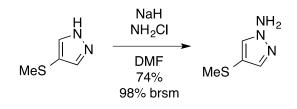
Supporting Information

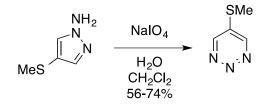
Cycloadditions of 1,2,3-Triazines Bearing C5-Electron Donating Substituents: Robust Pyrimidine Synthesis

Christopher M. Glinkerman and Dale L. Boger*

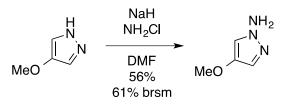
Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States

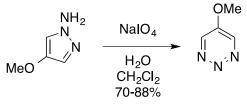

Table of Contents

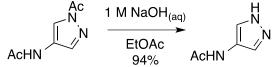
I.	General Methods	S 2
II.	Synthesis of Substituted 1,2,3-Triazines	S2–S4
III.	Reaction of 1,2,3-Triazines with Amidines	S5–S13
IV.	Reaction of 1,2,3-Triazines with Ynamines	S14
V.	Reaction of 1,2,3-Triazines with Enamines	S14
VI.	Labeling Study	S15
VII.	References	S16
VIII.	¹ H NMR Spectra	S17–S64


I. General Methods

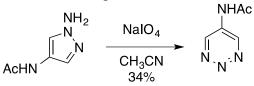
General Methods. All reactions were performed under nitrogen unless otherwise noted. All reagents and solvents, with the exception of amidines, were used as supplied without further purification unless otherwise noted. Amidines were purchased as their hydrochloride salts and free-based with 1 M NaOH(aq). Melting points were obtained using a Mel-Temp II apparatus and are uncorrected. ¹H and ¹³C NMR spectra were obtained using a Bruker Avance III HD 600 MHz spectrometer equipped with either a 5 mm QCI or 5 mm CPDCH probe. IR spectra were obtained using a Thermo Nicolet 380 FT-IR with a SmartOrbit Diamond ATR accessory. Mass spectrometric analysis was performed by direct sample injection on an Agilent G1969A ESI-TOF mass spectrometer.

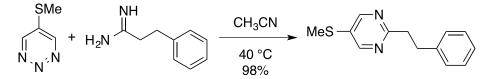

II. Synthesis of Substituted 1,2,3-Triazines

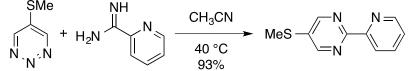

4-(Methylthio)-1*H***-pyrazol-1-amine (14).** A solution of 4-(methylthio)-1*H*-pyrazole¹ (2.75 g, 24.1 mmol) in DMF (50 mL) at 0 °C was treated with sodium hydride (60% in mineral oil) (1.16 g, 28.9 mmol). The reaction mixture was warmed to 23 °C, stirred for 30 min at room temperature, and then treated with a 0.15 M solution of monochloramine² in diethyl ether (241 mL, 36.2 mmol). The reaction mixture was stirred at room temperature for 5 min. After 5 min, saturated aqueous Na₂S₂O₃ (100 mL), H₂O (100 mL), and EtOAc (500 mL) were added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with CHCl₃ (3 × 200 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated on a rotary evaporator. Flash chromatography (SiO₂, 50% EtOAc/hexanes) provided a clear oil containing the product (14, 2.30 g, 74%, 98% brsm) and starting material (11, 678 mg) as an inseparable mixture. For 14: ¹H NMR (CDCl₃, 600 MHz) δ 7.43 (d, *J* = 1.0 Hz, 1H), 7.38 (d, *J* = 1.0 Hz, 1H), 5.30 (bs, 2H), 2.32 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 140.3, 131.9, 112.2, 21.3; HRESI-TOF *m*/*z* 130.0434 (C₄H₇N₃S + H⁺ requires 130.0433).

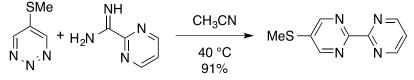

5-(Methylthio)-1,2,3-triazine (17). In a separatory funnel under an atmosphere of air, a solution containing a mixture of aminopyrazole **14** (2.30 g, 17.8 mmol) and pyrazole **11** (678 mg, 5.94 mmol) in CH₂Cl₂/water (1:1, 760 mL) was treated with NaIO₄ (7.63 g, 35.6 mmol) and shaken vigorously for 5 min, venting occasionally. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3×200 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated on a rotary evaporator. Flash chromatography (SiO₂, 70–100% Et₂O/hexanes gradient elution) provided **17** as a light yellow crystalline solid (1.26 g, 56%; typically 56–74%): mp 93–94 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.86 (s, 2H), 2.60 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 146.2, 137.6, 12.9; IR (film) v_{max} 3097, 3009, 2929, 1516, 1489, 1433, 1359, 1320, 1194, 1159, 1018, 991, 964, 940, 897, 758, 708, 659 cm⁻¹; HRESI-TOF *m*/*z* 128.0278 (C₄H₅N₃S + H⁺ requires 128.0277). 5-(Methylthio)-1,2,3-triazine (**17**) is a light yellow, crystalline solid that is sensitive to nucleophiles including water, methanol, and pyrrolidine, the latter of which consumes **17** in 4 h when present in slight excess. The material can be stored under an inert atmosphere on the bench for up to one month or at –20 °C indefinitely without significant decomposition.

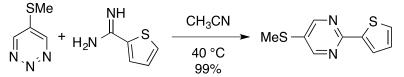
4-Methoxy-1*H***-pyrazol-1-amine (15).** A solution of 4-methoxy-1*H*-pyrazole³ (100 mg, 1.02 mmol) in DMF 2.1 mL) at 0 °C was treated with sodium hydride (60% in mineral oil) (50 mg, 1.22 mmol). The reaction mixture was warmed to 23 °C, stirred for 30 min at room temperature, and then treated with a 0.15 M solution of monochloramine² in diethyl ether (12.2 mL, 1.83 mmol). The reaction mixture was stirred at room temperature for 5 min. After 5 min, saturated aqueous Na₂S₂O₃ (10 mL), H₂O (10 mL), and EtOAc (50 mL) were added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated on a rotary evaporator. Flash chromatography (SiO₂, 40–50% EtOAc/hexanes gradient elution) provided a yellow oil containing the product (**15**, 65 mg, 56%, 61% brsm) and starting material (**12**, 7 mg) as an inseparable mixture. For **15**: ¹H NMR (CDCl₃, 600 MHz) δ 7.07 (d, *J* = 1.2 Hz, 1H), 7.05 (d, *J* = 1.2 Hz, 1H), 5.42 (bs, 2H), 3.69 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 145.2, 124.3, 114.8, 60.0; IR (film) v_{max} 3319, 3198, 2936, 2833, 1634, 1571, 1453, 1404, 1346, 1284, 1206, 1155, 1042, 980, 812, 745, 647, 611 cm⁻¹; HRESI-TOF *m/z* 114.0681 (C₄H₇N₃O + H⁺ requires 114.0662).

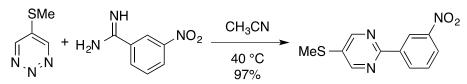

5-Methoxy-1,2,3-triazine (18). In a separatory funnel under an atmosphere of air, a solution of **15** (2.31 g, 20.4 mmol) in CH₂Cl₂/water (1:1, 860 mL) was treated with NaIO₄ (8.75 g, 40.8 mmol) and shaken vigorously for 5 min, venting occasionally. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ ($3 \times 200 \text{ mL}$). The combined organic extracts were dried over Na₂SO₄ and concentrated on a rotary evaporator. Flash chromatography (SiO₂, EtOAc) provided **18** as a light yellow crystalline solid (1.59 g, 70%; typically 70–88%): mp 43–45 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.76 (s, 2H), 4.02 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 151.2, 138.6, 56.2; IR (film) v_{max} 3044, 2999, 2950, 1556, 1537, 1459, 1386, 1355, 1289, 1200, 1073, 1053, 989, 956, 913, 826, 762, 652, 566 cm⁻¹; HRESI-TOF *m*/*z* 112.0505 (C4H₅N₃O + H⁺ requires 112.0505). 5-Methoxy-1,2,3-triazine (**18**) is a light yellow, crystalline solid that exhibits a chemical stability similar to methylthioether **17**.

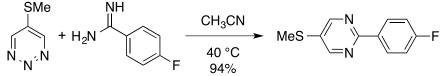

N-(1*H*-Pyrazol-4-yl)acetamide (13).^{4,5,6} In a separatory funnel under an atmosphere of air, a solution of *N*-(1-acetyl-1*H*-pyrazol-4-yl)acetamide^{4,5} (**S1**, 1.00 g, 5.98 mmol) in EtOAc (100 mL) was treated with 1 M NaOH(aq) (20 mL) and shaken vigorously for 5 min, venting occasionally. The combined organic and aqueous layers were concentrated on a rotary evaporator. The resulting residue was azeotroped with toluene. Flash chromatography (SiO₂, 10% MeOH/EtOAc) provided **13** as a pink powder (706 mg, 94%): mp 193–195 °C; ¹H NMR (CD₃OD, 600 MHz) δ 7.72 (s, 2H), 2.08 (s, 3H); ¹³C NMR (DMSO-*d*₆, 150 MHz) δ 176.0, 139.6, 130.8, 128.3, 32.4; IR (film) v_{max} 3203, 3040, 2948, 1650, 1583, 1484, 1396, 1321, 1285, 1132, 1021, 996, 964, 930, 864, 840, 769, 599, 570 cm⁻¹; HRESI-TOF *m/z* 126.0662 (C₅H₇N₃O + H⁺ requires 126.0662).

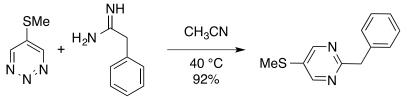

N-(1-Amino-1*H*-pyrazol-4-yl)acetamide (16). A solution of 13 (500 mg, 4.00 mmol) in DMF (40 mL) was treated with sodium hydride (60% in mineral oil) (192 mg, 4.80 mmol). The reaction mixture was stirred for 5 min at room temperature, and then treated with a 0.15 M solution of monochloramine² in diethyl ether (40 mL, 6.00 mmol). The reaction mixture was stirred at room temperature for 5 min. After 5 min, saturated aqueous Na₂S₂O₃ (100 mL), H₂O (100 mL), and EtOAc (200 mL) were added to the reaction mixture. The combined organic and aqueous layers were concentrated on a rotary evaporator. The resulting residue was azeotroped with toluene. Flash chromatography (SiO₂, 0–10% MeOH/EtOAc gradient elution) provided **16** as an off white solid (346 mg, 62%). An analytically pure sample was obtained by preparatory TLC (10% MeOH/EtOAc): mp 149–151 °C; ¹H NMR (DMF-*d*₇, 600 MHz) δ 9.90 (bs, 1H), 7.73 (d, *J* = 1.0 Hz, 1H), 7.25 (d, *J* = 1.0 Hz, 1H), 6.41 (bs, 2H), 2.02 (s, 3H); ¹³C NMR (DMF-*d*₇, 150 MHz) δ 167.6, 127.1, 121.9, 120.6, 23.4; IR (film) v_{max} 3334, 3257, 3189, 3146, 3084, 2857, 1645, 1586, 1463, 1394, 1283, 1226, 1176, 1019, 991, 848, 821, 739, 595, 563 cm⁻¹; HRESI-TOF *m*/z 141.0770 (C₅H₈N₄O + H⁺ requires 141.0771).

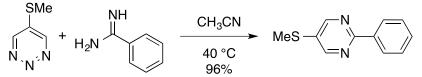

5-(*N*-Acetylamino)-1,2,3-triazine (19). In a sealed tube, a solution of 16 (1.00 g, 7.14 mmol) in CH₃CN (1 L) was treated with NaIO₄ (30.5 g, 143 mmol). The reaction mixture was sonicated for 16 h at a temperature ranging from 0–55 °C. After 16 h, the suspension was filtered through Celite and concentrated on a rotary evaporator. Flash chromatography (SiO₂, 5–10% MeOH/CH₂Cl₂ gradient elution) provided 19 as a red solid (338 mg, 34%); mp 155 °C (evolution of gas), 170–172 °C (decomposition); ¹H NMR (CD₃OD, 600 MHz) δ 9.40 (s, 2H), 2.23 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 173.0, 141.3, 133.7, 24.1; IR (film) v_{max} 3124, 3011, 2923, 1709, 1554, 1439, 1417, 1383, 1312, 1235, 1077, 1037. 995, 968, 935, 603, 574 cm⁻¹; HRESI-TOF *m*/*z* 139.0614 (C₅H₆N₄O + H⁺ requires 139.0614). 1,2,3-Triazine 19 is a rust colored powder that displays markedly reduced sensitivity to nucleophiles compared with 1,2,3-triazines 17 and 18. In fact, its chromatographic purification involves elution with 10% MeOH/CH₂Cl₂, an eluent incompatible with 1,2,3-triazines 17 and 18.

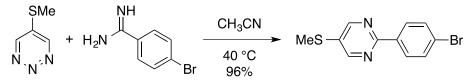

5-(Methylthio)-2-phenethylpyrimidine (21a). A 0.15 M solution of amidine **20a** (16.1 mg, 0.109 mmol) in CH₃CN was treated with 1,2,3-triazine **17** (20.7 mg, 0.163 mmol). The reaction mixture was heated to 40 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **21a** as a pale yellow oil (24.6 mg, 98%): ¹H NMR (CDCl₃, 600 MHz) δ 8.57 (s, 2H), 7.29–7.23 (m, 4H), 7.20–7.17 (m, 1H), 3.25 (dd, *J* = 9.7, 6.4 Hz, 2H), 3.14 (dd, *J* = 9.8, 6.4 Hz, 2H), 2.51 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 167.7, 155.9, 146.1, 141.6, 131.2, 128.7, 126.3, 40.8, 34.9, 16.5; IR (film) v_{max} 3018, 2925, 1534, 1433, 1368, 1288, 1225, 1161, 1117, 1030, 791, 743, 705, 664 cm⁻¹; HRESI-TOF *m/z* 231.0950 (C₁₃H₁₄N₂S + H⁺ requires 231.0950).

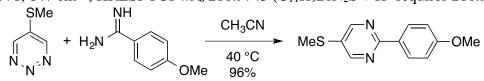

5-(Methylthio)-2-(pyridin-2-yl)pyrimidine (21b). A 0.15 M solution of amidine **20b** (7.3 mg, 0.060 mmol) in CH₃CN was treated with 1,2,3-triazine **17** (12.0 mg, 0.091 mmol). The reaction mixture was heated to 40 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 10% MeOH/EtOAc) to provide **21b** as a tan solid (11.1 mg, 93%): mp 102–104 °C; ¹H NMR (CD₃OD, 600 MHz) δ 8.79 (s, 2H), 8.70 (d, *J* = 4.7 Hz, 1H), 8.49 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.97 (td, *J* = 7.8, 1.7 Hz, 1H), 7.51 (ddt, *J* = 7.3, 4.8, 0.9 Hz, 1H), 2.64 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 160.6, 155.7, 155.2, 150.5, 138.9, 136.3, 126.4, 124.5, 14.8; IR (film) v_{max} 3052, 3001, 2920, 1524, 1417, 1371, 1134, 750, 643 cm⁻¹; HRESI-TOF *m*/*z* 204.0592 (C₁₀H₉N₃S + H⁺ requires 204.0590).

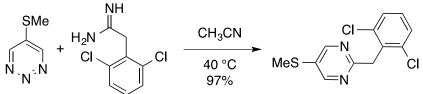

5-(Methylthio)-2,2'-bipyrimidine (21c). A 0.15 M solution of amidine **20c** (5.3 mg, 0.043 mmol) in CH₃CN was treated with 1,2,3-triazine **17** (8.2 mg, 0.065 mmol). The reaction mixture was heated to 40 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 10% MeOH/EtOAc) to provide the **21c** as a dark green solid (8.1 mg, 91%): mp 134 °C (decomposition); ¹H NMR (CD₃OD, 600 MHz) δ 9.01 (d, *J* = 4.9 Hz, 2H), 8.86 (s, 2H), 7.62 (t, *J* = 4.9 Hz, 1H), 2.68 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 162.6, 159.3, 159.0, 155.4, 138.6, 123.3, 14.4; IR (film) v_{max} 2922, 1557, 1524, 1402, 1371, 1150, 766, 643, 628 cm⁻¹; HRESI-TOF *m*/*z* 205.0541 (C₉H₈N₄S + H⁺ requires 205.0542).

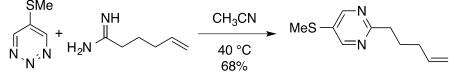

5-(Methylthio)-2-(thiophen-2-yl)pyrimidine (21d). A 0.15 M solution of amidine **20d** (4.5 mg, 0.036 mmol) in CH₃CN was treated with 1,2,3-triazine **17** (6.8 mg, 0.054 mmol). The reaction mixture was heated to 40 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **21d** as a yellow crystalline solid (7.4 mg, 99%): mp 70–72 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.59 (s, 2H), 7.96 (dd, *J* = 3.7, 1.2 Hz, 1H), 7.46 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.14 (dd, *J* = 5.0, 3.7 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 159.0, 156.0, 143.1, 131.1, 130.0, 129.1, 128.7, 16.9; IR (film) v_{max} 3076, 2917, 2852, 1516, 1434, 1409, 1126, 854, 785, 717, 635 cm⁻¹; HRESI-TOF *m/z* 209.0203 (C₉H₈N₂S₂ + H⁺ requires 209.0202).

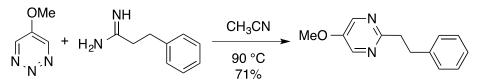

5-(Methylthio)-2-(3-nitrophenyl)pyrimidine (21e). A 0.15 M solution of amidine **20e** (9.5 mg, 0.057 mmol) in CH₃CN was treated with 1,2,3-triazine **17** (10.9 mg, 0.086 mmol). The reaction mixture was heated to 40 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **21e** as a light yellow powder (13.7 mg, 97%): mp 142–144 °C; ¹H NMR (CDCl₃, 600 MHz) δ 9.26 (t, *J* = 2.0 Hz, 1H), 8.74 (dt, *J* = 7.8, 1.4 Hz, 1H), 8.69 (s, 2H), 8.30 (ddd, *J* = 8.2, 2.4, 1.1 Hz, 1H), 7.64 (t, *J* = 8.0 Hz, 1H), 2.60 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 159.4, 155.2, 149.1, 139.3, 133.8, 133.7, 129.9, 125.2, 123.2, 15.8; IR (film) v_{max} 3038, 2922, 2852, 1520, 1419, 1347, 1138, 790, 729 cm⁻¹; HRESI-TOF *m*/z 248.0488 (C₁₁H₉N₃O₂S + H⁺ requires 248.0488).

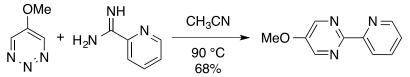

2-(4-Fluorophenyl)-5-(methylthio)pyrimidine (21f). A 0.15 M solution of amidine **20f** (7.9 mg, 0.058 mmol) in CH₃CN was treated with 1,2,3-triazine **17** (11.0 mg, 0.086 mmol). The reaction mixture was heated to 40 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **21f** as a white crystalline solid (11.9 mg, 94%): mp 76–77 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.66 (s, 2H), 8.41 (dd, *J* = 8.8, 5.6 Hz, 2H), 7.15 (t, *J* = 8.7 Hz, 2H), 2.56 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 164.9 (d, *J* = 250 Hz, 1C), 161.1 (s, 1C), 155.8 (s, 2C), 133.7 (d, *J* = 3 Hz, 1C), 131.8 (s, 1C), 130.3 (d, *J* = 10 Hz, 2C), 115.9 (d, *J* = 22 Hz, 2C), 16.4 (s, 1C); IR (film) v_{max} 2923, 1598, 1059, 1422, 1372, 1211, 1149, 1131, 846, 784, 617 cm⁻¹; HRESI-TOF *m*/*z* 221.0541 (C₁₁H₉FN₂S + H⁺ requires 221.0543).

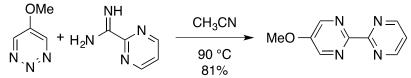

2-Benzyl-5-(methylthio)pyrimidine (21g). A 0.15 M solution of amidine **20g** (7.2 mg, 0.054 mmol) in CH₃CN was treated with 1,2,3-triazine **17** (10.3 mg, 0.081 mmol). The reaction mixture was heated to 40 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **21g** as a white solid (10.7 mg, 92%): mp 53–55 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.57 (s, 2H), 7.35–7.34 (m, 2H), 7.30 (dd, *J* = 8.5, 6.8 Hz, 2H), 7.23–7.21 (m, 1H), 4.26 (s, 2H), 2.49 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 167.3, 156.1, 138.5, 131.4, 129.4, 128.9, 127.0, 45.8, 16.4; IR (film) v_{max} 2919, 1535, 1494, 1426, 1376, 1120, 1028, 749, 699, 671, 646, 585 cm⁻¹; HRESI-TOF *m/z* 217.0794 (C₁₂H₁₂N₂S + H⁺ requires 217.0794).

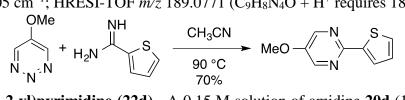

5-(Methylthio)-2-phenylpyrimidine (21h). A 0.15 M solution of amidine **20h** (7.9 mg, 0.065 mmol) in CH₃CN was treated with 1,2,3-triazine **17** (12.5 mg, 0.098 mmol). The reaction mixture was heated to 40 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **21h** as a white powder (12.7 mg, 96%): mp 40–41 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.68 (s, 2H), 8.41–8.40 (m, 2H), 7.49–4.46 (m, 3H), 2.54 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 161.9, 155.7, 137.4, 131.9, 130.9, 128.9, 128.2, 16.3; IR (film) v_{max} 3027, 2919, 1526, 1423, 1369, 1127, 917, 736, 682, 646 cm⁻¹; HRESI-TOF *m/z* 203.0638 (C₁₁H₁₀N₂S + H⁺ requires 203.0637).

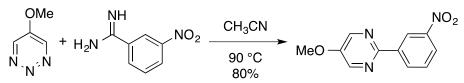

2-(4-Bromophenyl)-5-(methylthio)pyrimidine (21i). A 0.15 M solution of amidine **20i** (4.7 mg, 0.024 mmol) in CH₃CN was treated with 1,2,3-triazine **17** (4.5 mg, 0.035 mmol). The reaction mixture was heated to 40 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **21i** as a white crystalline solid (6.5 mg, 96%): mp 130–132 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.66 (s, 2H), 8.28 (d, *J* = 8.6 Hz, 2H), 7.61 (d, *J* = 8.6 Hz, 2H), 2.56 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 161.0, 155.6, 136.4, 132.4, 132.1, 129.8, 125.7, 16.2; IR (film) v_{max} 2921, 2852, 1521, 1425, 1374, 1128, 1002, 839, 778, 647 cm⁻¹; HRESI-TOF *m/z* 280.9745 (C₁₁H₉BrN₂S + H⁺ requires 280.9743).

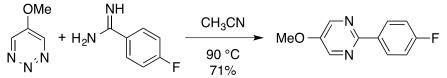

2-(4-Methoxyphenyl)-5-(methylthio)pyrimidine (21j). A 0.15 M solution of amidine **20j** (9.9 mg, 0.066 mmol) in CH₃CN was treated with 1,2,3-triazine **17** (12.6 mg, 0.099 mmol). The reaction mixture was heated to 40 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **21j** as a white crystalline solid (14.8 mg, 96%): mp 100–101 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.65 (s, 2H), 8.36 (d, *J* = 8.9 Hz, 2H), 6.99 (d, *J* = 8.9 Hz, 2H), 3.88 (s, 3H), 2.54 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 162.2, 162.0, 156.2, 130.7, 130.1, 129.9, 114.3, 55.7, 16.8; IR (film) v_{max} 2920, 2837, 1604, 1514, 1422, 1234, 1164, 1017, 841, 786, 647, 618 cm⁻¹; HRESI-TOF *m/z* 233.0745 (C₁₂H₁₂N₂OS + H⁺ requires 233.0743).

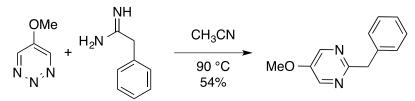

2-(2,6-Dichlorobenzyl)-5-(methylthio)pyrimidine (21k). A 0.15 M solution of amidine **20k** (13.0 mg, 0.064 mmol) in CH₃CN was treated with 1,2,3-triazine **17** (12.3 mg, 0.096 mmol). The reaction mixture was heated to 40 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **21k** as a light yellow crystalline solid (17.8 mg, 97%): mp 86–87 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.54 (s, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.17 (t, *J* = 8.1 Hz, 1H), 4.66 (s, 2H), 2.48 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 165.0, 155.9, 136.7, 134.7, 131.4, 128.9, 128.4, 40.6, 16.3; IR (film) v_{max} 2916, 1561, 1531, 1427, 1372, 1180, 1116, 1081, 934, 778, 758, 725, 645, 622 cm⁻¹; HRESI-TOF *m/z* 285.0015 (C₁₂H₁₀Cl₂N₂S + H⁺ requires 285.0014).

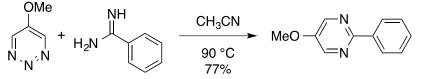

5-(Methylthio)-2-(pent-4-en-1-yl)pyrimidine (211). A 0.15 M solution of amidine **201** (7.4 mg, 0.066 mmol) in CH₃CN was treated with 1,2,3-triazine **17** (12.5 mg, 0.098 mmol). The reaction mixture was heated to 40 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **211** as an orange oil (8.6 mg, 68%): ¹H NMR (CDCl₃, 600 MHz) δ 8.56 (s, 2H), 5.84 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1H), 5.05–4.96 (m, 2H), 2.93 (t, *J* = 7.8 Hz, 2H), 2.51 (s, 3H), 2.14 (q, *J* = 6.9 Hz, 2H), 1.91 (p, *J* = 7.6 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 168.6, 156.0, 138.5, 130.9, 115.3, 38.6, 33.7, 28.2, 16.9; IR (film) v_{max} 2922, 2856, 1639, 1559, 1527, 1426, 1369, 1122, 1027, 910, 642 cm⁻¹; HRESI-TOF *m/z* 195.0950 (C₁₀H₁₄N₂S + H⁺ requires 195.0950).

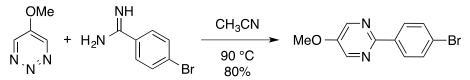

5-Methoxy-2-phenethylpyrimidine (22a). A 0.15 M solution of amidine **20a** (8.7 mg, 0.059 mmol) in CH₃CN was treated with 1,2,3-triazine **18** (9.8 mg, 0.088 mmol). The reaction mixture was heated to 90 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **22a** as a yellow oil (8.9 mg, 71%): ¹H NMR (CDCl₃, 600 MHz) δ 8.35 (s, 2H), 7.29–7.23 (m, 4H), 7.18 (ddt, *J* = 8.6, 6.6, 1.5 Hz, 1H), 3.23 (ddd, *J* = 8.5, 6.5, 0.9 Hz, 2H), 3.13 (dd, *J* = 9.9, 6.4 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 163.1, 151.9, 143.6, 141.8, 128.7, 127.8, 126.3, 56.2, 40.5, 35.3; IR (film) v_{max} 3026, 2927, 2839, 1553, 1454, 1430, 1270, 1016, 698 cm⁻¹; HRESI-TOF *m*/*z* 215.1179 (C₁₃H₁₄N₂O + H⁺ requires 215.1179).

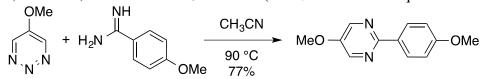

5-Methoxy-2-(pyridin-2-yl)pyrimidine (22b). A 0.15 M solution of amidine **20b** (13.3 mg, 0.11 mmol) in CH₃CN was treated with 1,2,3-triazine **18** (18.3 mg, 0.17 mmol). The reaction mixture was heated to 90 °C and stirred for 24 h, at which time the mixture was purified by reverse phase preparative TLC (SiO₂ RP-18, 20% MeOH/CH₃CN) to provide **22b** as a light orange powder (14.0 mg, 68%): mp 96–98 °C; ¹H NMR (CD₃OD, 600 MHz) δ 8.68 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 8.62 (s, 2H), 8.43 (dt, *J* = 8.0, 1.1 Hz, 1H), 7.95 (td, *J* = 7.8, 1.8 Hz, 1H), 7.48 (ddd, *J* = 7.6, 4.8, 1.2 Hz, 1H), 4.02 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 157.0, 155.4, 154.9, 150.3, 144.9, 138.8, 125.8, 124.1, 56.9; IR (film) v_{max} 3031, 2921, 2850, 1580, 1548, 1423, 1395, 1276, 1002, 753, 640, 594 cm⁻¹; HRESI-TOF *m*/*z* 188.0818 (C₁₀H₉N₃O + H⁺ requires 188.0818).

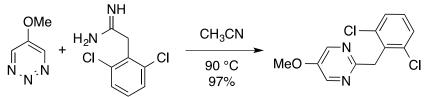

5-Methoxy-2,2'-bipyrimidine (22c). A 0.15 M solution of amidine **20c** (8.3 mg, 0.068 mmol) in CH₃CN was treated with 1,2,3-triazine **18** (11.3 mg, 0.10 mmol). The reaction mixture was heated to 90 °C and stirred for 24 h, at which time the mixture was purified by reverse phase preparative TLC (SiO₂ RP-18, 20% MeOH/CH₃CN) to provide **22c** as a white powder (10.4 mg, 81%): mp 153–155 °C (decomposition); ¹H NMR (CD₃OD, 600 MHz) δ 8.99 (d, *J* = 4.9 Hz, 2H), 8.70 (s, 2H), 7.60 (t, *J* = 4.9 Hz, 1H), 4.07 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 162.5, 159.2, 155.8, 155.4, 145.1, 122.9, 57.1; IR (film) v_{max} 3036, 2998, 2943, 2851, 1540, 1410, 1388, 1009, 766, 638, 605 cm⁻¹; HRESI-TOF *m*/*z* 189.0771 (C₉H₈N₄O + H⁺ requires 189.0771).


5-Methoxy-2-(thiophen-2-yl)pyrimidine (22d). A 0.15 M solution of amidine **20d** (10.9 mg, 0.086 mmol) in CH₃CN was treated with 1,2,3-triazine **18** (14.4 mg, 0.13 mmol). The reaction mixture was heated to 90 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **22d** as a yellow crystalline solid (11.6 mg, 70%): mp 84–87 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.38 (s, 2H), 7.86 (dd, *J* = 3.6, 1.3 Hz, 1H), 7.40 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.12 (dd, *J* = 5.0, 3.7 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 155.3, 151.8, 143.8, 143.3, 128.8, 128.6, 127.8, 56.4; IR (film) v_{max} 3106, 3038, 2917, 2847, 1551, 1455, 1440, 1417, 1392, 1280, 1203, 1020, 910, 854, 782, 706, 631, 591 cm⁻¹; HRESI-TOF *m/z* 193.0430 (C₉H₈N₂OS + H⁺ requires 193.0430).

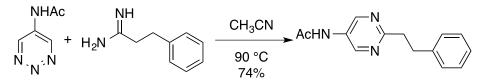

5-Methoxy-2-(3-nitrophenyl)pyrimidine (22e). A 0.15 M solution of amidine **20e** (9.4 mg, 0.057 mmol) in CH₃CN was treated with 1,2,3-triazine **18** (9.5 mg, 0.085 mmol). The reaction mixture was heated to 90 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **22e** as a light yellow powder (10.5 mg, 80%): mp 146–149 °C; ¹H NMR (CDCl₃, 600 MHz) δ 9.24 (t, *J* = 2.0 Hz, 1H), 8.70 (ddd, *J* = 7.8, 1.7, 1.1 Hz, 1H), 8.51 (s, 2H), 8.28 (ddd, *J* = 8.2, 2.3, 1.1 Hz, 1H), 7.64 (t, *J* = 8.0 Hz, 1H), 4.00 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 155.8, 153.0, 149.2, 143.9, 139.6, 133.5, 129.8, 124.6, 123.0, 56.5; IR (film) v_{max} 3082, 2940, 2843, 1521, 1452, 1428, 1352, 1287, 1009, 908, 789, 723, 667, 588 cm⁻¹; HRESI-TOF *m/z* 232.0717 (C₁₁H₉N₃O₃ + H⁺ requires 232.0717).

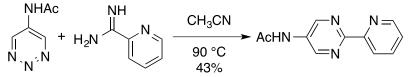

2-(4-Fluorophenyl)-5-methoxypyrimidine (22f). A 0.15 M solution of amidine **20f** (8.5 mg, 0.062 mmol) in CH₃CN was treated with 1,2,3-triazine **18** (10.3 mg, 0.092 mmol). The reaction mixture was heated to 90 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **22f** as a white powder (9.0 mg, 71%): mp 118–120 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.45 (s, 2H), 8.36–8.33 (m, 2H), 7.16–7.11 (m, 2H), 3.95 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 164.5 (d, *J* = 249 Hz, 1C), 157.4 (s, 1C), 152.3 (s, 1C), 143.7 (s, 2C), 134.0 (d, *J* = 3 Hz, 1C), 129.89 (d, *J* = 9 Hz, 2C), 115.8 (d, *J* = 22 Hz, 2C), 56.4 (s, 1C); IR (film) v_{max} 2921, 2847, 1601, 1547, 1510, 1452, 1429, 1389, 1275, 1208, 1151, 1013, 847, 783, 556 cm⁻¹; HRESI-TOF *m/z* 205.0772 (C₁₁H₉FN₂O + H⁺ requires 205.0772).

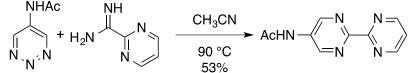

2-Benzyl-5-methoxypyrimidine (22g). A 0.15 M solution of amidine **20g** (8.0 mg, 0.059 mmol) in CH₃CN was treated with 1,2,3-triazine **18** (9.9 mg, 0.089 mmol). The reaction mixture was heated to 90 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **22g** as a yellow oil (6.4 mg, 54%): ¹H NMR (CDCl₃, 600 MHz) δ 8.35 (s, 2H), 7.33 (d, *J* = 7.6 Hz, 2H), 7.29 (dd, *J* = 8.5, 6.8 Hz, 2H), 7.21 (t, *J* = 7.2 Hz, 1H), 4.25 (s, 2H), 3.88 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 162.7, 151.9, 143.8, 139.1, 129.3, 128.9, 126.8, 56.2, 45.3; IR (film) v_{max} 3026, 2934, 2851, 1551, 1431, 1284, 1017, 753, 724, 695, 594, 548 cm⁻¹; HRESI-TOF *m/z* 201.1022 (C₁₂H₁₂N₂O + H⁺ requires 201.1022).

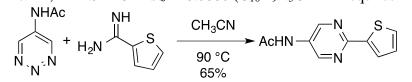

5-Methoxy-2-phenylpyrimidine (22h). A 0.15 M solution of amidine **20h** (14.7 mg, 0.12 mmol) in CH₃CN was treated with 1,2,3-triazine **18** (20.4 mg, 0.18 mmol). The reaction mixture was heated to 90 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide the **22h** as a light yellow crystalline solid (17.5 mg, 77%): mp 47–49 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.48 (s, 2H), 8.36–8.33 (m, 2H), 7.49–4.42 (m, 3H), 3.95 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 158.2, 152.3, 143.7, 137.8, 130.1, 128.9, 127.9, 56.3; IR (film) ν_{max} 3017, 2938, 2839, 1549, 1449, 1428, 1277, 1011, 911, 741, 695, 642, 587 cm⁻¹; HRESI-TOF *m/z* 187.0866 (C₁₁H₁₀N₂O + H⁺ requires 187.0866).

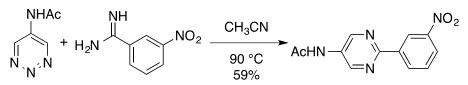
2-(4-Bromophenyl)-5-methoxypyrimidine (22i). A 0.15 M solution of amidine **20i** (5.4 mg, 0.027 mmol) in CH₃CN was treated with 1,2,3-triazine **18** (4.5 mg, 0.040 mmol). The reaction mixture was heated to 90 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **22i** as a white powder (5.7 mg, 80%): mp 145–147 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.46 (s, 2H), 8.24–8.22 (m, 2H), 7.60–7.58 (m, 2H), 3.96 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 157.3, 152.5, 143.8, 136.7, 132.1, 129.5, 124.8, 56.4; IR (film) v_{max} 3018, 2920, 2848, 1588, 1574, 1545, 1453, 1429, 1385, 1276, 1061, 1006, 843, 776, 730, 643 cm⁻¹; HRESI-TOF *m*/*z* 264.9971 (C₁₁H₉BrN₂O + H⁺ requires 264.9971).

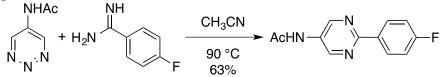

2-(4-Methoxyphenyl)-5-methoxypyrimidine (22j). A 0.15 M solution of amidine **20j** (12.7 mg, 0.085 mmol) in CH₃CN was treated with 1,2,3-triazine **18** (14.1 mg, 0.13 mmol). The reaction mixture was heated to 90 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **22j** as a white powder (14.1 mg, 77%): mp 111–114 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.43 (s, 2H), 8.31–8.28 (m, 2H), 6.99–6.95 (m, 2H), 3.94 (s, 3H), 3.87 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 161.5, 158.2, 151.8, 143.7, 130.6, 129.4, 114.2, 56.3, 55.7; IR (film) v_{max} 3036, 2946, 2841, 1606, 1544, 1414, 1389, 1270, 1246, 1233, 1165, 1006, 841, 784, 563 cm⁻¹; HRESI-TOF *m/z* 217.0971 (C₁₂H₁₂N₂O₂ + H⁺ requires 217.0971).


2-(2,6-Dichlorobenzyl)-5-methoxypyrimidine (22k). A 0.15 M solution of amidine **20k** (17.9 mg, 0.088 mmol) in CH₃CN was treated with 1,2,3-triazine **18** (14.7 mg, 0.13 mmol). The reaction mixture was heated to 90 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **22k** as an orange oil (23.0 mg, 97%): ¹H NMR (CDCl₃, 600 MHz) δ 8.32 (s, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.16 (t, *J* = 8.0 Hz, 1H), 4.63 (s, 2H), 3.86 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 160.4, 151.8, 143.8, 136.7, 135.2, 128.7, 128.4, 56.2, 40.2; IR (film) v_{max} 3036, 3017, 2970, 2935, 1553, 1450, 1416, 1278, 1175, 1016, 931, 761, 732, 564 cm⁻¹; HRESI-TOF *m*/*z* 269.0244 (C₁₂H₁₀Cl₂N₂O + H⁺ requires 269.0243).

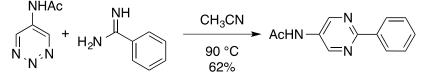

5-Methoxy-2-(pent-4-en-1-yl)pyrimidine (221). A 0.15 M solution of amidine **201** (6.2 mg, 0.055 mmol) in CH₃CN was treated with 1,2,3-triazine **18** (9.2 mg, 0.083 mmol). The reaction mixture was heated to 90 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **221** as a yellow oil (4.1 mg, 42%): ¹H NMR (CDCl₃, 600 MHz) δ 8.33 (s, 2H), 5.84 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 5.02 (dd, *J* = 17.1, 2.1 Hz, 1H), 4.96 (dd, *J* = 10.1, 2.0 Hz, 1H), 3.89 (s, 3H), 2.92 (t, *J* = 7.8 Hz, 2H), 2.13 (q, *J* = 7.2 Hz, 2H), 1.89 (p, *J* = 7.6 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 164.0, 151.8, 143.6, 138.7, 115.2, 56.2, 38.2, 33.7, 28.4; IR (film) v_{max} 2931, 2839, 1552, 1455, 1430, 1270, 1016, 907, 637 cm⁻¹; HRESI-TOF *m*/*z* 179.1179 (C₁₀H₁₄N₂O + H⁺ requires 179.1179).

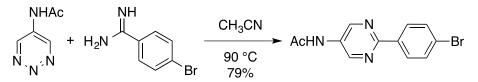

N-(2-Phenethylpyrimidin-5-yl)acetamide (23a). A 0.15 M solution of amidine 20a (12.3 mg, 0.083 mmol) in CH₃CN was treated with 1,2,3-triazine 19 (17.2 mg, 0.13 mmol). The reaction mixture was heated to 90 °C and stirred for 72 h, at which time the mixture was purified by PTLC (SiO₂, 10% MeOH/CH₂Cl₂) to provide 23a as a white crystalline solid (14.8 mg, 74%): mp 104–106 °C; ¹H NMR (CD₃OD, 600 MHz) δ 8.92 (s, 2H), 7.24–7.21 (m, 2H), 7.18–7.12 (m, 3H), 3.19–3.16 (m, 2H), 3.10–3.07 (m, 2H), 2.16 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 172.1, 165.9, 149.0, 142.4, 133.6, 129.4, 129.4, 127.8, 41.2, 35.8, 23.5; IR (film) v_{max} 3285, 3032, 1645, 1451, 1379, 696 cm⁻¹; HRESI-TOF *m*/*z* 242.1288 (C₁₄H₁₅N₃O + H⁺ requires 242.1288).

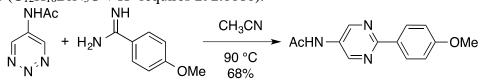

N-(2-(Pyridin-2-yl)pyrimidin-5-yl)acetamide (23b). A 0.15 M solution of amidine 20b (9.6 mg, 0.079 mmol) in CH₃CN was treated with 1,2,3-triazine 19 (16.4 mg, 0.12 mmol). The reaction mixture was heated to 90 °C and stirred for 72 h, at which time the mixture was purified by reverse phase PTLC (SiO₂ RP-18, 20% MeOH/CH₂Cl₂) to provide 23b as a white solid (7.3 mg, 43%): ¹H NMR (CD₃OD, 600 MHz) δ 9.18 (s, 2H), 8.71 (d, J = 4.5 Hz, 1H), 8.49 (d, J = 8.0 Hz, 1H), 8.00 (td, J = 7.8, 1.7 Hz, 1H), 7.52 (dd, J = 7.5, 4.9 Hz, 1H), 2.22 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 172.2, 158.9, 155.1, 150.3, 149.1, 139.0, 135.3, 126.2, 124.4, 23.7; IR (film) v_{max} 3224, 3065, 2928, 1681, 1580, 1523, 1427, 1377, 1287, 759 cm⁻¹; HRESI-TOF *m*/z 215.0927 (C₁₁H₁₀N₄O + H⁺ requires 215.0927).

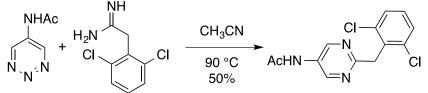

N-([2,2'-Bipyrimidin]-5-yl)acetamide (23c). A 0.15 M solution of amidine 20c (6.6 mg, 0.054 mmol) in CH₃CN was treated with 1,2,3-triazine 19 (11.1 mg, 0.080 mmol). The reaction mixture was heated to 90 °C and stirred for 72 h, at which time the mixture was purified by reverse phase PTLC (SiO₂ RP-18, 20% MeOH/CH₂Cl₂) to provide 23c as a white solid (6.1 mg, 53%): mp >250 °C; ¹H NMR (CD₃OD, 600 MHz) δ 9.26 (s, 2H), 9.00 (d, *J* = 4.9 Hz, 2H), 7.61 (t, *J* = 4.9 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 172.3, 162.4, 159.3, 157.2, 148.9, 136.5, 123.1, 23.7; IR (film) v_{max} 3341, 3027, 1681, 1565, 1469, 1411, 1372, 1351, 1335, 973, 762, 644 cm⁻¹; HRESI-TOF *m*/*z* 216.0880 (C₁₀H₉N₅O + H⁺ requires 216.0880).

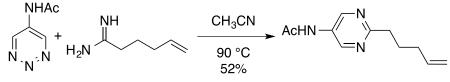
N-(2-(Thiophen-2-yl)pyrimidin-5-yl)acetamide (23d). A 0.15 M solution of amidine 20d (5.0 mg, 0.040 mmol) in CH₃CN was treated with 1,2,3-triazine 19 (8.2 mg, 0.059 mmol). The reaction mixture was heated to 90 °C and stirred for 72 h, at which time the mixture was purified by PTLC (SiO₂, 10% MeOH/CH₂Cl₂) to provide 23d as a light orange solid (5.6 mg, 65%): mp 194–196 °C; ¹H NMR (CD₃OD, 600 MHz) δ 8.94 (s, 2H), 7.89 (dd, J = 3.7, 1.2 Hz, 1H), 7.55 (dd, J = 5.0, 1.2 Hz, 1H), 7.14 (dd, J = 5.0, 3.7 Hz, 1H), 2.18 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 172.0, 157.8, 149.1, 143.9, 133.3, 130.5, 129.2, 129.2, 23.6; IR (film) v_{max} 3075, 1618, 1528, 1445, 1346, 1215, 973, 857, 785, 737, 636 cm⁻¹; HRESI-TOF *m*/*z* 220.0539 (C₁₀H₉N₃OS + H⁺ requires 220.0539).


N-(2-(3-Nitrophenyl)pyrimidin-5-yl)acetamide (23e). A 0.15 M solution of amidine 20e (6.9 mg, 0.042 mmol) in CH₃CN was treated with 1,2,3-triazine 19 (8.7 mg, 0.063 mmol). The reaction mixture was heated to 90 °C and stirred for 72 h, at which time the mixture was purified by PTLC (SiO₂, 10% MeOH/CH₂Cl₂) to provide 23e as a light orange solid (6.4 mg, 59%): mp 208–210 °C; ¹H NMR (CD₃OD, 600 MHz) δ 9.19 (t, *J* = 2.0 Hz, 1H), 9.13 (s, 2H), 8.76 (dt, *J* = 7.9, 1.4 Hz, 1H), 8.32 (ddd, *J* = 8.2, 2.4, 1.1 Hz, 1H), 7.73 (t, *J* = 8.0 Hz, 1H), 2.21 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 172.2, 158.4, 150.2, 149.1, 140.4, 134.8, 134.4, 131.0, 125.6, 123.2, 23.6; IR (film) v_{max} 1646, 1530, 1435, 1346, 914, 796, 817 cm⁻¹; HRESI-TOF *m*/*z* 259.0826 (C₁₂H₁₀N₄O₃ + H⁺ requires 259.0826).

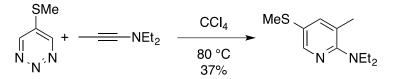

N-(2-(4-Fluorophenyl)pyrimidin-5-yl)acetamide (23f). A 0.15 M solution of amidine 20f (7.6 mg, 0.055 mmol) in CH₃CN was treated with 1,2,3-triazine 19 (11.3 mg, 0.082 mmol). The reaction mixture was heated to 90 °C and stirred for 72 h, at which time the mixture was purified by PTLC (SiO₂, 10% MeOH/CH₂Cl₂) to provide 23f as a colorless solid (8.0 mg, 63%): mp 244–247 °C; ¹H NMR (CD₃OD, 600 MHz) δ 9.04 (s, 2H), 8.40–8.36 (m, 2H), 7.21–7.17 (m, 2H), 2.19 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 172.1 (s, 1C), 165.8 (d, *J* = 250 Hz, 1C), 159.9 (s, 1C), 149.2 (s, 2C), 134.9 (d, *J* = 3 Hz, 1C), 133.8 (s, 1C), 131.0 (d, *J* = 9 Hz, 2C), 116.3 (d, *J* = 23 Hz, 2C), 23.6 (s, 1C); IR (film) v_{max} 1646, 1599, 1454, 1361, 1219, 847, 789, 607 cm⁻¹; HRESI-TOF *m*/*z* 232.0881 (C₁₂H₁₀FN₃O + H⁺ requires 232.0881).


N-(2-Benzylpyrimidin-5-yl)acetamide (23g). A 0.15 M solution of amidine 20g (4.6 mg, 0.035 mmol) in CH₃CN was treated with 1,2,3-triazine 19 (7.2 mg, 0.052 mmol). The reaction mixture was heated to 90 °C and stirred for 72 h, at which time the mixture was purified by PTLC (SiO₂, 10% MeOH/CH₂Cl₂) to provide 23g as a light yellow solid (4.1 mg, 53%): mp 104–106 °C; ¹H NMR (CD₃OD, 600 MHz) δ 8.93 (s, 2H), 7.31–7.17 (m, 5H), 4.20 (s, 2H), 2.16 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 172.1, 165.5, 149.3, 139.6, 133.7, 129.9, 129.5, 127.6, 45.6, 23.5; IR (film) v_{max} 3228, 3151, 3062, 3028, 2924, 1702, 1585, 1525, 1531, 1445, 1424, 1373, 1285, 1236, 696 cm⁻¹; HRESI-TOF *m*/*z* 228.1131 (C₁₃H₁₃N₃O + H⁺ requires 228.1131).

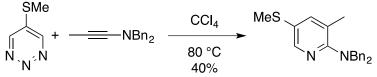

N-(2-Phenylpyrimidin-5-yl)acetamide (23h). A 0.15 M solution of amidine 20h (12.5 mg, 0.10 mmol) in CH₃CN was treated with 1,2,3-triazine 19 (21.5 mg, 0.16 mmol). The reaction mixture was heated to 90 °C and stirred for 72 h, at which time the mixture was purified by PTLC (SiO₂, 10% MeOH/CH₂Cl₂) to provide 23h as a colorless solid (13.7 mg, 62%): mp 204–206 °C; ¹H NMR (CD₃OD, 600 MHz) δ 9.05 (s, 2H), 8.34–8.30 (m, 2H), 7.48–4.40 (m, 3H), 2.19 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 170.2, 158.9, 147.3, 136.6, 132.0, 129.5, 127.7, 126.9, 21.7; IR (film) v_{max} 1647, 1444, 1414, 1375, 1359, 948, 922, 738, 687, 648, 607 cm⁻¹; HRESI-TOF *m*/*z* 214.0975 (C₁₂H₁₁N₃O + H⁺ requires 214.0975).


N-(2-(4-Bromophenyl)pyrimidin-5-yl)acetamide (23i). A 0.15 M solution of amidine 20i (7.3 mg, 0.037 mmol) in CH₃CN was treated with 1,2,3-triazine 19 (7.6 mg, 0.055 mmol). The reaction mixture was heated to 90 °C and stirred for 72 h, at which time the mixture was purified by PTLC (SiO₂, 10% MeOH/CH₂Cl₂) to provide 23i as a white solid (8.5 mg, 79%): mp >250 °C; ¹H NMR (CD₃OD, 600 MHz) δ 9.05 (s, 2H), 8.27–8.23 (m, 2H), 7.66–7.62 (m, 2H), 2.19 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 172.1, 159.8, 149.1, 137.7, 134.1, 132.8, 130.5, 125.8, 23.6; IR (film) v_{max} 1650, 1454, 1359, 1069, 1007, 843, 785, 648, 569 cm⁻¹; HRESI-TOF *m*/*z* 292.0080 (C₁₂H₁₀BrN₃O + H⁺ requires 292.0080).

N-(2-(4-Methoxyphenyl)pyrimidin-5-yl)acetamide (23j). A 0.15 M solution of amidine 20j (7.5 mg, 0.050 mmol) in CH₃CN was treated with 1,2,3-triazine 19 (10.28 mg, 0.074 mmol). The reaction mixture was heated to 90 °C and stirred for 72 h, at which time the mixture was purified by PTLC (SiO₂, 10% MeOH/CH₂Cl₂) to provide 23j as a light orange crystalline solid (8.2 mg, 68%): mp 214–216 °C; ¹H NMR (CD₃OD, 600 MHz) δ 8.99 (s, 2H), 8.28–8.26 (m, 2H), 7.02–7.00 (m, 2H), 3.86 (s, 3H), 2.19 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 172.1, 163.2, 160.9, 149.2, 133.2, 131.0, 130.4, 114.9, 55.8, 23.6; IR (film) v_{max} 1683, 1422, 1347, 1252, 1169, 1016, 847, 790 cm⁻¹; HRESI-TOF *m*/*z* 244.1080 (C₁₃H₁₃N₃O₂ + H⁺ requires 244.1080).



N-(2-(2,6-Dichlorobenzyl)pyrimidin-5-yl)acetamide (23k). A 0.15 M solution of amidine 20k (12.7 mg, 0.062 mmol) in CH₃CN was treated with 1,2,3-triazine 19 (12.9 mg, 0.094 mmol). The reaction mixture was heated to 90 °C and stirred for 72 h, at which time the mixture was purified by PTLC (SiO₂, 10% MeOH/CH₂Cl₂) to provide 23k as a colorless solid (9.2 mg, 50%): mp 240–242 °C; ¹H NMR (CD₃OD, 600 MHz) δ 8.88 (s, 2H), 7.41 (d, J = 8.1 Hz, 2H), 7.27 (dd, J = 8.5, 7.7 Hz, 1H), 4.62 (s, 2H), 2.16 (s, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 172.1, 163.3, 149.2, 137.5, 135.4, 133.6, 130.0, 129.3, 40.6, 23.5; IR (film) v_{max} 1682, 1444, 1372, 1357, 941, 777, 654 cm⁻¹; HRESI-TOF *m*/*z* 296.0352 (C₁₃H₁₁Cl₂N₃O + H⁺ requires 296.0352).

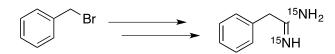


N-(2-(Pent-4-en-1-yl)pyrimidin-5-yl)acetamide (23l). A 0.15 M solution of amidine 20l (4.6 mg, 0.041 mmol) in CH₃CN was treated with 1,2,3-triazine 19 (8.5 mg, 0.062 mmol). The reaction mixture was heated to 90 °C and stirred for 72 h, at which time the mixture was purified by PTLC (SiO₂, 10% MeOH/CH₂Cl₂) to provide 23l as a colorless oil (4.4 mg, 52%): ¹H NMR (CD₃OD, 600 MHz) δ 8.92 (s, 2H), 5.83 (dtt, J = 17.4, 10.7, 6.7 Hz, 1H), 5.04–4.95 (m, 2H), 2.89 (t, J = 7.8 Hz, 2H), 2.11 (p, J = 7.2 Hz, 2H), 1.88 (p, J = 7.6 Hz, 2H); ¹³C NMR (CD₃OD, 150 MHz) δ 172.1, 166.7, 149.1, 139.3, 133.5, 115.5, 38.7, 34.4, 29.1, 23.5; IR (film) v_{max} 3234, 3077, 2929, 1669, 1588, 1523, 1446, 1380, 1289, 012, 647, 603 cm⁻¹; HRESI-TOF *m*/*z* 206.1288 (C₁₁H₁₅N₃O + H⁺ requires 206.1288).

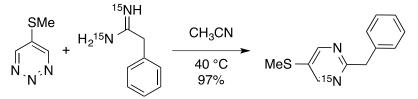
IV. Reaction of 1,2,3-Triazines with Ynamines

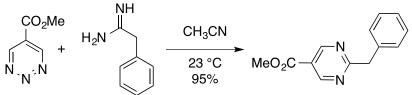


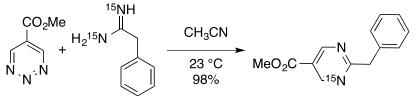
2-Diethylamino-3-methyl-5-(methylthio)pyridine (27a). A 0.15 M solution of ynamine **26a**⁸ (11.5 mg, 0.10 mmol) in CCl₄ was treated with 1,2,3-triazine **17** (19.7 mg, 0.16 mmol). The reaction mixture was heated to 80 °C and stirred for 24 h, at which time the mixture was purified by PTLC (SiO₂, 60% CH₂Cl₂/hexanes) to provide **27a** as a light yellow film (8.1 mg, 37%): ¹H NMR (CDCl₃, 600 MHz) δ 8.12 (d, *J* = 2.4 Hz, 1H), 7.38 (d, *J* = 2.5 Hz, 1H), 3.18 (q, *J* = 7.1 Hz, 4H), 2.44 (s, 3H), 2.24 (s, 3H), 1.06 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (CDCl₃, 150 MHz) δ 160.3, 145.4, 140.7, 126.4, 126.3, 45.4, 19.2, 18.4, 13.5; IR (film) v_{max} 2966, 2919, 2867, 1469, 1422, 1376, 1354, 1254, 1139, 885, 790, 766, 643, 579 cm⁻¹; HRESI-TOF *m*/*z* 211.1263 (C₁₁H₁₈N₂S + H⁺ requires 211.1263).



2-Dibenzylamino-3-methyl-5-(methylthio)pyridine (27b). A 0.15 M solution of ynamine **26b**⁸ (7.2 mg, 0.031 mmol) in CCl₄ was treated with 1,2,3-triazine **17** (5.8 mg, 0.046 mmol). The reaction mixture was heated to 80 °C and stirred for 24 h, at which time the mixture was purified by PTLC (SiO₂, 50% CH₂Cl₂/hexanes) to provide **27b** as a light yellow film (4.1 mg, 40%): ¹H NMR (CDCl₃, 600 MHz) δ 8.08 (d, *J* = 2.4 Hz, 1H), 7.39 (d, *J* = 2.5 Hz, 1H), 7.29–7.25 (m, 8H), 7.23–7.20 (m, 2H), 4.31 (s, 4H), 2.44 (s, 3H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 159.9, 145.1, 140.4, 139.3, 128.6, 127.7, 127.2, 127.1, 126.2, 54.9, 19.1, 17.9; IR (film) v_{max} 3028, 2920, 1451, 1422, 1219, 1027, 952, 738, 696 cm⁻¹; HRESI-TOF *m/z* 355.1576 (C₂₁H₂₂N₂S + H⁺ requires 355.1576).

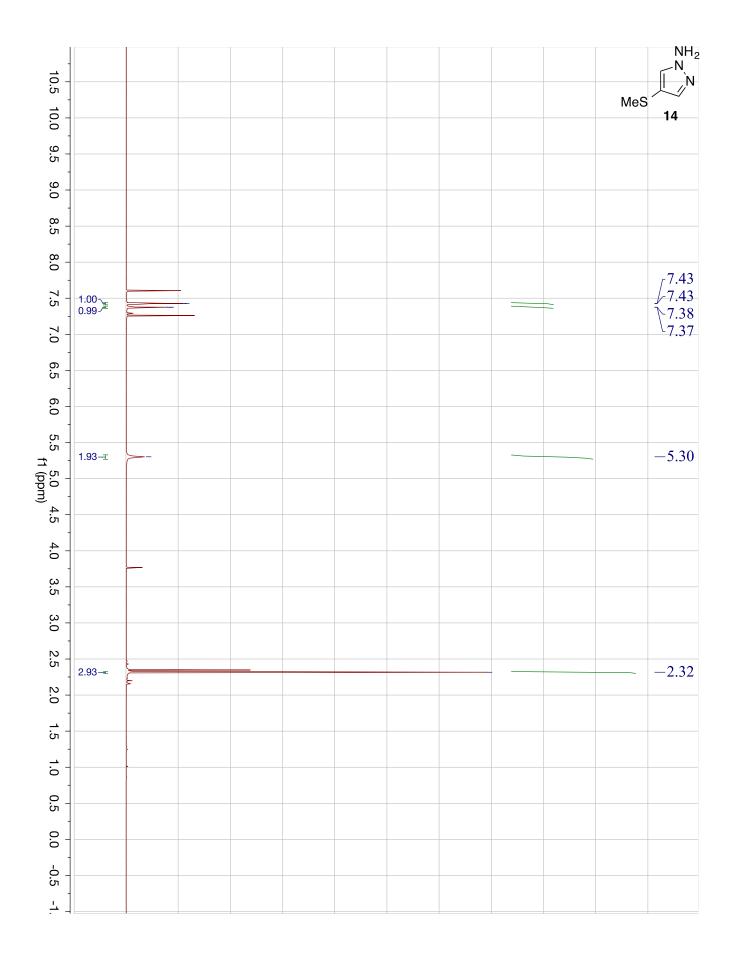

V. Reaction of 1,2,3-Triazines with Enamines

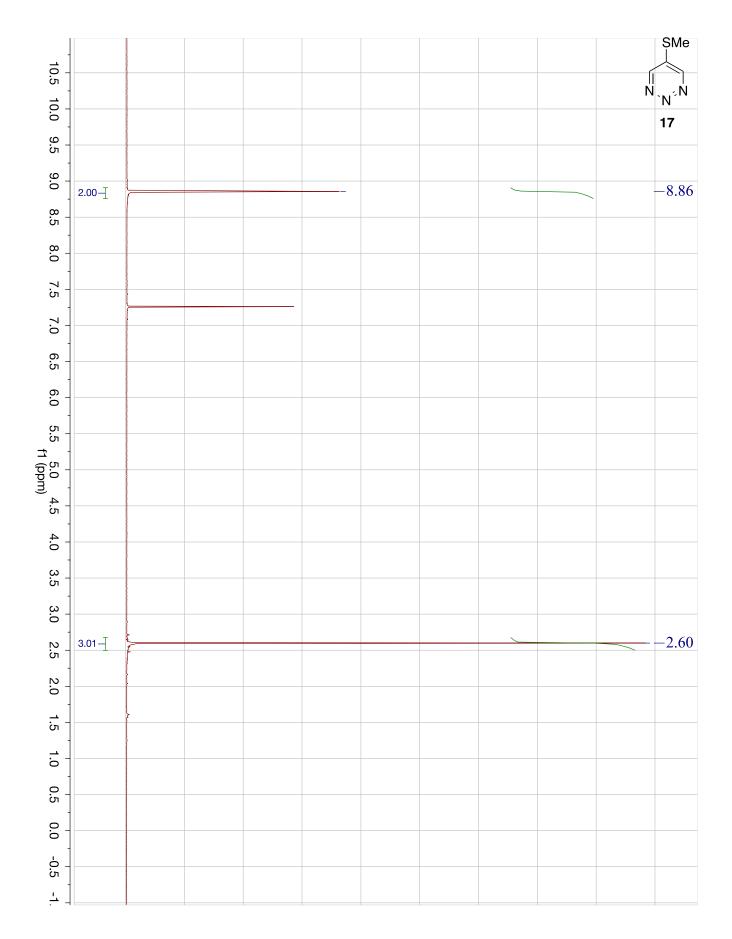

3-(Methylthio)-6,7-dihydro-5*H***-cyclopenta[***b***]pyridine (29). A 0.15 M solution of enamine 28 (10.0 mg, 0.073 mmol) in CH₂Cl₂ was treated successively with crushed 4 Å molecular sieves (spatula tip, ~15 mg) and 1,2,3-triazine 17 (13.9 mg, 0.11 mmol). The reaction mixture was stirred at 23 °C for 18 h, at which time the mixture was filtered through Celite, concentrated, and purified by PTLC (SiO₂, 60% EtOAc/hexanes) to provide 29 as a light yellow film (4.0 mg, 33%): ¹H NMR (CDCl₃, 600 MHz) \delta 8.28 (s, 1H), 7.44 (s, 1H), 2.97 (t,** *J* **= 7.7 Hz, 2H), 2.91 (t,** *J* **= 7.5 Hz, 2H), 2.48 (s, 3H), 2.13 (p,** *J* **= 7.6 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz) \delta 163.6, 147.1, 137.7, 132.3, 132.2, 34.1, 31.0, 23.7, 17.4; IR (film) v_{max} 2953, 2920, 1553, 1453, 1433, 1212, 902, 716 cm⁻¹; HRESI-TOF** *m***/***z* **166.0686 (C₉H₁₁NS + H⁺ requires 166.0685).**

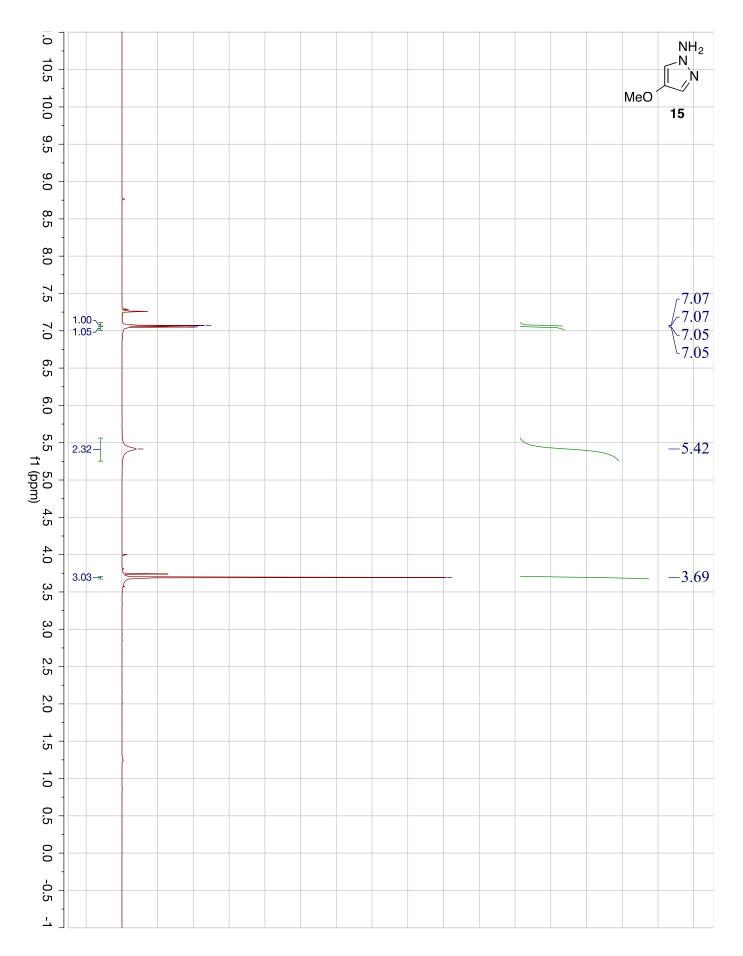

2-Phenylacetimidamide-¹⁵N₂ (¹⁵N-20g). Compound ¹⁵N-20g was prepared as described elsewhere.⁹

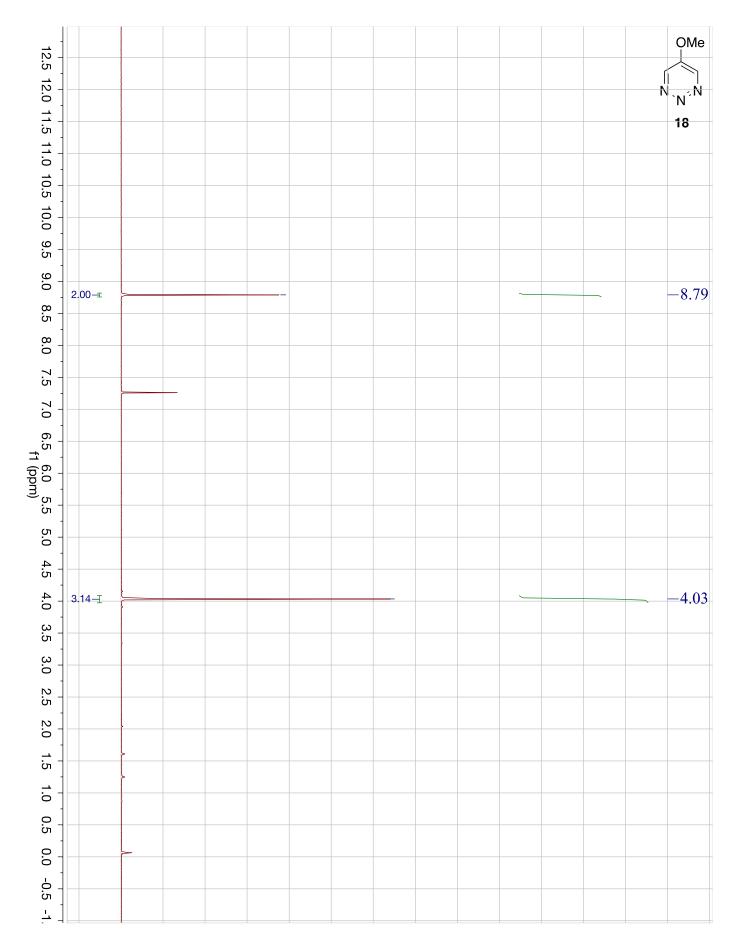
2-Benzyl-5-(methylthio)pyrimidine-¹⁵*N* (**24).** A 0.15 M solution of amidine ¹⁵*N*-**20g** (10.0 mg, 0.073 mmol) in CH₃CN was treated with 1,2,3-triazine **17** (14.0 mg, 0.11 mmol). The reaction mixture was heated to 40 °C and stirred for 24 h, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **24** as a white solid (15.4 mg, 97%): mp 53–55 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.57 (s, 2H), 7.35–7.34 (m, 2H), 7.30 (dd, *J* = 8.5, 6.8 Hz, 2H), 7.23–7.21 (m, 1H), 4.26 (s, 2H), 2.49 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 167.3, 156.1, 138.5, 131.4, 129.4, 128.9, 127.0, 45.8, 16.4; IR (film) v_{max} 2919, 1535, 1494, 1426, 1376, 1120, 1028, 749, 699, 671, 646, 585 cm⁻¹; HRESI-TOF *m*/*z* 218.0776 (C₁₂H₁₂N¹⁵NS + H⁺ requires 218.0765).

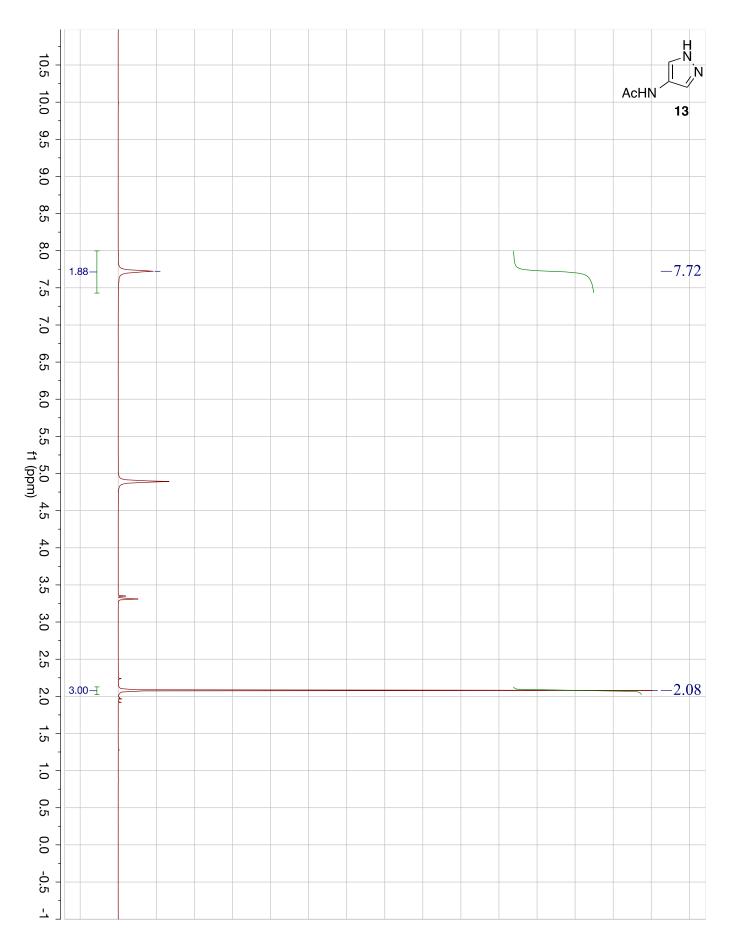
Methyl 2-benzylpyrimidine-5-carboxylate (S2). A 0.15 M solution of amidine **20g** (10.0 mg, 0.073 mmol) in CH₃CN was treated with 1,2,3-triazine **4** (15.3 mg, 0.11 mmol). The reaction mixture was stirred at 23 °C for 10 min, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **S2** as a white solid (16.0 mg, 95%): mp 81–83 °C; ¹H NMR (CDCl₃, 600 MHz) δ 9.20 (s, 2H), 7.37–7.35 (m, 2H), 7.32–7.30 (m, 2H), 7.25–7.22 (m, 1H), 4.36 (s, 2H), 3.95 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 173.7, 164.6, 158.8, 137.7, 129.5, 129.0, 127.2, 121.8, 52.9, 46.5; IR (film) v_{max} 1719, 1579, 1419, 1290, 1270, 1192, 1028, 746, 699, 582 cm⁻¹; HRESI-TOF *m/z* 229.0970 (C₁₃H₁₂N₂O₂ + H⁺ requires 229.0971).




Methyl 2-benzylpyrimidine-5-carboxylate-¹⁵*N* (**26**). A 0.15 M solution of amidine ¹⁵N-**20g** (10.0 mg, 0.073 mmol) in CH₃CN was treated with 1,2,3-triazine **4** (15.3 mg, 0.11 mmol). The reaction mixture was stirred at 23 °C for 10 min, at which time the mixture was purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **26** as a white solid (16.4 mg, 98%): mp 81–83 °C; ¹H NMR (CDCl₃, 600 MHz) δ 9.20 (s, 2H), 7.37–7.35 (m, 2H), 7.32–7.30 (m, 2H), 7.25–7.22 (m, 1H), 4.36 (s, 2H), 3.95 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 173.7, 164.6, 158.8, 137.7, 129.5, 129.0, 127.2, 121.8, 52.9, 46.5; IR (film) v_{max} 1719, 1579, 1419, 1290, 1270, 1192, 1028, 746, 699, 582 cm⁻¹; HRESI-TOF *m*/*z* 230.0946 (C₁₃H₁₂N¹⁵NO₂ + H⁺ requires 230.0942).


VII. References


- 1. Ahn, K.; Boehm, M.; Cabral, S.; Carpino, P.; Futatsugi, K.; Hepworth, D.; Kung, D.; Orr, S.; Wang, J. Diacylglycerol Acyltransferase 2 Inhibitors. WO 2013/150416 A1, October 10, 2013.
- 2. Hynes, J.; Doubleday, W.; Dyckman, A.; Godfrey, J.; Grosso, J.; Kiau, S.; Leftheris, K. J. Org. Chem. **2004**, *69*, 1368.
- Oslob, J.; McDowell, R.; Johnson, R.; Yang, H.; Evanchik, M.; Haria, C.; Cai, H.; Hu, L. Heterocyclic Modulators of Lipid Synthesis. WO 2014/008197 A1, January 9, 2014.
- 4. Harrison, R.; Ramsden, N.; Major, J.; Morel, A.; Convery, L.; Sunose, M.; Lynch, R.; Adrego, R.; Jones, A. Heterocyclyl Pyrimidine Analogues as TYK2 Inhibitors. WO 2013/174895 A1, November 28, 2013.
- 5. Giles, D.; Parnell, E.; Renwick, J. J. Chem. Soc. C 1966, 1179.
- 6. A modified procedure from: Lu, Y.; Kraatz, H. Inorg. Chim. Acta 2004, 357, 159.
- 7. Carlson, R.; Nilsson, Å. Acta Chem. Scand., Ser. B 1984, 38, 49.
- 8. Anderson, E. D.; Boger, D. L. J. Am. Chem. Soc. 2011, 133, 12285.
- 9. Charushin, V. N.; van der Plas, H. C. J. Org. Chem. 1983, 48, 2667.


VIII. ¹H NMR Spectra

