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1 Simulation studies

We conducted extensive simulation studies to evaluate the performance of the proposed and

existing methods. Following Lee et al. (2012), we generated 10,000 European-like haplotypes

of length 1000 kb under a calibrated coalescent model (Schaffner et al., 2005). We randomly

pair the haplotypes to simulate a total population of 106 individuals. We randomly select a

gene region of length 10 kb and study those rare variants with MAF≤ 0.01. We consider two

covariates Z = (Z1, Z2)
′: Z1 ∈ {0, 1} follows Bernoulli(0.5), and Z2 ∼ N(0, 1). We model

the logit disease risk as expit(β0 + Z ′βZ +
∑m

j=1 βjGj). We set β0 = −3.4, βZ = (0.5, 0.5)′

(corresponding to 5% population disease rate). We randomly select ne cases and nc controls from

the simulated population of 106 samples. We compared five rare variant set analysis methods:

SKAT, SKAT-O, SKATL, SKAT-OL and burden test. In the burden and SKAT tests, we assign

weight Beta(pj ; a0, b0) to the jth variant Gj . And for the proposed method we assign weight

Beta(pj ; a1, b1). Here pj is the MAF of Gj . For a given variant, the likelihood ratio test statistic

is inherently standardized and roughly corresponds to the standardized score statistics, which
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Table 1: Type I error of rare variant set analysis: ne = 2500 cases and nc = 2500 controls. The
Type I errors have been divided by their nominal levels

(a1, b1) (1,25) (1.5,25.5) (2,26)

α 10−4 10−3 10−2 10−4 10−3 10−2 10−4 10−3 10−2

SKATL 0.69 0.74 0.90 1.07 1.05 1.04 1.06 1.02 1.03
SKAT-OL 0.91 0.92 0.99 0.96 1.00 1.05 1.10 1.12 1.07

Table 2: Type I error of rare variant set analysis: ne = 1700 cases and nc = 3300 controls. The
Type I errors have been divided by their nominal levels

(a1, b1) (1,25) (1.5,25.5) (2,26)

α 10−4 10−3 10−2 10−4 10−3 10−3 10−4 10−3 10−2

SKATL 0.75 0.83 0.95 1.08 1.07 1.05 0.93 1.06 1.05
SKAT-OL 0.93 0.95 1.03 0.92 0.98 1.02 1.12 1.12 1.09

is the score statistics used in SKAT scaled by its standard error, which is roughly proportional

to
√
pj(1− pj). Therefore for the proposed method, we set a1 = a0 + 0.5 and b1 = b0 + 0.5.

We investigated three sets of weights for (a0, b0): (0.5,24.5), (1,25), and (1.5,25.5); and two

case-control ratios for (ne, nc): (2500,2500) and (1700,3300).

We use 107 experiments to evaluate the type I error at the nominal significance level α =

10−4, 10−3, and 10−2 by setting all βj = 0. The results are summarized in Table 1 and 2 for

the two case-control ratios. We can see that the the proposed methods appropriately controlled

the Type I errors. The Type I errors are generally protected under different weights, which is

consistent with the observations of Wu et al. (2011).

We also conducted 108 simulations to verify that the proposed methods have well-calibrated

p-values at very stringent genome-wide significance level. Table 3 shows that the proposed

methods appropriately control type I errors at small α levels. Figure 1 shows the corresponding

QQ plots for the proposed SKATL and SKAT-OL with weights (a1 = 1.5, b1 = 25.5) based on

108 simulations.

We use 104 experiments to evaluate the power under various combinations of βj at α =

10−6, 10−5, 10−4, and 10−3. The rare variant effects βj are set as follows. Each time we randomly

select θ proportion of rare variants and set their |βj | = d log10(pj). The other null rare variants

have zero coefficients. We have assumed that rarer variants have larger effect sizes. We conducted
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Table 3: Type I error estimates of proposed methods with weight (a1 = 1.5, b1 = 25.5) at strin-
gent α level based on 108 simulations: Type I error has been scaled by the nominal significance
level α.

(ne, nc) (2500,2500) (1700,3300)

α 10−5 10−6 10−5 10−6

SKATL 1.08 1.06 1.05 1.09
SKAT-OL 0.93 0.89 0.93 0.78

Figure 1: QQ plots of 108 p-values: plotted are the negative log (base 10) transformed p-values
vs their expected values.

(a) SKATL p-values: ne = nc = 2500 (b) SKAT-OL p-values: ne = nc = 2500

(c) SKATL p-values: ne = 1700, nc = 3300 (d) SKAT-OL p-values: ne = 1700, nc = 3300
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simulations for (1) θ = 0.05, d = −0.6, (2) θ = 0.1, d = −0.5, (3) θ = 0.2, d = −0.4, (4)

θ = 0.5, d = −0.25. They correspond to odds ratio of 3.32, 2.72, 2.23 and 1.65 for MAF=0.01

respectively. We consider two scenarios for the direction of causal variant effects. First, we

assume a mix of equal proportions of protective and deleterious variants, which will in general

favor the kernel association test. Second, we assume a mix of unequal proportions of protective

and deleterious variants. Specially we randomly set signs of βj as negative or positive with

probability 0.9 and 0.1 respectively.

Tables 4 through 9 summarized the power for ne = nc = 2500. And Tables 10 through 15

summarized the power for ne = 1700, nc = 3300. Overall we can see that the proposed SKATL

and SKAT-OL have improved performance compared to the SKAT based approaches. When a

large proportion of the variants are causal (θ = 0.5) with a mix of protective and deleterious

variants, the SKAT-OL can adapt to the data and has the overall best performance.
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Table 4: Power comparison of rare variant set analysis: ne = nc = 2500, a0 = 1, b0 = 25, equal
proportions of protective and deleterious variants. The highest powered tests in each row are
bold-faced.

θ = 0.05, d = −0.6

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.165 0.137 0.2 0.166 0.003
10−5 0.228 0.2 0.263 0.234 0.007
10−4 0.308 0.281 0.352 0.319 0.018
10−3 0.429 0.399 0.474 0.44 0.045

θ = 0.1, d = −0.5

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.247 0.204 0.294 0.244 0.008
10−5 0.347 0.303 0.391 0.351 0.016
10−4 0.461 0.426 0.505 0.469 0.035
10−3 0.603 0.566 0.645 0.609 0.075

θ = 0.2, d = −0.4

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.348 0.295 0.396 0.338 0.016
10−5 0.474 0.424 0.519 0.47 0.03
10−4 0.612 0.57 0.651 0.613 0.063
10−3 0.758 0.728 0.788 0.761 0.117

θ = 0.5, d = −0.25

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.296 0.241 0.338 0.278 0.014
10−5 0.431 0.38 0.472 0.42 0.028
10−4 0.587 0.543 0.627 0.583 0.057
10−3 0.755 0.723 0.784 0.754 0.112
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Table 5: Power comparison of rare variant set analysis: ne = nc = 2500, a0 = 0.5, b0 = 24.5,
equal proportions of protective and deleterious variants. The highest powered tests in each row
are bold-faced.

θ = 0.05, d = −0.6

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.045 0.025 0.086 0.05 0
10−5 0.095 0.058 0.149 0.102 0
10−4 0.182 0.134 0.251 0.202 0.003
10−3 0.326 0.275 0.403 0.348 0.013

θ = 0.1, d = −0.5

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.123 0.078 0.186 0.123 0.001
10−5 0.215 0.151 0.293 0.217 0.002
10−4 0.356 0.291 0.437 0.366 0.008
10−3 0.548 0.485 0.62 0.559 0.027

θ = 0.2, d = −0.4

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.253 0.176 0.33 0.239 0.003
10−5 0.392 0.301 0.469 0.38 0.007
10−4 0.56 0.484 0.63 0.555 0.017
10−3 0.746 0.688 0.795 0.746 0.05

θ = 0.5, d = −0.25

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.205 0.141 0.264 0.185 0.002
10−5 0.332 0.25 0.4 0.311 0.007
10−4 0.515 0.437 0.576 0.501 0.02
10−3 0.721 0.661 0.764 0.717 0.052
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Table 6: Power comparison of rare variant set analysis: ne = nc = 2500, a0 = 1.5, b0 = 25.5,
equal proportions of protective and deleterious variants. The highest powered tests in each row
are bold-faced.

θ = 0.05, d = −0.6

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.113 0.104 0.13 0.12 0.012
10−5 0.153 0.139 0.17 0.157 0.022
10−4 0.207 0.194 0.224 0.212 0.042
10−3 0.281 0.267 0.302 0.289 0.076

θ = 0.1, d = −0.5

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.151 0.138 0.171 0.158 0.02
10−5 0.213 0.198 0.237 0.221 0.033
10−4 0.296 0.282 0.319 0.304 0.06
10−3 0.405 0.392 0.431 0.414 0.109

θ = 0.2, d = −0.4

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.188 0.178 0.211 0.2 0.033
10−5 0.271 0.256 0.298 0.284 0.055
10−4 0.386 0.372 0.413 0.397 0.088
10−3 0.534 0.515 0.558 0.54 0.147

θ = 0.5, d = −0.25

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.154 0.143 0.174 0.163 0.025
10−5 0.236 0.219 0.254 0.24 0.048
10−4 0.353 0.338 0.374 0.36 0.082
10−3 0.523 0.504 0.545 0.528 0.145
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Table 7: Power comparison of rare variant set analysis: ne = nc = 2500, a0 = 1, b0 = 25, unequal
proportions of protective and deleterious variants. The highest powered tests in each row are
bold-faced.

θ = 0.05, d = −0.6

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.086 0.07 0.105 0.084 0.003
10−5 0.129 0.111 0.151 0.129 0.008
10−4 0.186 0.166 0.21 0.188 0.016
10−3 0.278 0.249 0.303 0.278 0.037

θ = 0.1, d = −0.5

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.148 0.126 0.172 0.145 0.011
10−5 0.211 0.189 0.239 0.213 0.021
10−4 0.306 0.277 0.337 0.306 0.04
10−3 0.428 0.399 0.459 0.432 0.082

θ = 0.2, d = −0.4

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.251 0.232 0.280 0.260 0.052
10−5 0.339 0.320 0.376 0.353 0.082
10−4 0.459 0.445 0.494 0.477 0.131
10−3 0.603 0.596 0.635 0.625 0.217

θ = 0.5, d = −0.25

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.322 0.38 0.358 0.408 0.224
10−5 0.431 0.505 0.468 0.535 0.313
10−4 0.566 0.648 0.596 0.672 0.426
10−3 0.718 0.788 0.744 0.806 0.565
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Table 8: Power comparison of rare variant set analysis: ne = nc = 2500, a0 = 0.5, b0 = 24.5,
unequal proportions of protective and deleterious variants. The highest powered tests in each
row are bold-faced.

θ = 0.05, d = −0.6

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.015 0.01 0.024 0.017 0
10−5 0.027 0.019 0.042 0.027 0
10−4 0.055 0.041 0.08 0.059 0.002
10−3 0.119 0.098 0.158 0.129 0.008

θ = 0.1, d = −0.5

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.045 0.03 0.066 0.046 0
10−5 0.079 0.057 0.108 0.081 0.002
10−4 0.141 0.117 0.181 0.15 0.007
10−3 0.26 0.225 0.312 0.272 0.026

θ = 0.2, d = −0.4

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.125 0.101 0.164 0.132 0.008
10−5 0.197 0.167 0.246 0.21 0.019
10−4 0.312 0.288 0.368 0.339 0.046
10−3 0.481 0.467 0.54 0.519 0.108

θ = 0.5, d = −0.25

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.195 0.234 0.241 0.271 0.092
10−5 0.29 0.359 0.348 0.404 0.166
10−4 0.437 0.539 0.489 0.58 0.283
10−3 0.622 0.73 0.671 0.762 0.459
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Table 9: Power comparison of rare variant set analysis: ne = nc = 2500, a0 = 1.5, b0 = 25.5,
unequal proportions of protective and deleterious variants. The highest powered tests in each
row are bold-faced.

θ = 0.05, d = −0.6

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.074 0.066 0.087 0.079 0.013
10−5 0.108 0.1 0.121 0.112 0.021
10−4 0.155 0.142 0.167 0.156 0.038
10−3 0.221 0.207 0.234 0.22 0.07

θ = 0.1, d = −0.5

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.116 0.113 0.132 0.125 0.03
10−5 0.164 0.158 0.178 0.172 0.046
10−4 0.233 0.222 0.25 0.239 0.074
10−3 0.328 0.316 0.346 0.334 0.126

θ = 0.2, d = −0.4

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.18 0.186 0.197 0.204 0.086
10−5 0.242 0.248 0.263 0.267 0.118
10−4 0.336 0.338 0.354 0.359 0.167
10−3 0.461 0.461 0.479 0.48 0.243

θ = 0.5, d = −0.25

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.225 0.292 0.245 0.313 0.229
10−5 0.302 0.382 0.324 0.403 0.298
10−4 0.408 0.497 0.431 0.516 0.386
10−3 0.554 0.637 0.573 0.655 0.505
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Table 10: Power comparison of rare variant set analysis: ne = 1700, nc = 3300, a0 = 1, b0 = 25,
equal proportions of protective and deleterious variants. The highest powered tests in each row
are bold-faced.

θ = 0.05, d = −0.6

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.162 0.136 0.166 0.136 0.005
10−5 0.217 0.191 0.224 0.194 0.01
10−4 0.293 0.264 0.305 0.273 0.023
10−3 0.403 0.373 0.419 0.385 0.053

θ = 0.1, d = −0.5

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.236 0.2 0.246 0.204 0.012
10−5 0.324 0.289 0.334 0.294 0.023
10−4 0.432 0.399 0.447 0.409 0.049
10−3 0.57 0.536 0.584 0.549 0.091

θ = 0.2, d = −0.4

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.31 0.263 0.325 0.267 0.021
10−5 0.425 0.382 0.441 0.39 0.038
10−4 0.564 0.524 0.584 0.537 0.07
10−3 0.718 0.683 0.734 0.695 0.128

θ = 0.5, d = −0.25

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.264 0.219 0.279 0.225 0.017
10−5 0.384 0.338 0.402 0.35 0.034
10−4 0.536 0.49 0.556 0.509 0.065
10−3 0.713 0.676 0.73 0.691 0.124
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Table 11: Power comparison of rare variant set analysis: ne = 1700, nc = 3300, a0 = 0.5, b0 =
24.5, equal proportions of protective and deleterious variants. The highest powered tests in each
row are bold-faced.

θ = 0.05, d = −0.6

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.082 0.052 0.086 0.052 0.001
10−5 0.141 0.099 0.147 0.103 0.001
10−4 0.229 0.186 0.24 0.192 0.005
10−3 0.373 0.319 0.393 0.336 0.016

θ = 0.1, d = −0.5

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.171 0.122 0.183 0.125 0.002
10−5 0.268 0.206 0.287 0.212 0.005
10−4 0.405 0.341 0.426 0.357 0.014
10−3 0.584 0.52 0.603 0.535 0.039

θ = 0.2, d = −0.4

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.27 0.2 0.294 0.209 0.004
10−5 0.408 0.321 0.43 0.339 0.01
10−4 0.567 0.494 0.589 0.514 0.024
10−3 0.742 0.688 0.764 0.705 0.066

θ = 0.5, d = −0.25

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.216 0.157 0.238 0.164 0.004
10−5 0.342 0.267 0.369 0.281 0.01
10−4 0.512 0.44 0.54 0.463 0.024
10−3 0.704 0.644 0.728 0.668 0.064
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Table 12: Power comparison of rare variant set analysis: ne = 1700, nc = 3300, a0 = 1.5, b0 =
25.5, equal proportions of protective and deleterious variants. The highest powered tests in each
row are bold-faced.

θ = 0.05, d = −0.6

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.106 0.1 0.109 0.1 0.016
10−5 0.142 0.132 0.145 0.133 0.027
10−4 0.186 0.175 0.192 0.179 0.045
10−3 0.257 0.243 0.264 0.25 0.081

θ = 0.1, d = −0.5

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.144 0.134 0.145 0.132 0.026
10−5 0.195 0.183 0.203 0.188 0.043
10−4 0.27 0.255 0.277 0.261 0.068
10−3 0.369 0.353 0.381 0.36 0.115

θ = 0.2, d = −0.4

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.162 0.153 0.17 0.159 0.035
10−5 0.237 0.222 0.246 0.228 0.057
10−4 0.338 0.325 0.352 0.333 0.09
10−3 0.476 0.456 0.488 0.466 0.149

θ = 0.5, d = −0.25

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.137 0.13 0.143 0.132 0.031
10−5 0.204 0.192 0.214 0.199 0.05
10−4 0.312 0.295 0.325 0.302 0.084
10−3 0.473 0.451 0.488 0.458 0.142
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Table 13: Power comparison of rare variant set analysis: ne = 1700, nc = 3300, a0 = 1, b0 = 25,
unequal proportions of protective and deleterious variants. The highest powered tests in each
row are bold-faced.

θ = 0.05, d = −0.6

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.04 0.031 0.063 0.048 0.001
10−5 0.071 0.056 0.1 0.084 0.002
10−4 0.118 0.101 0.155 0.136 0.005
10−3 0.196 0.174 0.237 0.215 0.018

θ = 0.1, d = −0.5

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.075 0.06 0.109 0.088 0.004
10−5 0.124 0.103 0.169 0.147 0.008
10−4 0.201 0.178 0.254 0.231 0.018
10−3 0.318 0.291 0.378 0.351 0.047

θ = 0.2, d = −0.4

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.129 0.112 0.186 0.168 0.017
10−5 0.207 0.192 0.276 0.263 0.036
10−4 0.318 0.31 0.391 0.382 0.066
10−3 0.473 0.464 0.542 0.537 0.136

θ = 0.5, d = −0.25

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.155 0.21 0.234 0.296 0.118
10−5 0.251 0.333 0.337 0.427 0.191
10−4 0.382 0.495 0.47 0.576 0.303
10−3 0.556 0.671 0.641 0.736 0.456
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Table 14: Power comparison of rare variant set analysis: ne = 1700, nc = 3300, a0 = 0.5, b0 =
24.5, unequal proportions of protective and deleterious variants. The highest powered tests in
each row are bold-faced.

θ = 0.05, d = −0.6

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.006 0.003 0.01 0.005 0
10−5 0.012 0.008 0.021 0.013 0
10−4 0.03 0.02 0.046 0.033 0.001
10−3 0.074 0.056 0.108 0.084 0.004

θ = 0.1, d = −0.5

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.012 0.007 0.026 0.014 0
10−5 0.028 0.015 0.051 0.035 0.001
10−4 0.062 0.044 0.105 0.078 0.002
10−3 0.15 0.121 0.209 0.18 0.014

θ = 0.2, d = −0.4

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.034 0.023 0.069 0.052 0.001
10−5 0.069 0.051 0.124 0.1 0.006
10−4 0.143 0.124 0.216 0.199 0.02
10−3 0.282 0.272 0.375 0.371 0.059

θ = 0.5, d = −0.25

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.046 0.065 0.099 0.129 0.036
10−5 0.092 0.143 0.166 0.233 0.08
10−4 0.176 0.293 0.277 0.406 0.174
10−3 0.334 0.522 0.448 0.624 0.333
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Table 15: Power comparison of rare variant set analysis: ne = 1700, nc = 3300, a0 = 1.5, b0 =
25.5, unequal proportions of protective and deleterious variants. The highest powered tests in
each row are bold-faced.

θ = 0.05, d = −0.6

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.035 0.032 0.051 0.046 0.004
10−5 0.057 0.052 0.08 0.072 0.006
10−4 0.096 0.087 0.121 0.112 0.017
10−3 0.152 0.143 0.177 0.17 0.039

θ = 0.1, d = −0.5

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.054 0.051 0.077 0.073 0.011
10−5 0.088 0.083 0.119 0.114 0.019
10−4 0.149 0.14 0.184 0.178 0.04
10−3 0.238 0.23 0.277 0.27 0.079

θ = 0.2, d = −0.4

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.087 0.091 0.121 0.13 0.034
10−5 0.139 0.145 0.18 0.192 0.057
10−4 0.223 0.231 0.272 0.284 0.099
10−3 0.353 0.358 0.399 0.408 0.167

θ = 0.5, d = −0.25

α SKAT SKAT-O SKATL SKAT-OL Burden

10−6 0.102 0.163 0.147 0.22 0.124
10−5 0.164 0.241 0.215 0.308 0.185
10−4 0.26 0.362 0.319 0.432 0.278
10−3 0.406 0.521 0.465 0.579 0.402
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2 Significance p-value calculation

For the proposed SKATL, the p-values can be computed based on the mixture of 1-DF chi-square

distributions. We use the Davies’ method (Davies, 1980) implemented in the ‘CompQuadForm’

R package (Lafaye De Micheaux, 2013). When the Davies’ method failed to converge, we use

the saddlepoint approximation method (Kuonen, 1999) implemented in the ‘survey’ R package

(Lumley, 2014) following the approach of Chen et al. (2014). When computing p-values for

the proposed SKAT-OL, we use the chi-square approximation to compute the quantile for the

mixture of 1-DF chi-square distributions following the approach of Lee et al. (2012). The one-

dimensional integration is then numerically computed based on the convolution of SKATL p-

value and 1-DF chi-square distribution.

3 Numerical computation

Figure 2 shows the average CPU sec used to compute significance p-values for 1000 rare variant

sets on a single Linux workstation with 3 GHz CPU and 8 GB memory. We follow the previous

simulation setup with 2 covariates. We consider two sample sizes: n = 5000 and n = 10000

samples; and three variant set sizes: 25, 50 and 100 variants in each variant set. We repeated ten

times and reported the average computing time. Overall we can see that all methods roughly

scale linearly with the variant set size. The SKAT is the most efficient, and the proposed

methods have comparable speed as the SKAT-O approach.

For the ARIC diabetes data, when analyzing 1415 variant sets on chromosome 1 on the same

Linux workstation, SKAT takes 42 sec CPU time, SKAT-O takes 674 sec CPU time, SKATL

takes 151 sec CPU time, and SKAT-OL takes 630 sec CPU time on the same machine. In our

simulation study, on average around 50% of the variants in a set have their minor allele counts

less than 10 and we use their standardized score statistics to replace their likelihood ratio test

statistics (LRT). When using the LRT for all rare variants in the proposed methods, the type I

errors are significantly inflated (ratio of estimated type I errors over nominal significance level

α could be as high as 3.0).
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Figure 2: Average CPU sec used to analyze 1000 variant sets: the x-axis shows the variant set
size, the y-axis shows the average CPU sec used (over 10 simulations); the left plot is for 5000
samples and 2 covariates following our simulation setup, the right plot is for 10000 samples.
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4 ARIC data analysis

One reviewer raised the concern that our diabetes analysis did not adjust for BMI, and the

identified association between ZZZ3 and type 2 diabetes could be confounded by BMI. When

analyzing the ARIC type 2 diabetes outcome, we followed the convention of adjusting for the

age, gender and field center (for potential population stratification/ethnicity). Initial GWAS

analyses of type 2 diabetes in the ARIC white population also included adjustment principal

components of ancestry in addition to the field center, but these PCA adjustments were found

to make no difference in the effect estimates and were therefore not routinely included in sub-

sequent analyses. The BMI is not included as a covariate for adjustment. In the DIAGRAM

(DIAbetes Genetics Replication And Meta-analysis) consortium, the largest international initia-

tive to characterize the genetic basis of type 2 diabetes, the vast majority of studies (including

the ARIC Study) did not adjust for BMI or any other measure of adiposity in efforts that led to

discovery of several dozen new susceptibility loci for type 2 diabetes (Voight et al., 2010; Morris
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Table 16: Type I error of rare variant set analysis under 1:6 and 1:10 case-control ratio. The
Type I errors have been divided by their nominal levels.

case:control 1:6 1:10

α 10−5 10−4 10−3 10−5 10−4 10−3

SKAT 3.20 1.78 1.28 3.60 2.06 1.39
SKATL 1.00 1.08 1.06 1.50 1.35 1.33

et al., 2012). Of the 38 studies included in the 2012 DIAGRAM paper, only 4 studies adjusted

for BMI and with most performing minimal adjustment for age, sex, and, in some cases, study

specific covariates such as field center. It is true that at least one established diabetes locus

(FTO) is also an established locus for BMI, but the consensus is that FTO’s downstream asso-

ciation with diabetes is mediated by its more proximal effect on BMI. Any risk factor such as

BMI that falls on a causal pathway linking the gene variant and type 2 diabetes should not be

treated as a confounder for analysis purposes. In the analysis, on average around 60% of the

variants in a set have their minor allele counts less than 10 and we use their standardized score

statistics to replace their likelihood ratio test statistics.

5 Unbalanced study

As reviewers suggested, we investigate the performance of the proposed methods under very

unbalanced case-control ratios, 1:6 (mimicking the ARIC diabetes data) and 1:10. We use

Beta(1,25) weight for SKAT and Beta(1.5,25.5) weight for SKATL. We simulated 104 individuals

and performed 107 simulations to estimate the type I errors. Table 16 summarizes the results.

Under 1:6 case-control ratio, the proposed SKATL has better controlled type I errors than SKAT,

which has increased inflations under smaller significance level. Under 1:10 case-control ratio,

both methods have inflated type I errors.

We performed 104 simulations to estimate the power under 1:6 case-control ratio with equal

proportions of protective and deleterious variants. Table 7 summarizes the results. Overall we

can see that the proposed SKATL has larger power than SKAT.

Overall the proposed SKATL has the best performance under balanced case-control study,
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Table 17: Power comparison of rare variant set analysis under 1:6 case-control ratio.
θ = 0.05, d = −0.6 θ = 0.1, d = −0.5 θ = 0.2, d = −0.4 θ = 0.5, d = −0.25

α SKAT SKATL SKAT SKATL SKAT SKATL SKAT SKATL

10−6 0.372 0.395 0.529 0.561 0.660 0.697 0.657 0.699
10−5 0.414 0.473 0.580 0.651 0.712 0.780 0.711 0.784
10−4 0.541 0.566 0.722 0.748 0.844 0.864 0.848 0.869

and both SKAT and SKATL have inflated type I errors under highly unbalanced case-control

ratios, which are consistent with the performance of score test and likelihood ratio test in single

rare variant association test (Ma et al., 2013). More research is needed to develop methods that

have appropriately calibrated p-values under unbalanced case-control ratios. Exactly comput-

ing the analytical p-value of SKAT-O is in general very difficult, and we have to employ some

analytical and numerical approximations. Our simulation results have shown that the proposed

SKATOL could control the type I errors though with conservative performance. SKAT-O was

shown to have slightly inflated type I errors (Lee et al., 2012, Table 2, p. 769). More re-

search is needed to develop computational methods that can quickly compute better calibrated

significance p-values for SKAT-O.
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