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Supplemental Material S4 Fig: Rate-dependence of spike train
covariability
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Figure 1. Motif plasticity does not depend on firing rates. In the main text, we examined the
motif dynamics when the spike-train statistics are fixed. That is, for the motif theory we linearize the
spike-train statistics around the initial state r(t) = r(0), and similarly for the STDP-weighted spike train
covariances SF , SB and SC . Firing rates do, however, evolve with the mean synaptic weight. For p = 0,
r = 7.6 sp/s while for p = p0W

max, r = 12.5 sp/s. In order to check whether the approximation of using
r, SF , SB and SC calculated at initial conditions was accurate, we re-linearized the system at every time
step of the slow evolution of synaptic weights so that the spiking statistics were not fixed. For the
networks and parameters used here, this did not have a strong effect on the motif dynamics. We illustrate
this by comparing the results of Fig. 7 to the motif dynamics with evolving spiking statistics. Red: motifs
dynamics with fixed r, SF , SB , SC - the spiking statistics are calculated by linearizing around the initial
condition and held fixed. Blue: The spiking statistics (r, SF , SB , SC) are re-linearized at every time step,
so that the theory accounts for how firing rates and spike-train correlations depend on the net synaptic
input neurons’ receive.


