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1 Discussion of population dynamics under spontaneous di↵erentiation

Since we propose in the main manuscript that some portion of stem cell heterogeneity is best thought of as spontaneous
irreversible departure from pluripotency, we address in this section how pluripotent cells can nevertheless remain a stable
fraction of the population.

Suppose that a pluripotent population of ESCs (type A) has a growth rate kA and a rate of irreversible spontaneous
conversion kAB into a non-pluripotent type B that grows at a rate kB . The equations of motion for the population sizes A(t)
and B(t) are:

Ȧ(t) = kAA� kABA Ḃ(t) = kBB + kABA

Supposing that B(0) = 0, and A(0) = A0, we have:

A(t) = A0e
(kA�kAB)t

And

e�kBtB(t) = kAB

Z
A0e

(kA�kAB�kB)t

B(t) =
kAB

kA � kAB � kB
A0

h
e(kA�kAB)t � ekBt

i

As long as the growth rate of pluripotent cells is faster than the sum of the rate of their spontaneous di↵erentiation and
the growth rate of the non-pluripotent cell population, kA > kAB + kB , the ratio of di↵erentiated cells to pluripotent cells
will remain finite and equal to:

B(t)

A(t)
! kAB

kA � kAB � kB
as t ! 1

2 Discussion of rates of exchange during reversible fluctuations

In this section we show that when there are truly reversible fluctuations between two cellular states (between Nanog(-) and
Nanog(+) for example), and one purifies either state, the rate at which the equilibrium is re-established is the same regardless
of which state was originally purified.

The simplest model of exchange between two populations A and B (corresponding to Nanog(+) and Nanog(-)) is:

A ⌦ B : A
kAB! B, B

kBA! A

The equilibrium equation is:
↵⇤

�⇤ =
kBA

kAB

where ↵ and � are the fraction of cells of type A and type B and ⇤ denotes the steady state value. One can show that if the
equilibrium is disturbed, for example, let ↵ = 1 and � = 0, then the return to equilibrium follows:

↵(t) = ↵⇤ + (1� ↵⇤)e�(kAB+kBA)t �(t) = �⇤
h
1� e�(kAB+kBA)t

i

The rate constant of achieving equilibrium is kAB + kBA and is independent of whether we start with all A (↵ = 1) or all
B (� = 1), no matter how di↵erent the rates kAB and kBA might be.

For the case of pluripotency gene reporter heterogeneity, this means that marker(+) cells and marker(-) should both
regenerate the full distribution in the same number of days. This is rarely seen in existing studies on stem cell heterogeneity,
as depicted schematically in Figure S12. Marker(-) cell populations are much slower to regenerate marker(+).

Although at first it seems odd to expect that the usually small marker(-) subpopulations should rapidly regenerate the
much larger marker(+) population, in fact, in this simple reversible scheme, the marker(-) population can only be small at
steady state if it has a fast rate of return to marker(+) (see the equilibrium equation above). The alternative is that the
marker(-) population is small due to a faster growth rate of (+) than (-) cells. We analyze the more complex situation in
which A and B have possibly di↵erent cell cycle growth rates below, and show that after taking the e↵ect into account,
experimental curves predict extremely slow rates of return kBA on the order of ten days or more.
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3 General case of 2-state population recovery dynamics

A general model for exchange between populations with growth rates kA and kB :

Ȧ(t) = kAA� kABA+ kBAB

Ḃ(t) = kBB � kBAB + kABA

The first section of this discussion treated the case where kBA = 0, and the second treated the case of kA = kB = 0,
which is also equivalent to the case where kA and kB are equal but nonzero.

First we recast in terms of the fraction of cells of each type, setting ↵(t) = A/A+B and �(t) = B/A+B:

↵̇(t) = (kA � kB)↵� � kAB↵+ kBA�

The steady state ratio is controlled by the dimensionless ratios kAB/(kA � kB) and kBA/(kA � kB) and occurs when:

↵⇤(1� ↵⇤) =
kAB

kA � kB
↵⇤ +

�kBA

kA � kB
(1� ↵⇤)

which always has one solution 0 < ↵ < 1 by the intermediate value theorem as long as kAB and kBA are nonnegative and
at least one is not zero. A graphical analysis shows that in this scenario the equilibrium is stable. If the growth rates of A
and B are similar, then kA � kB ! 0 and one recovers the familiar steady state result ↵ = kBA/(kAB + kBA).

If one purifies A or B populations then the initial slope of the population recovery is ↵̇ = �kAB if starting from ↵ = 1
and ↵̇ = kBA if starting from ↵ = 0. This initial rate of recovery is independent of the growth rates of A and B.

To solve the general case, we recast the dynamics in terms of the deviation from equilibrium � = ↵� ↵⇤:

�̇(t) = ↵̇(t) = (kA � kB)(↵
⇤ +�)(�⇤ ��)

�kAB(↵
⇤ +�) + kBA(�

⇤ ��)

= �(kA � kB)�
2

�
⇣
(kA � kB)(↵

⇤ � �⇤) + kAB + kBA

⌘
�

The rate of decay of a small perturbation from equilibrium is  = (kA � kB)(↵⇤ � �⇤) + kAB + kBA which returns the
familiar result  = kAB + kBA for the case of no di↵erences in growth rate. For larger deviations, the recovery from a
perturbation that increases the faster growing population is faster than the recovery from a perturbation that increases the
slower one:

↵̇(t) = �(kA � kB)(↵� ↵⇤)2 � (↵� ↵⇤)

The dynamics are determined by the three paramaters kA � kB , kBA, and kAB . These can be written in terms of the
equilibrium fraction ↵⇤, the small perturbation recovery rate , and the ratio of the growth rate di↵erence to the population
recovery rate g = (kA � kB)/. After some algebra:

kA � kB = g

kBA = ↵⇤(1� g↵⇤)

kAB = (1� ↵⇤) [1 + g(1� ↵⇤)]

We are interested in the case where kA > kB since experimentally recovery from (-) is always slower than from (+). The
requirement that all k be nonnegative therefore implies that g < 1/↵⇤, so the range of possible values is 0  g < 1/↵⇤.
Calculated recovery curves are shown in Fig. S13.

In the plots we have labelled the implied lifetime for return from the (-) state, 1/kBA, normalized to the small-perturbation
recovery lifetime 1/. We note that changes in growth rate di↵erential have only a minor e↵ect on the recovery from purified
(+) especially for situations in which the steady state has a high fraction of (+), as seen in most reports on pluripotency
reporter fluctuations. After fixing  and ↵⇤, the range of kAB is only (1� ↵⇤) < kAB < (1� ↵⇤)/↵⇤. On the other hand,
the growth rate di↵erential is reflected as a slowdown on the recovery from (-) and indeed the range of kBA stretches all the
way from ↵⇤ down to 0, the limit where transition to B is totally irreversible.

What is remarkable is that even a small asymmetry between the rate at which purified (-) and (+) populations return
to steady state implies that at the single cell level the rate constant for a (-) cell to return to (+) is extremely small. As an
example, take the right panel in Fig. S13. Supposing that the (+) population recovers to the steady state distribution on
the time scale of 1 day (corresponding to �1 ⇡ 1day), if the (-) population recovers at the same rate (blue curve), it implies
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that a (-) cell will return to (+) on a time scale of k�1
BA = 1.3 days. However, if the (-) population recovers on the timescale

of 3 days, say, it means that a (-) cell only returns to (+) on average after 12.6 days. If the (-) population recovers on a
timescale of 4 days, the average (-) cell recovers only in 26 days. Even such mild deviations from the blue curve therefore
imply that the rate of return of a (-) cell is much slower than would be expected for transient lineage priming.

To explain why dramatic reductions in kBA lead only to mild slowdown in the time of population recovery from purified
(-), we return to the equation:

↵̇(t) = (kA � kB)↵(1� ↵)� kAB↵+ kBA(1� ↵)

The last two terms describe the e↵ect of interconversion by cells switching between (+) and (-), but the first term captures
the e↵ect of growth rate di↵erences. If kBA is very small, the initial rate of recovery from purified (-) ↵ = 0 is slow. But the
only way for kBA to be much smaller than kAB while maintaining a high value of ↵⇤, the steady state fraction of (+) cells,
is if kA � kB > 0. The smaller kBA, the larger the di↵erential growth rate must be. Therefore, when kBA is small, as soon
as some (+) cells are produced from a (-) population, the larger growth rate of (+) cells will rapidly multiply their numbers
relative to the (-) population. The return to steady state therefore becomes driven by the growth rate di↵erential, the first
term in the above equation, rather than primarily by interconversion from (-), the third term.
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Figure S1: VNP++ and VNP+ are Similar. Histogram for the log fold changes of expression by RNA-Seq for 25313
genes between VNP+ and VNP- samples (left) and between VNP++ and VNP+ samples. Only 6 genes are 10% FDR hits for
di↵erential expression between VNP+ and VNP++, nearly three orders of magnitude less than between VNP+ and VNP-.
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Figure S2: Di↵erential Expression of Hox genes Fold changes of Hox genes in the VNP(+)/VNP(-) and Stem/Di↵
comparisons. The Hox genes are more highly expressed in Nanog :VNP(-) than Nanog :VNP(+), but lower in Di↵ than in
Stem.
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Figure S3: Comparison of RNA-Seq and RT-PCR Comparison of RNA-Seq fold-changes from this study between
Nanog :VNP(+) and Nanog :VNP(-) sorted samples and reported fold-changes Abranches et al. (2014) measured by RT-PCR
for the same cell line sorted into Nanog :VNP(+) and Nanog :VNP(-) after 6 days of culture in 2i/LIF.
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Figure S4: Analysis of population heterogeneity after prolonged culture in 2i+LIF conditions (Serum+LIF
conditions are presented as control). (A) Fraction of VNP(+) cells determined by flow cytometry following transfer of cells
from serum+LIF to 2i+LIF. Cells were monitored during 6 days showing no further changes after 2 days. (B) RNA counts
determined by single-molecule RNA-FISH for Nanog and Oct4 from a measurement on 3040, 782 and 618 Nd ESCs grown
in serum+LIF, 2i+LIF for 2 days and 2i+LIF for 6 days, respectively. The cuto↵ for Nanog(+/-) and Oct4(+/-) is shown as
a dashed line on the plot. Note that the % of Nanog(-) cells relative to the total number of cells changes from 22% to 2.3%
upon serum+LIF to 2i+LIF transition in 2 days but then is kept constant until day 6.
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Figure S5: RNA-Seq Principal Components Analysis. Principal component analysis was performed after variance
stabilization using DESeq Anders and Huber (2010). (A) Weights of the 10 samples in the first two principal components
of our RNA-Seq experiment. Colors denote di↵erent conditions, and the two symbols are the two biological replicates. (B)
Relative variance of all principal components. Inset shows the weights of the third principal component using the same
symbology as in A, showing that it captures gene expression changes between replicates. Together, the plots show that
VNP-correlated heterogeneity and di↵erentiation account for most of the sample-to-sample variation of gene RNA levels.
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Figure S10: Single Cell Analysis of Nanog, Rex1, and VNP reporter correlation (A) Maximum projection of images
from Nd cells stained for Nanog, Rex1, and Venus fluorescent protein (VNP). Scale bar is 5 µm. The left-most cell is an
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