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Supplementary Information

1 Metastability Near Saddle Points

Abundance of Saddlesin Complex Systems Our main assumptions on complex networks is that
steady states are “frequently” saddle points. In this ea¢ctve provide a mathematical justification

for this assumption. Suppose we are given a large system &sOD

o’ = f(z) 2
for x € R* andn > 1. Assumez* is a steady state (or equilibrium point(z*) = 0) for (2).
Denote the linearization (or Jacobiab) (z*) by A,, € R™*™ which generically provides the local
stability of z* using the Hartman-Grobman TheorenEigenvalues ofd,, with negative/positive
real parts correspond to stable/unstable eigendirectionsler the hypothesis that the system is
complex, heterogeneous and its size is large it is reaset@abkssumé that 4,, is a random matrix
with independent identically distributed (iid) entriesgn by a complex random variablewith
mean zero and variane€. Let {\;}"_, denote the eigenvalues df, and define the empirical

spectral distribution,, of A,, by
(8, 1) := %#{k <n:Re\) < sandIm)) <t}
where# denotes the cardinality of a set. Recently it has been praes @nd references therein)
that, under suitable boundedness assumptions on the n®mwientthe circular law conjecture
holds which states that, converges to the uniform distribution over the unit disk
o (5,1) = %mei{w € C:Juw| < 1,Re(w) < s and Infw) < t})
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where 'mes’ denotes Lebesgue measure. Hence, asympiotisal — oo, if A is an eigenvalue
of A,, then

P(Re()) < 0) = % _ P(Re(A) > 0).

This implies that:* is stable with probability1/2)", completely unstable with probability /2)™
and a saddle point with probability — (1/2)"~!. Therefore, the probability that* is a saddle

point tends to one as — oc.

It is extremely important to note that the argument here sefdaipon certain mathematical
assumptions to make it rigorous. However, it is stronglyested that if weveakernthe assump-
tions in various ways, we still find saddle points frequemiyigh-dimensional systems. In fact,
let us point out that the idea to characterize instabilitiange-scale systems using random matrix
theory is well-know#® but is still a topic of very recent interé8t However, previously one only
had the semi-circular law available that required the sytnyredf A,, or one had to rely on struc-
tured matrices, for example certain types of food WébEhese assumptions are usually too strong
for complex dynamical networks, which can be highly heterapus and yield unstructured, non-
symmetric ODEs. This makes the recent progress on provieduth circular law conjecture
important in our context. As discussed above, one expeatshb results can be generalized even
further to include even larger classes of complex systemgh&rmore, note carefully that even if
n is small, one may still have saddles, which may be relevantii® dynamics, i.e., the assump-
tions we make arsufficientto prove saddle existence with high probability but the ag#ions

may not benecessaryo find saddles at all.
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Residence Times Another main point of our argument is that the systems candgsaenuch longer
time near saddle points than away from them. This leads tastadile behavior near saddle points.

This can be illustrated with the simplest two-dimensioreegiven by the ODEs

Ty = )\lea

3)
Ty = Aux%
where\, < 0 < \,. Note carefully that it is justified to reduce the dimensidrtfee system

after the large dimensionality of the system has led to saddletgdine mathematically rigorous

reduction just follows from center manifold thedtyThe system (3) decouples with solution

.Il(t) =1 (0)6)‘St and ZEQ(f) — $2(0)€>\“t.

Suppose we start with somg(0) = « > 0 and want to reach a small neighborhood of the
origin with z,(T') = 6 < k. This takes a tim@ = \;!'In(§/x). Viewing T as a function ofs
shows that the time increases logarithmically. Therefargajectory spends a much longer time
near the equilibrium in comparison to the approach towandseguilibrium. Similarly, we can
require a trajectory to start in a small neighborhood of éwdte withz,(0) = ¢ > 0 and end at
zo(T) = k > 0. ThenT = X! In(x/d) and the same arguments apply to show that the initial time
spend near the equilibrium is much longer than the escape t#ithough we have only worked
with a linear system (3), similar conclusions apply for tlimimear case as long the passage near

the hyperbolic saddle occurs sufficiently close to its stalsid unstable manifoltls
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2 Saddle Point Warning Signs

Basics Locally near a hyperbolic saddle point, which we can assuitieowt loss of generality to

be atz = (0,0,...,0) =: 0, we can work with the linearization so that
¥ = Ax (4)
for some matrixA € R™*™ with eigenvalues\; € C fori € {1,2,...,n} and associated eigenvec-

torsv;. We are going to assume that the eigenvalues are distinctvggeneric within the space
of matrices. Standard linear algebra gives a coordinatsfiramation? : R” — R", x = Py, SO

that
By

P'AP =B =
By,
where thek matricesB,, . . ., By, are the usual Jordan blocks aRdnaps the standard basis vectors
to the basiqv; }. Since the eigenvalues are distinct we h@ec R or B; € R**?. Itis straight-
forward to observe that the escape near saddles is goveyribd tveakest stable and the strongest
unstable directions. More precisely, we will only considemost four eigenvalues,, \;, A, A\,

where overbar denotes complex conjugation so that

0 > Re(\;) > Re(\y), for all k£ # s such that > Re()\;), 5)

0 < Re(A\r) < Re(\,), for all £ # u such that) < Re(\).
It is extremely important to highlight again the logic in theevious derivations: First, we start
with a large-dimensional system, where it can be shown #ddls points are frequent. For each

hyperbolic saddle point, there are many eigenvalues. Hexvdar the dynamical approach or
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departure of the saddle point, the dynamics is locally goseiby the weakest stable and strongest
unstable directions, i.e., stronger stable directionsplant very quickly, while weak unstable
directions are generically dominated by the strongestalntestmode. Hence, we may develop a
local theory for high-dimensional hyperbolic saddles bgusing on the leading directions in the

stable and unstable manifolds, which are generically lawedisional.

The Planar Saddle We start with the case = 2 and),, € R. Settingz = Py givesy' =

P~ APy = By with solutiony(t) = y(0)e'? or z(t) = Py(t) so that
z(t) = y1(0)ev; + 2 (0)er v,

for vectorsu, , that can be calculated explicitly. Since we want to apprdaehsaddle point and
stay near it for some significant amount of time we must haa¢|th(0)| # 0 is small so that
a solution starts close to the stable manifoltf(0) = {pv; : p € R}. Let]| - || denote the
usual Euclidean norm. Observe that the téfn(0)e*s‘v, || — 0 ast — oo and, ify,(0) # 0,
|y2(0)ertvy|| — oo ast — oco. Hence, initially||z(¢)|| decreases exponentially until a unique
minimum and then|z(¢)|| increases exponentially. For times> 0 such thaty,(0)e*% is small

it follows for somet, > t; > 0 that

lata) — a(t)]| ~ [y (O] — &4 ot

e/\s(tz—h) . 1)|

]l = [y1(0)[[[vrl]e
If 5 > t; thene?s(2—11) ~ () so that
In[[z(ts) — (k)| ~ At1 + k1 (6)

wherek; = In(|y;(0)|||v1]|) is a constant that will not be of relevance here. Observe @)atlows
us to estimate\, from data. Then we can consider it a warning sign when theribga of the
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distance between points starts to deviate from the line¢g)fitn the regime wherfy, (0)|e*<*

vl
is small a similar procedure allows us to estimate the seehgnstable eigenvalues since then we
find

In ||x(ts) — x(t1)]] = Auta + ko ()
whereky = In(|y2(0)|||v2||). From the knowledge ok, we can predict how rapidlyjz(t)|| is
expected to grow. In practice, we can estimate the eigeesaly, from a uni-variate coordinate

time series;(¢) by looking at a fixed time poirit’ and a set of previous times; < t, < --- < T

to Compute
1 K
di(T) := 22 D () = wi(ty)]. 8)
k=1

Computingd;(T) for different timesT" gives that in different regimes (stable/unstable) we have

d;(T) ~ Ay sT + K, for some constank's.

Complex Eigenvalues For the caser = 3 we will again assume that (5) holds and that the com-
plex conjugate eigenvalue pair has negative real part eecomsidet\, = a, + ib,, A; = a; — ibs,

A\, With associated real eigenvecters, ;. With x(t) = Py(t) the general solution is
eaSt[yl (0) COS(bst) + y2<0) Sin(bst)]
y() = | e [ys(0) cos(bst) — y1(0) sin(bst)]
yg(o)ez\ut

Writing the solution forz () in the basis of the eigenvectarsgives

z(t) = e®'y1(0)cos(bst) + y2(0) sin(byt)]vy
+e% 5 (0) cos(bst) — y1(0) sin(byt)]vy + y3(0)e v,
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As before, we are going to distinguish two regimes in the ttlomain, starting with the assump-
tion that||y3(0)e*!v3]| is small which yields exponentially decaying oscillatidnsime series for
each coordinate;. LetT be the time between successive maxima or minima thea 27 /T.

Furthermore, it; > ¢; > 0 as previously and, — t; = T" then
|x(te) — z(t1)|| =~ k3|e“st2 _ eash’

for a positive constani;. The last equation can then be used to estimates shown in Section 2.

The case of two complex conjugate eigenvalue pairs is siraiid will not be discussed here.

Noisy Saddles An important question is to consider the influence of noiseatsiral systems,
and in particular the measurement of natural systems, &ea ofell-described by an underlying
deterministic system with additional random fluctuatio@snsider the standard one-dimensional
Ornstein-Uhlenbeck (OU) = z(t) stochastic process generated by the stochastic diffatenti
equation (SDE)

dx = %ax dt + o dW (9)
wherelW = W (t) is a standard 1-dimensional Brownian motion and the equéioterpreted in

the lt-sense. Itis well-knowii that the solution to (9) and the resulting variahog) = Var(z(t))

can be calculated

)

o
a
Fora < 0 it follows thatV (t) — —o?/a ast — oo and fora > 0 one gets;, — oo ast — oc.

More precisely,

In(V(t)) =Ino® —Ina+In(e” —1) ~2Ino — Ina + at ast — oo. (10)
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Generalizing (9) to the simplest possible saddle pointigiel
dr = Ax dt + o dW (12)

wherelW = W (t) now denotes a standard 2-dimensional Brownian motionhds two eigen-
values); < 0 < \,. Then the same conclusion as before apply since the enfribe oovariance
matrix C'(t) = Cowv(z(t)) are generically linear combinations of two decoupled Obepsses,
one stable with asymptotically constant variancedor A\, and one with diverging variance for
a = \,. Hence one could also attempt to use the scaling (10) to gettamate for\, by consider-
ing a moving window analysis of the logarithm for the varian€his could be of particular interest
in case the more straightforward logarithmic distance cédn method does not work. Most likely
this will be the case only for very particular intermediatese strengths. For small noise the esti-
mator based on distances works quite well as shown in the mafuscript. However, if the noise
is too large one never reaches a neighborhood of the saduiiewaith high-probability so that

predictions become impossible anyway i.e. the events ezguurely noise-induced character.

An Example from Epidemics Saddle points also appear frequently in many applicatibtese
we briefly illustrate the dynamics near saddles for a compamtal epidemic mod&t*%. The basic

model is given by

S" = —¢I*S/T?* —dS + pR + bT,
I' = ¢I*ST? — (d+ ), (12)

R = ~I—(d+p)R,

whereS, I, R are the number of susceptible, infected and recoveredithgils in the population
(with T":= S+ I+ R), d andb are per capita death and birth ratess the per capita recovery rate,
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andp is the per capita loss of immunity constantis the main bifurcation parameter of the model
and controls the interaction strength for the nonlineaidigiece function/2S. Assumingd = b to

keep the total population constant, introducing the newatdes
s:=S/T, i:=1/T, r=R/T,

and using the constraint= s + i + r, one arrives at a two-dimensional ODE systém

i = —ilpi(l—i—r)—(b+7)], 13)

= ~yi—(b+p)r.

The system (13) has a number of different dynamical regirepsiading upon the parameter
values; for example, various bifurcations occur such asdold Hopf bifurcations. Figure 5 shows
a simulation of the dynamics for parameter valbes 1, p = 0.132051, ¢ = 81.88, v = 14
and initial condition(, ) = (0.2,0.3). In the (i, r)-phase space plot in Figure 5(a) a saddle point
(1,7) = (i*,7*) has been marked as a dot. For the chosen initial conditi@entréjectory ap-
proaches a neighbourhood of the saddle several times, Wy evolves slowly as discussed
above. These long periods near the saddle are then inteespetth several short periods con-
sisting of large epidemic outbreaks. The dynamics in thiaupater regime is transient and will
settle after a very long time to a stable sink equilibrium.wdwger, before this occurs, the saddle
dynamics plays the main role. Figure 5(b) shows a time sefidte infected population density

corresponding to the trajectory from Figure 5(a).

It is important to note that the observed effect can also iofanuthe case when the saddle
point lies precisely on the zero line. Indeed, if we consaleoordinate change= i — i*, then the
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saddle point lies on the zero lifé = 0} and we observe the same saddle escape phenomenon as

above.

3 Cooperation Gameson Networks

In this section we give a more detailed technical descniptibthe snowdrift game network. The
evolutionary game is defined between agents (nodes) theraoiton an adaptive network via
the links between thefA The number of noded’ and number of undirected links is fixed.
However, as described below, the adjacency matrix (a;;) may change in time and interacts
with the dynamics. This makes the system and adaptive, evohxionary, network. An agerit
interacts with an agentat a given time step if there is a link betwegand;. The interaction takes
place via a game between the two nodes. In this game, an agehaee two possible strategies
cooperation”' or defectionD, which are the two dynamical states of the nodes. The pageiita
i receives from agent via an interaction is modeled via the snowdrift g&ieith interaction
matrix

b—c/2 b—c
M =

b 0

wherec represents the cost of cooperation arttie benefit. M/, represents cooperation of both
agents,M,, defection of both agents and the off-diagonal entries spoad to the mixed cases

where one agent tries to cooperate but the other agent defda total payoffr; for nodei is

T, = Z Mzg

Jiaj;=1
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The network is made adaptive by a probabilistic rule. Aftergame has been played, choose a link
at random. With probability re-wire this link and with probability — p one of the linked agents
adopts the other agent’s strategy. The two events of rexgvaind adaptation have to specified in

more detail. Define the performaneér) of a strategy € {C, D} as

wheren,, is the fraction of agents using strategylf the strategy adoption event takes place agent

j adopts the strategy of agenwith probability

i g) = (1+ efﬂmai)—as(oj-n)—l

and: adopts;’s strategy with probabilityfs(j,7) = 1 — fz(i,j). For a re-wiring event of a link
between andj, delete it and select a random nadeThen the link betweeh and: is generated

with probability f,, (7, j) and betweer andj with probability £, (7, ).

The main dynamical variables we are interested in are tletidraof cooperators and defec-
torsnc andnp, as well as the link densitiésc, lcp andipp. Since the number of nodes and links
is constant it suffices to restrict attention to a single ndelesity and two link densities. Consider

the parameter set
a=30, =01, b=1, ¢=0.8, N =50000, K = 500000

where the re-wiring rate is the primary bifurcation parameter that is varied between 0 and
p = 1. There are three main dynamical regimes, for smpahe densities:p remain almost
constant and there are just finite-size effect stochastatuitions. Note that for smajl, the
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network topology is very close to being static. Increasingives rise to a supercritical Hopf
bifurcation to oscillations in a system, where the popalatnd link densities between different
types of agents are taken into accddyite. the linearization at the near-hnomogeneous steatly sta
has a pair of complex conjugate eigenvalues, which crogsthginary axis at nonzero speed upon
variation ofp. This leads to small-scale deterministic oscillationsicllgrow in amplitude upon
increasingp further. For largep the periodic dynamics approaches a near-homoclinic orilit w
saddle-type escape dynamics and long periods of high catiperalues withho nearl. More
precisely, the period of the oscillations increases and kimes are spend near a saddle steady
state and eventually the periodic orbit limits onto a honmaclorbit, which means trajectories
come extremely close to the saddle steady state. Note dgréfat high values ofp mean that
the network topology can change very quickly, i.e. quicklcomparison to the changes of the
dynamical states of the agents. This leads to a highly hgeeeous complex system, which can
drastically change its entire topology and dynamical statea more detailed description of the

dynamics we refer 3.

4 Epidemicson Networks

In this section we provide a more detailed overview of thalepiiological network model dis-
cussed in the main text. The total number of noffeand linksZ is assumed to be fixed. Nodes
can be in either in a susceptible (S) or infected (I) statek&ibetween nodes represent potential
transmission routes of the disease. Loops and double-dirksot allowed. At each time step an

infected node recovers with a probability (or recovery yatento a susceptible node. For every
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SI-link the disease spreads with probabilitgo that theS node becomes ahnode upon infec-
tion. This basic dynamics just represents the standaraptibte-infected-susceptible motfelin
addition, susceptibles can try to avoid contact with irdecnd this is modeled via a probability
of re-wiring anS7-link. In this case, the susceptible nasleuts its link to a nodé and establishes

a new link to another susceptible node.

As before, we are mainly interested in the node and link diessand their trajectories. It is
natural to view the parametes p, w) as bifurcation parameters. We briefly describe the dynamics
that have been found?h It is observed that cluster formation and degree cormatiepend on
the re-wiringr, e.g. higher re-wiring rates lead to higher degree coimelat Furthermore, the
main bifurcation point upon varying is the epidemic threshold corresponding to a transcritical

bifurcation. Hopf bifurcations, saddle-node bifurcaspnoscillations and hysteresis can occur.

The re-wiring mechanism can be refined by introducing awesgrof susceptibles to the
disease. Lep = i/N € [0, 1] denote the infected fraction of the population. Now define wp
wherewy is a fixed constant. In addition to the bifurcation phenomebserved previously, a
homoclinic bifurcation is found upon varying The large-amplitude oscillations that occur near

the homoclinic bifurcation are of interest for our study atldle escapes in the main text.

The parameter values used for full network simulation are- 0.0058, » = 0.002 and
wo = 0.6 with an initial susceptible density,_, = 0.98. The total number of nodes was fixed
to N = 10° and the total number of links tb = 10°. These yield oscillations and their analysis

using saddle-type escape dynamics gives the results simofiFigL 3).
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5 MeadesData

The data set we use for testing our methods are measles epidata recorded in 60 UK cities
from 1944 to 1966; the data has been downloaded from the te&b¥i A detailed description and
analysis of this data set is given in the two papef® For each city the total number of cases has
been reported biweekly. Depending on the size of the citgstes is expected to occur in endemic
cycles (large cities) or in recurrent epidemics with locdlrection. It is important to observe that
either of those two phenomena depends on the fact that the isirsomewhere in the total host
population. Therefore, a low infected density is genelyoapected to lie very close to the stable

manifold of a saddle point when considered in a sufficiersttgé phase space.

An interesting aspect of the modeling of Grenfell et’af® is that, although their model is
stochastic, they recognize that during the initial phaskthroughout the epidemic, the underlying
dynamical system seems to be behave deterministicallys itprecisely the same behavior one
can observe from a model such as the epidemiological agapé&twork model described in the

last section.

6 ROC curves

Here, we briefly review the main idea of ROC (receiver opagatiharacteristic), also called the

ROC curve, and give the formal definitions for the genera¢c&enote the points in a given time
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series byl,; := I(t;) € Rforj =1,2,... and letY,, be a binary random variable with

1 atipping/event occured at time
Y, =

0 no tipping/event occured at time,

i.e. Y, just records whether a tipping point occured at timeor not. Y,, is taken as a random
variable since we do not a priori when events occur. Consmaesubset of previous observations
Lty = (Lneiyy Ity 1, -+ 5 Im—gy) € REI7R2Hwith 0 < ko < &y, wherek; — ky + 1 is also

referred to as the sliding window length or observationaidew length.

Next, one defines a precursory variable, := pre(l;, x,), where pre: RM—F+1 — R
is a mapping, which computes out of the observations a sealaed precursor. Obviously the
variable X,,, can depend upon the choice kf, k; and on further parameters (this problem is
currently being studied by the first author and several aglkes for the case of B-tipping). We
give an alarm wherX,, > ¢ for the event somé € R. The precursory variable enables us to

calculate the rate of correct predictions as well as theaff@se positives

__ #correct predictions
~ #events/outbreaks

and #false positives
Ty = .
f #non-events

Te

Both rates will obviously depend updn, k.,  and the dependence will be upéronly if the
window length is fixed. One may also write andr; by using aposterior probability density

functions a%

= / P(Xp|Vp = 1), 7y = / P(X,0[Y, = 0).
{Xm>6} {Xm>6}

The ROC-curve is a plot of the rates in the, r.)-plane for different values of the threshaid
see (Fig. 4) for an example. There are several importantiatdrobservations about ROC curves.
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Perfect prediction occurs if no false positive and all truergs are detected. This implies that
the ROC curve should consist just of the paint, r.) = (0,1). The point(0, 0) in the lower-left
corner of an ROC curve represents a valué tiat is so high that no alarm is given at any point
while the point(1, 1) at the upper right corner represents when alarms are givareat time step.
The diagonal connectin@),0) and (1, 1) is precisely, where true positive rate equals the false
positive rate, which is equivalent to making random gues&gsecursor with performance better

than random guesses corresponds to a point in the uppeglaiaithr, > ;.

37



Supplementary Figure 1 Numerical simulation for the compartmental epidemic model
(13). (a) Phase space plot with saddle point (green dot) and a trajectory segment (black
curve) showing multiple epidemic outbreaks with passages near a saddle. (b) Time series
for the infected population density 7 corresponding to the trajectory from (a). The i-value of
the saddle point is indicated by a dashed green line. The long passages near the saddle

between larger epidemic ourbreaks are clearly visible on this time scale.
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