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Supplemental Material S4 Text: Motif plasticity with weight-
dependent (multiplicative) STDP

The multiplicative STDP rule [1, 2] is:
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Each weight has a stable fixed point:
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Now the mean weight and two-synapse motifs evolve according to:
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where we only examine the contribution of firing rates to the plasticity, assuming that the pre- and
post-synaptic neurons’ spike trains are uncorrelated. This corresponds to the observation that with
multiplicative STDP, the weight-dependence of L(s) dominates the dynamics of the weights. Inserting Eq.
(1) and the motif definitions and assuming homogenous firing rates yields:
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The mixed divergent motifs obey:
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and qconX , qch,AX and qch,BX obey exactly analogous equations. Defining qchX = qch,AX +qch,BX puts the dynamics
of qch into the same form as those for qdiv and qcon. Dropping the motif labels, since they obey the same
dynamics, yields a three-dimensional system for (p, q, qX) with steady state p
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and Jacobian: −(f+τ+ + f−τ−) 0 0
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The eigenvalue of the three-dimensional multiplicative STDP system is − (f+τ+ + f−τ−) which is always
negative, so the steady state is linearly stable. So, multiplicative STDP simply stabilizes whatever motif
structure is embedded in the adjacency matrix.
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