore, note carefully that even if

n is small, one may still have saddles, which may be relevant for the dynamics, i.e., the assump-

tions we make aresufficientto prove saddle existence with high probability but the assumptions

may not benecessaryto find saddles at all.
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Residence Times Another main point of our argument is that the systems can spend a much longer

time near saddle points than away from them. This leads to metastable behavior near saddle points.

This can be illustrated with the simplest two-dimensional case given by the ODEs

x′
1 = λsx1,

x′
2 = λux2,

(3)

whereλs < 0 < λu. Note carefully that it is justified to reduce the dimension of the system

after the large dimensionality of the system has led to saddle points; the mathematically rigorous

reduction just follows from center manifold theory4. The system (3) decouples with solution

x1(t) = x1(0)e
λst and x2(t) = x2(0)e

λut.

Suppose we start with somex1(0) = κ > 0 and want to reach a small neighborhood of the

origin with x1(T ) = δ ≪ κ. This takes a timeT = λ−1
s ln(δ/κ). Viewing T as a function ofκ

shows that the time increases logarithmically. Therefore,a trajectory spends a much longer time

near the equilibrium in comparison to the approach towards the equilibrium. Similarly, we can

require a trajectory to start in a small neighborhood of the saddle withx2(0) = δ > 0 and end at

x2(T ) = κ > 0. ThenT = λ−1
u ln(κ/δ) and the same arguments apply to show that the initial time

spend near the equilibrium is much longer than the escape time. Although we have only worked

with a linear system (3), similar conclusions apply for the nonlinear case as long the passage near

the hyperbolic saddle occurs sufficiently close to its stable and unstable manifolds4.
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2 Saddle Point Warning Signs

Basics Locally near a hyperbolic saddle point, which we can assume without loss of generality to

be atx = (0, 0, . . . , 0) =: 0, we can work with the linearization so that

x′ = Ax (4)

for some matrixA ∈ R
n×n with eigenvaluesλi ∈ C for i ∈ {1, 2, . . . , n} and associated eigenvec-

torsvi. We are going to assume that the eigenvalues are distinct which is generic within the space

of matrices. Standard linear algebra gives a coordinate transformationP : Rn → R
n, x = Py, so

that

P−1AP = B =

















B1

. . .

Bk

















where thek matricesB1, . . . , Bk are the usual Jordan blocks andP maps the standard basis vectors

to the basis{vi}. Since the eigenvalues are distinct we haveBj ∈ R or Bj ∈ R
2×2. It is straight-

forward to observe that the escape near saddles is governed by the weakest stable and the strongest

unstable directions. More precisely, we will only considerat most four eigenvaluesλs, λs, λu, λu

where overbar denotes complex conjugation so that

0 > Re(λs) > Re(λk), for all k 6= s such that0 > Re(λk),

0 < Re(λk) < Re(λu), for all k 6= u such that0 < Re(λk).

(5)

It is extremely important to highlight again the logic in theprevious derivations: First, we start

with a large-dimensional system, where it can be shown that saddle points are frequent. For each

hyperbolic saddle point, there are many eigenvalues. However, for the dynamical approach or
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departure of the saddle point, the dynamics is locally governed by the weakest stable and strongest

unstable directions, i.e., stronger stable directions damp out very quickly, while weak unstable

directions are generically dominated by the strongest unstable mode. Hence, we may develop a

local theory for high-dimensional hyperbolic saddles by focusing on the leading directions in the

stable and unstable manifolds, which are generically low-dimensional.

The Planar Saddle We start with the casen = 2 andλs,u ∈ R. Settingx = Py givesy′ =

P−1APy = By with solutiony(t) = y(0)etB or x(t) = Py(t) so that

x(t) = y1(0)e
λstv1 + y2(0)e

λutv2.

for vectorsv1,2 that can be calculated explicitly. Since we want to approachthe saddle point and

stay near it for some significant amount of time we must have that |y2(0)| 6= 0 is small so that

a solution starts close to the stable manifoldW s(0) = {ρv1 : ρ ∈ R}. Let ‖ · ‖ denote the

usual Euclidean norm. Observe that the term‖y1(0)eλstv1‖ → 0 ast → ∞ and, if y2(0) 6= 0,

‖y2(0)e
λutv2‖ → ∞ as t → ∞. Hence, initially‖x(t)‖ decreases exponentially until a unique

minimum and then‖x(t)‖ increases exponentially. For timestj > 0 such thaty2(0)eλutj is small

it follows for somet2 > t1 > 0 that

‖x(t2)− x(t1)‖ ≈ |y1(0)||e
λst2 − eλst1 |‖v1‖ = |y1(0)|‖v1‖|e

λst1(eλs(t2−t1) − 1)|

If t2 ≫ t1 theneλs(t2−t1) ≈ 0 so that

ln ‖x(t2)− x(t1)‖ ≈ λst1 + k1 (6)

wherek1 = ln(|y1(0)|‖v1‖) is a constant that will not be of relevance here. Observe that(6) allows

us to estimateλs from data. Then we can consider it a warning sign when the logarithm of the
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distance between points starts to deviate from the linear fit(6). In the regime where|y1(0)|eλst‖v1‖

is small a similar procedure allows us to estimate the strongest unstable eigenvalues since then we

find

ln ‖x(t2)− x(t1)‖ ≈ λut2 + k2 (7)

wherek2 = ln(|y2(0)|‖v2‖). From the knowledge ofλu we can predict how rapidly‖x(t)‖ is

expected to grow. In practice, we can estimate the eigenvaluesλs,u from a uni-variate coordinate

time seriesxi(t) by looking at a fixed time pointT and a set ofK previous timest1 < t2 < · · · < T

to compute

di(T ) :=
1

K

K
∑

k=1

ln |xi(T )− xi(tk)|. (8)

Computingdi(T ) for different timesT gives that in different regimes (stable/unstable) we have

di(T ) ∼ λu,sT +K2 for some constantK2.

Complex Eigenvalues For the casen = 3 we will again assume that (5) holds and that the com-

plex conjugate eigenvalue pair has negative real part i.e. we considerλs = as + ibs, λs = as − ibs,

λu with associated real eigenvectorsv1,2,3. With x(t) = Py(t) the general solution is

y(t) =

















east[y1(0) cos(bst) + y2(0) sin(bst)]

east[y2(0) cos(bst)− y1(0) sin(bst)]

y3(0)e
λut

















.

Writing the solution forx(t) in the basis of the eigenvectorsvi gives

x(t) = east[y1(0) cos(bst) + y2(0) sin(bst)]v1

+east[y2(0) cos(bst)− y1(0) sin(bst)]v2 + y3(0)e
λutv3.
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As before, we are going to distinguish two regimes in the timedomain, starting with the assump-

tion that‖y3(0)eλutv3‖ is small which yields exponentially decaying oscillationsin time series for

each coordinatexi. Let T be the time between successive maxima or minima thenbs = 2π/T .

Furthermore, ift2 > t1 > 0 as previously andt2 − t1 = T then

‖x(t2)− x(t1)‖ ≈ k3|e
ast2 − east1|

for a positive constantk3. The last equation can then be used to estimateas as shown in Section 2.

The case of two complex conjugate eigenvalue pairs is similar and will not be discussed here.

Noisy Saddles An important question is to consider the influence of noise asnatural systems,

and in particular the measurement of natural systems, are often well-described by an underlying

deterministic system with additional random fluctuations.Consider the standard one-dimensional

Ornstein-Uhlenbeck (OU)x = x(t) stochastic process generated by the stochastic differential

equation (SDE)

dx =
1

2
ax dt+ σ dW (9)

whereW = W (t) is a standard 1-dimensional Brownian motion and the equationis interpreted in

the Itô-sense. It is well-known40 that the solution to (9) and the resulting varianceV (t) = Var(x(t))

can be calculated

V (t) =
σ2

a

(

eat − 1
)

.

For a < 0 it follows thatV (t) → −σ2/a ast → ∞ and fora > 0 one getsVt → ∞ ast → ∞.

More precisely,

ln(V (t)) = ln σ2 − ln a+ ln
(

eat − 1
)

∼ 2 ln σ − ln a+ at ast → ∞. (10)
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Generalizing (9) to the simplest possible saddle point yields

dx = Ax dt+ σ dW (11)

whereW = W (t) now denotes a standard 2-dimensional Brownian motion andA has two eigen-

valuesλs < 0 < λu. Then the same conclusion as before apply since the entries of the covariance

matrix C(t) = Cov(x(t)) are generically linear combinations of two decoupled OU-processes,

one stable with asymptotically constant variance fora = λs and one with diverging variance for

a = λu. Hence one could also attempt to use the scaling (10) to get anestimate forλu by consider-

ing a moving window analysis of the logarithm for the variance. This could be of particular interest

in case the more straightforward logarithmic distance reduction method does not work. Most likely

this will be the case only for very particular intermediate noise strengths. For small noise the esti-

mator based on distances works quite well as shown in the mainmanuscript. However, if the noise

is too large one never reaches a neighborhood of the saddle point with high-probability so that

predictions become impossible anyway i.e. the events acquire a purely noise-induced character.

An Example from Epidemics Saddle points also appear frequently in many applications.Here

we briefly illustrate the dynamics near saddles for a compartmental epidemic model31,41. The basic

model is given by

S ′ = −φI2S/T 2 − dS + ρR + bT,

I ′ = φI2S/T 2 − (d+ γ)I,

R′ = γI − (d+ ρ)R,

(12)

whereS, I, R are the number of susceptible, infected and recovered individuals in the population

(with T := S+I+R), d andb are per capita death and birth rates,γ is the per capita recovery rate,

29



andρ is the per capita loss of immunity constant.φ is the main bifurcation parameter of the model

and controls the interaction strength for the nonlinear incidence functionI2S. Assumingd = b to

keep the total population constant, introducing the new variables

s := S/T, i := I/T, r = R/T,

and using the constraint1 = s+ i+ r, one arrives at a two-dimensional ODE system31

i′ = −i[φi(1− i− r)− (b+ γ)],

r′ = γi− (b+ ρ)r.

(13)

The system (13) has a number of different dynamical regimes depending upon the parameter

values; for example, various bifurcations occur such as fold and Hopf bifurcations. Figure 5 shows

a simulation of the dynamics for parameter valuesb = 1, ρ = 0.132051, φ = 81.88, γ = 1.4

and initial condition(i, r) = (0.2, 0.3). In the(i, r)-phase space plot in Figure 5(a) a saddle point

(i, r) = (i∗, r∗) has been marked as a dot. For the chosen initial condition, the trajectory ap-

proaches a neighbourhood of the saddle several times, whereit only evolves slowly as discussed

above. These long periods near the saddle are then interspersed with several short periods con-

sisting of large epidemic outbreaks. The dynamics in this parameter regime is transient and will

settle after a very long time to a stable sink equilibrium. However, before this occurs, the saddle

dynamics plays the main role. Figure 5(b) shows a time seriesof the infected population densityi

corresponding to the trajectory from Figure 5(a).

It is important to note that the observed effect can also occur for the case when the saddle

point lies precisely on the zero line. Indeed, if we considera coordinate changẽi = i− i∗, then the
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saddle point lies on the zero line{i = 0} and we observe the same saddle escape phenomenon as

above.

3 Cooperation Games on Networks

In this section we give a more detailed technical description of the snowdrift game network. The

evolutionary game is defined between agents (nodes) that interact on an adaptive network via

the links between them22. The number of nodesN and number of undirected linksK is fixed.

However, as described below, the adjacency matrixA = (aij) may change in time and interacts

with the dynamics. This makes the system and adaptive, or co-evolutionary, network. An agenti

interacts with an agentj at a given time step if there is a link betweeni andj. The interaction takes

place via a game between the two nodes. In this game, an agent can have two possible strategiesσi,

cooperationC or defectionD, which are the two dynamical states of the nodes. The payoff agent

i receives from agentj via an interaction is modeled via the snowdrift game23 with interaction

matrix

M =









b− c/2 b− c

b 0









wherec represents the cost of cooperation andb the benefit.M11 represents cooperation of both

agents,M22 defection of both agents and the off-diagonal entries correspond to the mixed cases

where one agent tries to cooperate but the other agent defects. The total payoffπi for nodei is

πi =
∑

j:aij=1

Mij .
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The network is made adaptive by a probabilistic rule. After the game has been played, choose a link

at random. With probabilityp re-wire this link and with probability1− p one of the linked agents

adopts the other agent’s strategy. The two events of re-wiring and adaptation have to specified in

more detail. Define the performanceφ(σ) of a strategyσ ∈ {C,D} as

φ(σ) :=
1

nσN

∑

i:σi=σ

πi

wherenσ is the fraction of agents using strategyσ. If the strategy adoption event takes place agent

j adopts the strategy of agenti with probability

fβ(i, j) =
(

1 + e−β[φ(σi)−φ(σj)]
)−1

andi adoptsj’s strategy with probabilityfβ(j, i) = 1 − fβ(i, j). For a re-wiring event of a link

betweeni andj, delete it and select a random nodek. Then the link betweenk andi is generated

with probabilityfα(i, j) and betweenk andj with probabilityfα(j, i).

The main dynamical variables we are interested in are the fraction of cooperators and defec-

torsnC andnD, as well as the link densitieslCC , lCD andlDD. Since the number of nodes and links

is constant it suffices to restrict attention to a single nodedensity and two link densities. Consider

the parameter set

α = 30, β = 0.1, b = 1, c = 0.8, N = 50000, K = 500000

where the re-wiring ratep is the primary bifurcation parameter that is varied betweenp = 0 and

p = 1. There are three main dynamical regimes, for smallp the densitiesnCD remain almost

constant and there are just finite-size effect stochastic fluctuations. Note that for smallp, the
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network topology is very close to being static. Increasingp gives rise to a supercritical Hopf

bifurcation to oscillations in a system, where the population and link densities between different

types of agents are taken into account22, i.e. the linearization at the near-homogeneous steady state

has a pair of complex conjugate eigenvalues, which cross theimaginary axis at nonzero speed upon

variation ofp. This leads to small-scale deterministic oscillations, which grow in amplitude upon

increasingp further. For largep the periodic dynamics approaches a near-homoclinic orbit with

saddle-type escape dynamics and long periods of high cooperation values withnC near1. More

precisely, the period of the oscillations increases and long times are spend near a saddle steady

state and eventually the periodic orbit limits onto a homoclinic orbit, which means trajectories

come extremely close to the saddle steady state. Note carefully that high values ofp mean that

the network topology can change very quickly, i.e. quickly in comparison to the changes of the

dynamical states of the agents. This leads to a highly heterogeneous complex system, which can

drastically change its entire topology and dynamical state; for a more detailed description of the

dynamics we refer to22.

4 Epidemics on Networks

In this section we provide a more detailed overview of the epidemiological network model dis-

cussed in the main text. The total number of nodesN and linksL is assumed to be fixed. Nodes

can be in either in a susceptible (S) or infected (I) state. Links between nodes represent potential

transmission routes of the disease. Loops and double-linksare not allowed. At each time step an

infected node recovers with a probability (or recovery rate) r into a susceptible node. For every
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SI-link the disease spreads with probabilityp so that theS node becomes anI node upon infec-

tion. This basic dynamics just represents the standard susceptible-infected-susceptible model42. In

addition, susceptibles can try to avoid contact with infected and this is modeled via a probabilityw

of re-wiring anSI-link. In this case, the susceptible nodeS cuts its link to a nodeI and establishes

a new link to another susceptible node.

As before, we are mainly interested in the node and link densities and their trajectories. It is

natural to view the parameters(r, p, w) as bifurcation parameters. We briefly describe the dynamics

that have been found in24. It is observed that cluster formation and degree correlation depend on

the re-wiringr, e.g. higher re-wiring rates lead to higher degree correlation. Furthermore, the

main bifurcation point upon varyingw is the epidemic threshold corresponding to a transcritical

bifurcation. Hopf bifurcations, saddle-node bifurcations, oscillations and hysteresis can occur.

The re-wiring mechanism can be refined by introducing awareness of susceptibles to the

disease. Letρ = i/N ∈ [0, 1] denote the infected fraction of the population. Now definew = w0ρ

wherew0 is a fixed constant. In addition to the bifurcation phenomenaobserved previously, a

homoclinic bifurcation is found upon varyingp. The large-amplitude oscillations that occur near

the homoclinic bifurcation are of interest for our study of saddle escapes in the main text.

The parameter values used for full network simulation arep = 0.0058, r = 0.002 and

w0 = 0.6 with an initial susceptible densityst=0 = 0.98. The total number of nodes was fixed

to N = 105 and the total number of links toL = 106. These yield oscillations and their analysis

using saddle-type escape dynamics gives the results shown in (Fig. 3).
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5 Measles Data

The data set we use for testing our methods are measles epidemic data recorded in 60 UK cities

from 1944 to 1966; the data has been downloaded from the website43,44. A detailed description and

analysis of this data set is given in the two papers27,28. For each city the total number of cases has

been reported biweekly. Depending on the size of the city, measles is expected to occur in endemic

cycles (large cities) or in recurrent epidemics with local extinction. It is important to observe that

either of those two phenomena depends on the fact that the virus is somewhere in the total host

population. Therefore, a low infected density is generically expected to lie very close to the stable

manifold of a saddle point when considered in a sufficiently large phase space.

An interesting aspect of the modeling of Grenfell et al.27,28 is that, although their model is

stochastic, they recognize that during the initial phase and throughout the epidemic, the underlying

dynamical system seems to be behave deterministically. This is precisely the same behavior one

can observe from a model such as the epidemiological adaptive-network model described in the

last section.

6 ROC curves

Here, we briefly review the main idea of ROC (receiver operating characteristic), also called the

ROC curve, and give the formal definitions for the general case. Denote the points in a given time
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series byIj := I(tj) ∈ R for j = 1, 2, . . . and letYm be a binary random variable with

Ym :=















1 a tipping/event occured at timem

0 no tipping/event occured at timem,

i.e. Ym just records whether a tipping point occured at timem or not. Ym is taken as a random

variable since we do not a priori when events occur. Consider some subset of previous observations

Ik1,k2 := (Im−k1 , Im−k1−1, . . . , Im−k2) ∈ R
k1−k2+1 with 0 < k2 < k1, wherek1 − k2 + 1 is also

referred to as the sliding window length or observational window length.

Next, one defines a precursory variableXm := pre(Ik1,k2), where pre: R
k1−k2+1 → R

is a mapping, which computes out of the observations a scalar-valued precursor. Obviously the

variableXm can depend upon the choice ofk1, k2 and on further parameters (this problem is

currently being studied by the first author and several colleagues for the case of B-tipping). We

give an alarm whenXm > δ for the event someδ ∈ R. The precursory variable enables us to

calculate the rate of correct predictions as well as the rateof false positives

rc =
#correct predictions
#events/outbreaks

and rf =
#false positives
#non-events

.

Both rates will obviously depend uponk1, k2, δ and the dependence will be uponδ only if the

window length is fixed. One may also writerc and rf by using aposterior probability density

functions as29

rc =

∫

{Xm>δ}

P(Xm|Ym = 1), rf =

∫

{Xm>δ}

P(Xm|Ym = 0).

The ROC-curve is a plot of the rates in the(rf , rc)-plane for different values of the thresholdδ;

see (Fig. 4) for an example. There are several important standard observations about ROC curves.
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Perfect prediction occurs if no false positive and all true events are detected. This implies that

the ROC curve should consist just of the point(rf , rc) = (0, 1). The point(0, 0) in the lower-left

corner of an ROC curve represents a value ofδ that is so high that no alarm is given at any point

while the point(1, 1) at the upper right corner represents when alarms are given atevery time step.

The diagonal connecting(0, 0) and (1, 1) is precisely, where true positive rate equals the false

positive rate, which is equivalent to making random guesses. A precursor with performance better

than random guesses corresponds to a point in the upper triangle with rc > rf .
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Supplementary Figure 1 Numerical simulation for the compartmental epidemic model

(13). (a) Phase space plot with saddle point (green dot) and a trajectory segment (black

curve) showing multiple epidemic outbreaks with passages near a saddle. (b) Time series

for the infected population density i corresponding to the trajectory from (a). The i-value of

the saddle point is indicated by a dashed green line. The long passages near the saddle

between larger epidemic ourbreaks are clearly visible on this time scale.
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