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Supplemental Material S1 Text: Magnitude of spike count corre-
lations

Here we compute spike count correlations for the studied networks. A spike count from neuron i, nTi (t)
is the number of spikes occurring within the window (t, t+ T ). The covariance of neuron i and j’s spike
counts is

Cov(nTi , n
T
j ) = 〈nTi nTj 〉 − 〈nTi 〉〈nTj 〉, (1)

where 〈·〉 denotes an average over trials. The variance of neuron i’s spike count is Var(nTi ) = Cov(nTi , n
T
i ).

The correlation coefficient of spike counts is

Corr(nTi , n
T
j ) =

Cov(nTi , n
T
j )√

Var(nTi )Var(nTj )
(2)

Here, we estimate spike count correlations by computing Cov(nTi , n
T
j ) via the renewal relation [?]:

Cov(nTi , n
T
j ) =

∫ T

−T

Cij(s) (T − |s|) ds− rirj . (3)

and similar for Var(nTi ). We examine this estimate for the average spike count correlation (over pairs of
neurons in the network) as a function of window size. For the internally generated covariability in the
main paper, spike count correlations are low (S1 Fig 1A).

Here, we write the linear response theory with external input correlations, for completeness. Specifically
the fluctuating external input to each neuron was the sum of a private term and a globally shared term,

gLσD
(√

(1− c)ξi(t) +
√
cξc(t)

)
(here, ξi(t) and ξc(t) are Gaussian white noise of unit intensity and gL,

σ and D defined as in Methods). The covariance matrix of the external inputs was Cext, with Cext
ij =

cgLσD for i 6= j and Cext
ii = 1. With correlated external inputs, the full spike-train cross-covariance

matrix is given (in the Fourier domain) by [?]

C(ω) =
(
I−

(
W ·K(ω)

))−1(
C0(ω) + A(ω)Cext(ω)A∗(ω)

)(
I−

(
W ·K∗(ω)

))−1

(4)

As in the main text, W is the weight matrix, Kij(ω) = Ai(ω)Jij(ω) is the effective interaction matrix,
A(ω) is a diagonal matrix containing the linear response function of each neuron. In the main text, what
we refer to as the ”baseline correlation” here corresponds to C0(ω) + A(ω)Cext(ω)A∗(ω).

Expanding the spike-train covariances in powers of the interactions K and truncating at first order
yields the approximation:

Cij(s) ≈
(
Ai ∗Cext ∗A−

j

)
(s) +

(
WijKij ∗C0

jj

)
(s) +

(
C0

ii ∗WjiK
−
ji

)
(s)

+
∑
k

(
WikKik ∗C0

kk ∗WjkK
−
jk

)
(s)

(5)

We compare the spike count correlations for the N = 1000 network of Fig 2 in the main text to a
network with N = 100 and synaptic weights (Wmax) increased by a factor of 10 (S1 Fig 1B). As in Figs.
2 and 3, this network was generated with Erdös-Rényi adjacency matrix and all weights had the same
initial value, Wmax ∗ .6 In this smaller network, with stronger synaptic weights, spike count correlations
were larger, with an average long-window correlation of .005, and .03 in monosynaptically connected pairs.
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Figure 1. Magnitude of spike count correlations. Average spike count correlation as a function of
the counting window size. (A) the network of Fig. 2. Spike count correlations are computed via the
renewal relation, Eq. (3) using the first-order truncated approximation of the spike train cross-covariance
function, Eq. (5). (B) A network of 100 neurons, with Wmax increased by a factor of 10. Red, average
spike count correlation across all pairs of neurons. Black, average spike count correlation in
monosynaptically connected pairs.


