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Supplemental Figure 1: Divergence values are sensitive to higher-order correlations. Related to 
Figures 2 and 3. 

In Figure 3 we showed that our divergence metric is sensitive to the magnitude of pairwise correlations, 
but not to the firing rates of individual neurons. However, cortical population responses are not fully 
specified by first- and second-order statistics; cortical activity may contain higher-order dependencies 
(Ohiorhenuan et al., 2010) and these can strongly influence the drive provided to downstream networks 
(Kuhn et al., 2003).  
 
Because our divergence metric relies on quantifying the difference between empirical distributions and 
those based on jittered responses, it should be sensitive to variations in higher-order structure. To test 
this intuition, we generated synthetic population responses in which we varied the strength of higher-
order correlations. This required using a distinct algorithm from that used in the main text, which only 
specifies first- and second-order statistics. We generated population responses using 100 independent 
Poisson processes; correlations were introduced by adding coordinated events consisting of 2-10 cells 
firing together (termed pattern complexity, two examples plotted in Figure S1A). In all cases, the firing 
rate of each individual cell was fixed at 20 Hz and the number of coordinated events added was chosen 
to produce pairwise CCGs with a peak of 0.002 coinc/spk. As shown in Figure S1B, the CCGs were 
nearly identical for populations with the lowest (green) and highest (red) pattern complexity.   
 
We then calculated divergence values for the resultant populations, for a jitter window of 10 ms (larger 
jitter windows gave identical results since the introduced patterns involve perfect synchrony). 
Divergence values rose monotonically with pattern complexity (Figure S1C). Thus, divergence values 
reflect not only pairwise (Figure 3) but also higher-order response statistics. This behavior follows from 
the fact that our metric reflects the divergence between network patterns and those expected given the 
same surrogate data, in which pairwise and higher-order response statistics have been removed.  
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Supplemental Figure 2: Analysis of data from most well-isolated neurons. Related to Figures 6 and 
7.

We computed the signal-to-noise ratio (SNR) of each recorded unit as the ratio of the average waveform 
amplitude to the SD of the waveform noise (Kelly et al., 2007). In the main text we included units with 
an SNR of 2 or greater. This threshold provides data consisting of both single units and small clusters of 
units (MUA). Importantly, the MUA consists of clearly defined waveforms, but because of the low 
amplitude or diversity of shapes, we cannot be sure they come from a single unit. In previous work 
(Wissig and Kohn, 2012) we have compared the peak firing rate and orientation selectivity, for our 
MUA and SUA recordings. The peak firing rate of these combined signals (15.2 sp/s) was only slightly 
higher than that of well-isolated single units (12.1 sp/s), and the orientation selectivity was similar as 
well. Thus, the MUA activity in our recordings likely consists of the responses of only a few distinct 
neurons. 
 
Here we use a stringent SNR threshold of 3, to select well-isolated V2 single units. We first apply this 
selection criterion to the middle layers of V2, yielding 43 neurons. Figure S2A (top) shows the results of 
our divergence analysis were similar for this subpopulation of V2 cells, compared to the full population 
shown in Figure 7A of the main text: divergence was significantly elevated in epochs preceding V2 
spiking, relative to control epochs, for most jitter windows (p=0.3 for 5 ms jitter window; p=0.08 for 10 
ms; p<0.01 for all other comparisons). Figure S2A (bottom) shows the difference in divergence between 
epochs around V2 spiking and control epochs, for a range of jitter windows (abscissa) and temporal 
offsets (ordinate). This figure can be compared to Figure 7D of the main text. Divergence is elevated 
several milliseconds before the spiking of single units in the middle layers of V2. Applying this 
selection criterion to neurons in the non-middle layers of V2 or to V2 neurons with offset RFs revealed 
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no difference in V1 divergence in epochs associated with V2 spiking compared to control epochs (not 
shown), as observed for the full data set. 
 
We then applied our SNR selection criteria to the V1 population (yielding populations of 19.7±1.1 
neurons), retaining all V2 neurons. Figure S2B shows results in an identical format to those shown in 
Figure 7 of the main text. Divergence is elevated in a population of V1 single units before spiking in the 
middle layers of V2 (p<0.001 for all jitter windows). V1 divergence is not elevated before spiking in the 
superficial or deep layers of V2, or before spiking at offset V2 sites.  
 
Note that the divergence values for V1 SUA are different from those reported in the main text. This may 
indicate a different level of coordination between single-units than multi-units, but it also reflects the 
fact that the divergence measurement here is based on substantially smaller populations. (This is also 
responsible for the difficulty of detecting brief time scale coordination in the control epochs.) Our 
divergence metric is most appropriate for comparing the relative level of coordination in a given 
population at different times, as we have done in the main text.  
 
In summary, the effects illustrated in Figure S2 are similar those presented in the main text. Thus, our 
primary finding is also evident when the analysis is based on the activity of single units —spiking in the 
middle layers of V2, but not other layers, is preceded by elevated V1 coordination.    
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Supplemental Figure 3: Properties of V1-V2 CCGs. Related to Figures 4 and 5. 
 
Figures 4 and 5 of the main text described the key properties of V1-V2 CCGs, which we used to identify 
V2 sites functionally connected with the monitored V1 network. Here we describe additional properties 
of the CCGs with significant narrow peaks, focusing on their amplitude, shape, and the temporal offset. 
 
Amplitude: We quantified the strength of V1-V2 coupling by calculating the integral of the CCG in a 
window ±2.5 ms around the peak. CCGs were normalized by the V1 firing rate, so that their amplitude 
indicates the probability that each V1 spike will trigger a response in V2 (Levick et al., 1972).  
 
To quantify efficacy across the population, we focused on CCGs whose peak offset was larger than 1 ms 
(n = 255), as expected for delays between V1 and V2. We did so to minimize the contamination of our 
estimates by false positives that happened to cross our significance criterion. In the analyzed pairs, the 
median efficacy was 0.39% (Figure S3A, mean 0.69 ± 0.06%), meaning that after a V1 spike there was 
an increased probability of the V2 cell firing by this amount.  
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This estimated efficacy of V1-V2 functional connections is 5-10 fold lower than that reported for 
thalamocortical projections in visual (Reid and Alonso 1995) and somatosensory systems (Roy and 
Alloway 2001). There are two factors which may contribute to this difference. First, weaker connections 
may be explained by the fact that, compared to LGN-V1 connections, there are far more cells in V1 
projecting to V2. Because there are fewer thalamocortical projections, each synapse in that system may 
need to be stronger to ensure a postsynaptic response. In vitro evidence suggests that thalamocortical 
synapses are more powerful than intra-areal corticocortical synapses (Stratford et al., 1996; Gil et al., 
1999). To our knowledge, there is no equivalent set of measurements for the efficacy of corticocortical 
connections. However, anatomical studies have shown that the size of V1 boutons in V2 are smaller 
those of geniculocortical afferents, consistent with a weaker efficacy (Freund et al., 1989; Anderson and 
Martin, 2009; Marion et al., 2013).  
 
Second, the weaker V1-V2 efficacy compared to previous thalamocortical measurements could also be 
due to issues of statistical power.  At each site, our recordings lasted for 2-3 hrs, providing us with a 
large number of spikes and thus the ability to detect weak connections. Previous studies may have 
provided larger mean estimates of efficacy because weak connections went undetected.  
 
V1-V2 shape: Previous measurements of V1-V2 CCGs (Frien et al., 1994; Nowak et al., 1999; Roe et 
al., 1999) revealed robust pairwise spiking coordination consistent with the broad peaks in our pairwise 
measurements (Figure 4 of the main text). However, short-latency, narrow CCG peaks were either 
absent (Frien et al., 1994; Nowak et al., 1999) or exceedingly rare (Roe et al., 1999) in those studies, 
presumably because these peaks require sampling from neurons with precisely aligned RFs in specific 
layers of cortex.  
 
Short-latency, narrow CCG peaks are indicative of a functional interaction between neurons, and have 
been interpreted as evidence for direct synaptic connectivity (Reid and Alonso, 1995). When a neuron 
provides direct input to another, the shape of the resultant CCG is expected to show no structure near 0 
ms time lag, and to have a sharp rise time and slower decay, related to the shape of the postsynaptic 
potential (Kirkwood 1979). Our V1-V2 CCGs with narrow peaks did not have these features. This is 
illustrated in Figure S3B, which shows the average V1-V1 (blue), V2-V2 (red) and V1-V2 (black) jitter-
corrected CCGs, using all significant cases (as in Figure 5B of the main text). The CCGs are normalized 
to the same height to allow direct comparison of their shape. The shape of the V1-V2 CCG is similar to 
the intra-areal cases, but its peak is clearly shifted rightward.  
 
If V1-V2 CCGs reflect input from V1 to V2, why are the expected features not evident? The answer lies 
in considering that each V2 neuron receives convergent input from a population of correlated V1 cells. 
Each spike in a recorded V1 neuron will be accompanied by some number of near synchronous spikes in 
other, unobserved V1 projection neurons. As a result, the timescale of V1-V1 correlations will affect 
those calculated for V1-V2 pairs.  This blurs the shape of the V1-V2 CCG.  
 
We conducted simple simulations to confirm this basic intuition. We defined a target cell, which fired 
whenever it received drive from any cell in the input population (Figure S3C). The input population 
consisted of 100 cells, and different proportions of this population were made to be correlated. When the 
proportion of correlated cells in the input population was low (10%), the average CCG between the 
target cell and the input population had a sharp peak clearly offset from zero (Figure S3E). As the 
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proportion of correlated cells in the input population grew, the input-target cell CCGs included a broad 
peak and negative side lobes (e.g. 50%; Figure S3E), features present in the input population CCGs 
(Figure S3D). 
 
These simulations show that V1-V2 CCGs are likely to reflect features of V1-V1 correlations, in 
addition to the delay between V1 and V2 spiking.  
 
Latency offset: We note that we found few cases in which V1-V2 CCG peaks occurred at negative 
latencies (i.e. V2 firing before V1; Figure 5B), as one might expect for feedback connections from V2 to 
V1. Inspection of the few CCGs with negative latencies that exceeded our statistical criterion revealed 
little convincing structure. A portion of our recordings were performed in the deep and superficial layers 
of V2, where feedback to the superficial layers of V1 arises (Felleman and Van Essen, 1991). Thus, the 
paucity in our sample is not due solely to the laminar location of our recordings. A more likely 
explanation is that feedback synapses are weak and modulatory (Sherman and Guillery, 1998), and thus 
do not generate the type of measurable functional interactions evident in the feedforward direction. 
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Supplemental Figure 4: Comparing divergence analysis for middle-layer V2 neurons with and 
without a significant V1-V2 CCG. Related to Figures 6, 7, and 8. 
 
The analysis of Figures 6 and 7A,D was performed for all V2 neurons recorded at sites inferred to be in 
layer 4 (on the basis of a significant site-average V1-V2 CCG peak). The selection of inferred middle-
layer sites was done separately for each electrode, to account for the possibility that the electrodes were 
not precisely aligned in depth. We adopted this approach because we reasoned that if the electrode was 
in layer 4, we could not exclude individual cells at that site just because we did not happen to record a 
V1 partner, or because the CCG between the V1 population and any individual V2 neuron at that site 
was not significant. 
 
To test whether the results of our divergence analysis were different when based on V2 cells with a V1 
partner, compared to middle-layer V2 neurons without a V1 partner, we reanalyzed our middle-layer 
recordings. We split the data into two subsets: one consisting of middle-layer V2 neurons with a V1 
partner, and the other of middle-layer V2 neurons that did not have a recorded V1 partner.  
 
Figure S4 shows that coordination in V1 was elevated in epochs preceding either subset of V2 cells, 
evident as higher divergence values associated with V2 spiking than in the corresponding control 
epochs. The increase in divergence was slightly stronger, when based on V2 neurons with a V1 partner 
(left compared to right).  
 
These results are consistent with the intuition provided by the model simulations of Figure 8 
(specifically, Figure 8G-I)): elevated divergence does not require that the downstream neuron has a 
recorded partner within the source network. Rather, the recorded neurons in the source network must be 
correlated with the projecting population.   
 
 

n = 73 n = 153

5 10 20 40 80 5 10 20 40 80

10-4
D

iv
er

ge
nc

e 
(b

its
)

10-5

Jitter window (ms)

Middle-layer V2 cells with 
a significant V1-V2 CCG peak

Middle-layer V2 cells without 
a significant V1-V2 CCG peak

Jitter window (ms)



9 
 

Supplemental Figure 5: Divergence in the middle-layers of V2 neurons, conditioned on spiking in 
other V2 layers. Related to Figures 1, 6, and 7. 
 
Our analysis focused on understanding the role of coordinated network activity in relaying signals to 
downstream networks, through corticocortical connections. We found that the spiking of retinotopically-
aligned neurons in the middle layers of V2 was preceded by elevated V1 network coordination, but this 
was not the case for spiking in other layers of V2 or at V2 sites with offset RFs. Here we ask whether 
spiking in the superficial and deep layers of V2 is related to the coordination of spiking activity within 
the V2 middle layers. We have shown in previous work that there is robust pairwise correlation of 
spiking activity in the middle layers of V2 (Smith et al., 2013). 
 
Figure S5A shows the divergence for V2 middle-layer populations (11.5±0.6 cells on average), in 
epochs 0.5±1 ms before spiking in the superficial and deep layers. We combined epochs conditioned on 
superficial and deep layers because it provided greater statistical power. Middle-layer divergence was 
stronger in epochs preceding spiking in superficial and deep layers, than in control epochs. The 
elevation in divergence was significant for all jitter windows greater than 10 ms (p=0.02 for jitter 
window of 20 ms; p=0.009 for 40 ms; p<0.001 for 80 ms). Figure S5B shows the difference in 
divergence (epochs preceding ‘downstream’ spiking compared to control) as a function of jitter window 
(abscissa) and temporal offset (ordinate). The difference in divergence is largest in the bin just preceding 
downstream spiking, but divergence is also elevated after downstream spiking (p=0.03 for 5 ms jitter 
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window; p=0.007 for 10 ms; p<0.001 for all other windows). Thus, at least some of the elevated 
divergence likely reflects near-synchronous activity across layers, with the smaller asymmetry of the 
effect perhaps indicating some role for middle-layer coordination in relaying signals through intra-areal 
circuitry.  
 
We note that the divergence values in this analysis cannot be compared to those in the main text. There 
are several notable differences between the two data sets. First, while the V1-V2 analysis involved 
computing divergence for a large V1 population, the analysis here involved much smaller V2 
populations. This is because our V2 recordings used a smaller numbers of electrodes, and this smaller 
number was further divided between those placed in the middle layers and those in the superficial/deep 
layers. Second, the smaller number of cases—not all superficial/deep layer recordings were paired with 
middle layer recordings—resulted in noisier distributions of network states. This is evident in the greater 
divergence for shuffled data in this analysis (black line in Figure S5A; compared to shuffled data of 
Figure 7A of the main text). As discussed in the main text, the divergence for shuffled data reflects the 
noisiness of the recorded distributions, since with infinite data there should be no difference between 
shuffled data and the corresponding jittered surrogate data (i.e. there is no coordination in either case). 
Finally, the recorded V2 neurons tended to be closer together since they often involved a few nearby 
tetrodes, as opposed to the larger V1 array. As a result the correlations between neurons could be higher 
than those observed in V1 on average.  
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Supplemental Figure 6: Generating synthetic population responses with physiologically-realistic 
correlation timescales. Related to Figure 2. 
 
We simulated V1 population responses using an algorithm related to that developed by Macke et al. 
(2009), as explained in the main text. Here we describe the modifications we made to that algorithm, to 
allow us to simulate populations with correlations arising over a range of time scales, as typically 
observed in cortex (Kohn and Smith, 2005; Smith and Kohn, 2008). 
 
The Macke algorithm generates the spike train of each unit by drawing samples from an n-dimensional 
(where n is the number of cells) Gaussian distribution U and then thresholding: 
 

=1 iff >0  where ~ ( , )i iX U U N ,     (S1) 
 
where  is the mean and  is the covariance of the Gaussian distribution. The resultant spike trains are 
constrained by user-defined first- (rate) and second-order (correlations) statistics, but otherwise have 
nearly maximal entropy.  
 
The algorithm in its original form does not account for correlations occurring across time. To introduce 
correlations involving non-synchronous spikes, we used a temporally-correlated Gaussian time series. 
Generating time series from a multidimensional temporally-correlated distribution is computationally 
complex. To make the problem tractable, we fixed the rate and correlations among all simulated cells 
(i.e. we considered homogeneous populations). A population consisting of n cells responding over t time 
bins was simulated by combining random variables from two uncorrelated Gaussian distributions: an 
independent variable unique for each of the n cells and a common variable which was shared among all 
of them. The temporal correlation was implemented by convolving the common variable with a 
temporal filter (shown in Figure S6A, and at high temporal resolution in the inset). The temporal filter 
was selected so that its autocorrelation function would be equal to the average V1-V1 CCG. According 
to the Wiener–Khinchin theorem, the Fourier transform of the autocorrelation of a random process is the 
power density of that process. We thus estimated the temporal filter by the square root of Fourier 
transform of the average V1-V1 CCG.  
 
The outcome of this process is a temporally-correlated multidimensional Gaussian time series. The 
strength of correlation is controlled by the variances of the independent and common variables. We 
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chose these to match the correlations and firing rate of the recorded data. Spike trains were then 
generated by thresholding the Gaussian time series (similar to equation S1). We confirmed that this 
produced CCGs with the appropriate shape (Figure S6B) for time lags of roughly ±20 ms, precisely the 
time scale on which our analysis is focused.  
 
Note that these simulations were only used to provide intuition for our analysis, and to aid in its 
interpretation. The simulated data were not used in the analysis itself.  
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Supplemental Experimental Procedures: Equations and parameters for the simulations.  

Figure 1: Each neuron in the network was modeled as a leaky, current-based, integrate-and-fire neuron. 

( ) ( ) ( ) ( ) ( )passive rest Na Na K fast K K slow K syn
dVC g V V g V V g V V g V V I t
dt ��� � � � � � � � �  

The gpassive represents the passive membrane conductance and is equal to C/τ with τ representing the 
membrane time constant. We used C = 250 pF, τ = 10 ms, Vrest = -70 mV, VNa=45, and VK=-75. We 
solved the differential equation numerically, using the Runge-Kutta method (0.1 ms step size).  
 
The conductances gNa, gK-fast and gK-slow were triggered only when the membrane potential reached the 
threshold of -55 mV. They represent the active membrane dynamics responsible for generation of spikes 
and post-spike refractory period. Each of these conductances were calculated using: 

1 2/ /
0( ) ( )t tg t g e e� �� �� �  

where t represents time after reaching threshold, g0 was 13 μS for Na, 5.2 μS for K-Fast and 0.21 μS for 
K-Slow. τ1 was 0.3 ms for Na, 3 ms for K-fast and 20 ms for K-slow. τ2 was 0.1 ms for Na, 1 ms for K-
fast and K-slow. Action potentials were followed by a resetting of the membrane potential at Vrest for a 1 
ms absolute refractory period. 
 
Each presynaptic spike generated a postsynaptic current, Isyn, which was modeled as an alpha function 
with a peak of 45.6 pA and time constant of 0.32 ms. Inhibitory inputs produced currents identical to the 
excitatory currents, but with negative sign. All of these parameters were identical to those of Diesmann 
et al. (1999), as further detailed in Gewaltig (2000). 

Output spike times were perturbed by a random delay of 0.25-2.25 ms, as in Troyer et al. (1998). This 
perturbation does not affect the network’s ability to propagate spike packets, but counteracts its 
tendency to cluster spikes in increasingly temporally precise synchronous events. 
 
Each layer of the network contained 100 neurons. The neurons in layers 2-10 received excitatory input 
from cells in the preceding layer (in addition to Poisson inputs), whose number we varied to implement 
different convergence regimes (40, 70, 100, with only the latter used in Diesmann et al. (1999)). 
Coordinated epochs were modeled by near synchronous spiking (standard deviation 2.5 ms, so the 
packet width—3 SDs—was ~15 ms) in all the cells in the first layer. These epochs occurred randomly at 
a mean rate of 2 Hz. 
 
Figure 8: In Figure 8 we modeled a downstream V2 neuron as a leaky, integrate-and-fire cell (identical 
to the simulated neurons of Figure 1; described above). The cell received input from 1,500 excitatory 
and 1,140 inhibitory cells, each firing at 20 sp/s. The majority of these inputs were Poisson, but a subset 
was chosen from a pool of 500 correlated “V1” neurons (mean pairwise correlations of 0.1 and rate of 
20 sp/s). Each of the scenarios involved a distinct subset of the correlated V1 population. In Figure 8A, 
the V1 inputs consisted of 75 excitatory cells. We calculated divergence values based on sampling the 
activity of 100 cells from the V1 population, including 10 of the 75 cells that projected to V2; the V1-V2 
CCG was the average calculated from 10 V1 neurons (of the 100 sampled) and the V2 target.  In Figure 
8B, the V2 cell received excitation from 75 V1 neurons, and inhibition from 150 cells (chosen from the 
original pool of 500, and altering the sign of their input). Divergence values and CCGs were again 
calculated based on a sample of 100 V1 cells (none inhibitory). The simulations of Figure 8C were 
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identical to those of 8A except the V2 cell received excitatory input from 150 V1 cells. The sampled V1 
population did not include any cells providing input to the V2 neuron.  For all cases, we simulated 400 
trials of activity, each lasting 1280 ms. This was repeated for 100 V2 cells for each scenario. 
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