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Mechanistic Investigation of the Arrhythmogenic Role of Oxidized CaMKII
in the Heart
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ABSTRACT Oxidative stress and calcium (Ca2þ)/calmodulin (CaM)-dependent protein kinase II (CaMKII) both play important
roles in the pathogenesis of cardiac disease. Although the pathophysiological relevance of reactive oxygen species (ROS) and
CaMKII has been appreciated for some time, recent work has shown that ROS can directly oxidize CaMKII, leading to its persis-
tent activity and an increase of the likelihood of cellular arrhythmias such as early afterdepolarizations (EADs). Because CaMKII
modulates the function of many proteins involved in excitation-contraction coupling, elucidation of its role in cardiac function, in
both healthy and oxidative stress conditions, is challenging. To investigate this role, we have developed a model of CaMKII acti-
vation that includes both the phosphorylation-dependent and the newly identified oxidation-dependent activation pathways. This
model is incorporated into our previous local-control model of the cardiac myocyte that describes excitation-contraction coupling
via stochastic simulation of individual Ca2þ release units and CaMKII-mediated phosphorylation of L-type Ca2þ channels
(LCCs), ryanodine receptors and sodium (Naþ) channels. The model predicts the experimentally measured slow-rate depen-
dence of H2O2-induced EADs. Upon increased H2O2, simulations suggest that selective activation of late Naþ current (INaL),
although it prolongs action potential duration, is not by itself sufficient to produce EADs. Similar results are obtained if CaMKII
effects on LCCs and ryanodine receptors are considered separately. However, EADs emerge upon simultaneous activation of
both LCCs and Naþ channels. Further modeling results implicate activation of the Naþ-Ca2þ exchanger (NCX) as an important
player in the generation of EADs. During bradycardia, the emergence of H2O2-induced EADs was correlated with a shift in the
timing of NCX current reversal toward the plateau phase earlier in the action potential. Using the timing of NCX current reversal
as an indicator event for EADs, the model identified counterintuitive ionic changes—difficult to experimentally dissect—that have
the greatest influence on ROS-related arrhythmia propensity.
INTRODUCTION
Oxidative stress, defined as a pathologically high level of
reactive oxygen species (ROS) in cells, is known to play a
central role in the development of cardiac disease (1). ROS
accumulation impairs cardiac function by directly modu-
lating a broad variety of protein targets, including ion
channels, membrane transporters, and signaling kinases
(2). However, the exact mechanisms by which increased
oxidative stress is converted to sustained alteration of
heart function remains largely unknown. One molecule that
has recently been suggested as a sensor of oxidative stress
in the heart is calcium (Ca2þ)/calmodulin (CaM)-dependent
protein kinase II (CaMKII) (3). Excessive CaMKII activa-
tion, as occurs under pathological conditions such as heart
failure, has been linked to altered excitation-contraction
coupling (ECC) and proarrhythmic electrical remodeling (4).

The CaMKII holoenzyme exists as a macromolecular
complex consisting of two stacked ring-shaped hexamers
(5). Each of its 12 subunits can be activated through binding
of Ca2þ-bound CaM (Ca2þ/CaM) to the CaMKII regulatory
domain in response to beat-to-beat transient increases
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of intracellular Ca2þ concentration ([Ca2þ]i). Activated
CaMKII molecules can be autophosphorylated by neigh-
boring subunits at threonine amino acid residues in the
regulatory domain. This results in the kinase retaining
activity even upon dissociation of Ca2þ/CaM (6). We refer
to this sequence of events as the phosphorylation activation
pathway. Recently, a novel mechanism for oxidative
CaMKII activation was discovered that involves the oxida-
tion of CaMKII at specific methionine residues (7). This
newly identified oxidation activation pathway produces
persistent kinase activity and increases the likelihood of
cellular arrhythmias known as early and delayed afterdepo-
larizations (EADs and DADs, respectively) (8,9).

These new findings implicate oxidative CaMKII activa-
tion as a putative mechanistic link between ROS accumula-
tion and life-threatening cardiac arrhythmias (3). CaMKII
phosphorylates several proteins involved in ECC, including
L-type Ca2þ channels (LCCs) (10), ryanodine receptors
(RyRs) (11), and phospholamban (PLB) (12). CaMKII
also phosphorylates sodium (Naþ) and potassium (Kþ)
channels to regulate their function (12–14). Because
CaMKII acts on multiple targets, its effects on integrative
myocyte behavior are best interpreted through development
and application of quantitative models. Here, we use a
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computational model that links cellular ROS and CaMKII
activation to understand their effects on whole-cell
electrophysiology.

In one recent study, Christensen et al. (15) developed a
model of oxidative CaMKII activation and used this model
to study the role of CaMKII in the border zone of cardiac
infarcts. Simulation results demonstrated that enhanced
oxidative CaMKII activation is associated with reduced con-
duction velocity, increased refractory periods, and a greater
likelihood of conduction block. These results were attrib-
uted primarily to CaMKII-mediated regulation of Naþ chan-
nel kinetics and availability. Although Christensen et al.
noted that CaMKII activation also has an impact on major
ECC proteins in ways that may promote arrhythmias, these
mechanisms were not explored in their study. Accordingly,
the purpose of this study is to develop a cardiac myocyte
model of CaMKII-mediated regulation of ECC targets
arising from both the phosphorylation and oxidative activa-
tion pathways, and to analyze their functional significance
in the genesis of ROS-induced arrhythmias.

We develop, to our knowledge, a novel stochastic model
of CaMKII activation using recent experimental data
for CaM affinity and autophosphorylation/oxidation rates
measured specifically for CaMKIId, the cardiac isoform of
CaMKII (7,16). This modeling effort builds upon our previ-
ous work (17), incorporating the functional effects of
CaMKII-mediated phosphorylation of LCCs, RyRs, PLB,
and Naþ channels into an integrative myocyte model (18).
Our simulations recapitulate previous experimental data
indicating that the arrhythmogenic pattern of EADs
observed during oxidative stress is dependent on oxidative
CaMKII activation and pacing-cycle length. The model
further establishes that occurrence of these EADs results
from nonintuitive synergistic interactions between individ-
ual CaMKII substrates and other ECC proteins, which
would be difficult to dissect from experiments alone.
MATERIALS AND METHODS

Stochastic model of cardiac CaMKII activation

The stochastic model of CaMKII activation (Fig. 1) reflects the functional

properties of the cardiac isoform including both the phosphorylation activa-

tion pathway and the newly identified oxidation activation pathway. Before

the introduction of Ca2þ/CaM, each CaMKII subunit is inactive (state I in

Fig. 1 A). Activation occurs upon binding of Ca2þ/CaM followed by auto-

phosphorylation and/or oxidation. Autonomous active states (Ca2þ/CaM-

unbound) can be either autophosphorylated or oxidized. The model also

includes an active state that is both oxidized and phosphorylated (state

OxP in Fig. 1 A). This model builds upon the work of Hashambhoy et al.

(17,19) with the incorporation of recent experimental data for CaM

affinity (Fig. 1 B, circles) and autophosphorylation/oxidation rates

measured specifically for CaMKIId (7,16). Predicated upon this, we have

implemented the four-state deterministic activation model of Chiba et al.

(20) within a stochastic framework that is constrained by the geometry of

the CaMKII holoenzyme. This was accomplished by restricting CaMKII

autophoshorylation events to occur only between adjacent CaMKII

subunits, as previously described by Hashambhoy et al. (21) (see the Sup-

porting Material for model details). Under this constraint, the model repro-

duces the relevant experimental data of CaMKII-Ca2þ/CaM interaction, as

well as the autophosphorylation rate and frequency dependence of CaMKII

activation (see Figs. S1 and S2). The stochastic activation model was

further modified by including oxidized active states in addition to a

Ca2þ/CaM-bound active state, an autophosphorylated Ca2þ/CaM-bound

state, and an autophosphorylated Ca2þ/CaM-dissociated state (i.e., an

autonomous active state). Consistent with experimental observations (7),

Ca2þ/CaM must bind to a CaMKII subunit before phosphorylation or

oxidation can occur. Phosphorylated or oxidized CaMKII molecules retain

activity even upon dissociation of Ca2þ/CaM (states A and OxA in Fig. 1

A). Kinetic rate constants for state transitions were obtained either from

the literature or by fitting to recent experimental data obtained under a

variety of experimental protocols (e.g., Fig. 1, B and C). For instance, the

oxidation-dependent rate (Fig. 1 A, kox (mM�1 ms�1)) is estimated using

the dose-response activation of CaMKII by H2O2 as measured by Erickson
FIGURE 1 (A) State diagram of the stochastic

CaMKII activation model. Before the introduction

of Ca2þ/CaM, all CaMKII subunits are in the inac-

tive form (state I). Activation occurs upon binding

of Ca2þ/CaM (state B), followed by autophosphor-

ylation (state P) or oxidation (state OxB). Autono-

mous active states (Ca2þ/CaM-unbound) can be

either autophosphorylated (state A) or oxidized

(state OxA). The model also includes an active

state that is both oxidized and phosphorylated

(state OxP). (B) Simulated (asterisks) binding

affinity for CaM (KD) for the brain-specific a

isoform (blue) and the cardiac-specific d isoform

(red) compared to experimental data (solid circles)

of Gaertner et al. (16). (C) Simulated dose-

response of CaMKII activation by H2O2 (red)

compared to experimental data (black) of Erickson

et al. (7). Simulations correspond to the experi-

mental condition where [Ca2þ] ¼ 200 mM and

[CaM] ¼ 1 mM in the absence of ATP (to prevent

autophosphorylation). To see this figure in color,

go online.
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et al. (7) (Fig. 1 C, black symbols). All model parameter values are given in

Tables S1 and S2.
Whole-cell model

To investigate the mechanisms by which oxidative CaMKII activation trig-

gers cellular arrhythmias, we incorporated the CaMKII activation model

into what is referred to here as the stochastic local-control ventricular

myocyte model (17). This model incorporates the functional effects of

CaMKII-mediated phosphorylation of LCCs, RyRs, PLB, and Naþ chan-

nels into an integrative model of the canine ventricular myocyte, with sto-

chastic simulation of LCC and RyR channel gating within a local

population of Ca2þ release sites known as Ca2þ release units based on

the theory of local control of ECC (18). Under physiological conditions,

our model predicts negligible cytosolic CaMKII activation and thereby

negligible PLB phoshorylation (~0.1%) due to low enrichment of [Ca2þ]
and [CaM] within this compartment (Fig. S6). Huke and Bers (22) showed

that the fraction of PLB phosphorylated by CaMKII is minimal (<5%) un-

der normal conditions (2 Hz action potential (AP) pacing). Furthermore,

these results are broadly consistent with other experimentally validated

computational models of Ca2þ/CaM (23,24) indicating that cytosolic

CaMKII is not appreciably activated due to the relatively low affinity of

CaM’s Ca2þ binding sites (high apparent KD of 10 mM). The model predicts

negligible cytosolic CaMKII activation, even under oxidative stress. This is

not surprising given that CaMKII oxidation occurs upon binding of Ca2þ/
CaM (7). Since CaMKII-mediated phosphorylation of PLB is negligible,

the analysis here is focused on the impact of CaMKII-dependent alterations

of LCCs, RyRs, and Naþ channels on APs during conditions of elevated

oxidant stress. The dynamic interactions between CaMKII, LCCs, and

RyRs are described as a function of dyadic Ca2þ concentration ([Ca2þ]dyad)
and CaM levels, assuming that there is one 12-subunit CaMKII holoenzyme

tethered to each LCC (25). Each CaMKII monomer can transition among a

variety of conformational states, and CaMKII monomers can catalyze phos-

phorylation of individual LCCs and RyRs. In this model, CaMKII phos-

phorylation of LCCs promotes transitions from mode 1 gating (normal

activity) to mode 2 gating (high activity with long openings), as described

previously by Hashambhoy et al. (21). Further, CaMKII phosphorylation of

RyRs is assumed to increase the RyR sensitivity to [Ca2þ]dyad (19). With

regard to CaMKII-dependent regulation of Naþ current (INa), Hashambhoy

et al. (17) used a modified version of the Naþ channel model of Grandi et al.

(26) to simulate the acute effects of CaMKII on cardiac INa as reported by

Aiba et al. (27). A detailed description of all parameter changes made to the

cardiac myocyte model of Hashambhoy et al. (17) is provided in the Sup-

porting Material.
Design of in silico experiments

To assess the performance of the proposed model of CaMKII signaling

within the context of cardiac ECC, we 1) verified whether the model cap-

tures the experimentally measured rate dependence of EAD occurrence in

the presence of 200 mMH2O2 (28); 2) evaluated whether the model predicts

the differential effects of the Naþ-Ca2þ exchanger (NCX) and RyR inhibi-

tion on H2O2-induced EADs; and finally 3) performed a comparative anal-

ysis to identify H2O2-sensitive CaMKII targets that have the greatest

influence on the genesis of H2O2-induced EADs. All of these simulations

represent model predictions in the presence of 200 mM H2O2. H2O2 level

in human blood may reach as high as ~35 mM in normal conditions (29).

Under oxidative stress conditions (e.g., ischemia-reperfusion injury, heart

failure), ROS levels can increase as much as 100; hence, a level of

200 mM H2O2 lies reasonably within its pathophysiological range. Paced

APs were stimulated by a current pulse train of �100 pA/pF in magnitude

and 0.5 ms in duration at pacing-cycle lengths (PCLs) of 6.0, 4.0, 2.0, and

1.0 s. A typical simulation involves the generation of 60 consecutive APs

with an ensemble of 12,500 Ca2þ release units within a single myocyte.

For stable APs, the average AP duration at 90% repolarization (APD90)
Biophysical Journal 109(4) 838–849
is taken as the mean measured over the final 50 APs of the pacing protocol.

In the case of EADs, the median value of APD90 (taken over the final

50 APs) is considered. For the sake of simplicity, APD90 is referred to sim-

ply as APD. The distribution of these data is also summarized in the form of

a box plot, which displays five values: the minimum, the first quartile, the

median, the third quartile, and the maximum. In a typical box plot, the

central rectangle spans from the first to the third quartile, and a horizontal

line segment inside the rectangle (in this study, a shorter red line) represents

the median. The whiskers above and below the box show the locations of

the maximum and minimum, respectively, and outliers (points beyond the

whiskers) are displayed using symbols (in this study,þ symbols). Statistical

significance is determined by estimating a p-value using the Kruskal-Wallis

one-way-analysis-of-variance method.
RESULTS

Rate dependence of H2O2-induced EADs

Experiments have shown that oxidative stress caused by
exposure to 200 mMH2O2 for 5–15 min predisposes cardiac
myocytes to EADs (8,9,12), and that the occurrence of
EADs is highly dependent on the PCL (28). With slow pac-
ing (PCL ¼ 6 s), EADs usually occur on every AP, whereas
with faster pacing (PCL ¼ 1 s), EADs are typically not pre-
sent. In the intermediate range, the occurrence of EADs is
irregular from beat to beat. As shown in Fig. 2 A, the exper-
imentally measured rate dependence of H2O2-induced
EADs is accurately predicted as an emergent behavior of
the model. Simulations showed no EADs in the presence
of 200 mM H2O2 at a PCL of 1 s, whereas at a PCL of
6 s, EADs appeared consistently in every AP. Under normal
conditions (absence of H2O2), the model also predicts a
physiologically relevant rate adaptation of AP duration
(APD), as reported by Guo et al. (30) (Fig. 2 B). Specifically,
this control rate dependence of ventricular repolarization
has been experimentally shown to be driven by rate-depen-
dent changes in basal late Naþ current (INaL). Consistent
with these experimental findings, the model predicts no
rate adaptation of APD in the absence of INaL. In the pres-
ence of H2O2, the APD histograms for different PCLs
including both fast (i.e., PCL ¼ 1 s) and slow pacing rates
(PCL R 2 s) are shown in Fig. S7. Results for the last six
consecutive APs from a 6 s PCL protocol in the absence
and presence of H2O2 are shown in Fig. 2, C and D, respec-
tively. Under this protocol and upon increased oxidative
stress, the model predicts increased oxidative CaMKII acti-
vation (Fig. 3, A and B), an increased maximum fraction of
open LCCs gating in mode 2 (Fig. 3 C, Mode2open) and
thereby increased ICaL (Fig. 3 D), as well as enhanced
Ca2þ leak from the sarcoplasmic reticulum (SR) (Fig. 3 E,
JRyR) and INaL (Fig. 3 F). The increase in ICaL at a PCL of
6 s via oxidized CaMKII corroborates the experimental find-
ings of Song et al. (31), who demonstrated that oxidative
CaMKII activation is involved in the facilitation of LCCs,
observed as an increase of the peak amplitude of ICaL and
apparent slowing of inactivation (they refer to this as oxida-
tion-dependent facilitation). In particular, the in silico



FIGURE 2 (A) Simulated rate dependence of

H2O2-induced EADs. The EAD incidence rate is

predicted to be higher at low pacing rates (long

PCLs) in the presence of 200 mM H2O2. (B) PCL

dependence of APD under control (CTRL) condi-

tions (solid circles) and in the absence of baseline

INaL (open circles). Under control conditions, the

APD increases with PCL and this rate-dependent

increase is abolished in the absence of INaL. (C)

Simulated APs from a 6 s PCL protocol in the

absence of oxidative stress (CTRL, 0 mM H2O2)

(12,500 Ca2þ release units). Results for the last

six consecutive APs are shown. (D) Simulated

APs, all of which exhibit EADs, under conditions

of elevated oxidative stress (200 mM H2O2). To

see this figure in color, go online.

Oxidative CaMKII Activation and EADs 841
model presented here predicts that the maximum fraction of
open LCCs gating in mode 2 shifts from ~0.35% in control
(absence of H2O2) to ~7% with increased H2O2 (Fig. 4 A).
Similarly, diastolic JRyR is predicted to increase from
0.6 mM/s in control conditions to 8 mM/s upon this increase
in H2O2 (Fig. 4 B). As expected, our control model at slow
pacing predicts a negligible CaMKII-mediated shift in LCC
gating and insignificant diastolic SR Ca2þ leak. These ef-
FIGURE 3 Simulations for the last three consecutive APs from a 6 s PCL pro

(colored lines). (A) Simulated sustained dyadic CaMKII activity before (CTRL)

units under the same conditions. (C) Simulated traces for the percentage of ope

(CTRL) and after H2O2 treatment. (E) Simulated diastolic SR Ca2þ leak (JRyR) un

H2O2 treatment. For clarity, the results for the last three beats are shown separate

INaL) or the last 500 ms (e.g., diastolic RyR flux). To see this figure in color, go
fects are not surprising given that CaMKII activity increases
in response to fast pacing (Fig. S8). On the other hand, at
slow pacing, where there is little reduction of Naþ channel
availability at steady state, the model predicts the presence
of a significant amplitude of INaL in control (Fig. 4 C). As
already shown (Fig. 2 B), it is this basal rate-dependent
enhancement of INaL that prolongs the APD at slow heart
rates. Upon H2O2 treatment, the model predicts further
tocol under both control (CTRL, black lines) and oxidative stress conditions

and after H2O2 treatment. (B) Simulated fraction of oxidized CaMKII sub-

n LCCs gating in mode 2 (Mode2open). (D) Simulated ICaL current before

der the same conditions. (F) Simulated INaL current before (CTRL) and after

ly during either the first 500 ms from the AP upstroke (e.g.,Mode2open and

online.
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FIGURE 4 Simulated rate dependence of CaMKII-mediated effects on ICaL, JRyR, and INaL in the absence (CTRL, black) or presence (blue) of H2O2. EADs

are indicated with solid blue bars. Simulated PCL dependence of (A) the maximum fraction of open LCCs gating in mode 2, (B) the diastolic RyR flux (JRyR),

and (C) INaL (average value calculated from 100 to 300 ms) in the absence (CTRL) or presence of oxidative stress. To see this figure in color, go online.
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augmentation of INaL at long PCLs (e.g., 0.45% of peak INa
at a PCL of 6 s), and this increase contributes to the appear-
ance of EADs via a synergism that is discussed in greater
detail in the next section.
Synergy between INaL, ICaL, and INCX on EAD
genesis by H2O2

With regard to ionic mechanisms underlying H2O2-induced
EADs, recent experimental studies (9,32) implicate activa-
tion of INaL as playing a key role. Song et al. (12) showed
that ranolazine, a selective blocker of INaL, attenuates
H2O2-induced arrhythmic activity and contractile dysfunc-
tion. This finding was further supported by Xie et al. (9),
who reported elimination of H2O2-induced EADs with rano-
lazine block. However, activation of INaL may not by itself
be sufficient to produce these EADs. For example, the appli-
cation of ATX, an agent that selectively delays the late-
phase inactivation of INa, prolongs the APD but fails to
induce EADs, implying that other changes are also required
(9). Although there is a consensus on the role of ICaL modi-
fication in EAD generation (33–36), the relative contribu-
tions of each of these changes under elevated H2O2 are
Biophysical Journal 109(4) 838–849
difficult to establish experimentally. Since significant uncer-
tainties exist regarding the key mechanisms of these EADs,
we used the model to further examine the functional impact
of each individual CaMKII substrate (e.g., INa, ICaL, and
JRyR) on AP response. Individual substrate contributions
were isolated by allowing CaMKII-dependent phosphoryla-
tion of only a single target. Our simulations indicate that
selective activation of INaL in the presence of 200 mM H2O2

is not, by itself, sufficient to produce EADs (Fig. 5 A), even
though INaL is increased (Fig. 4 C). Similar results with no
EADs are predicted if CaMKII, activated via oxidation, phos-
phorylates only LCCs (Fig. 5 B). However, upon the simulta-
neous targeting of both ICaL and INaL by active CaMKII, the
model predicts the rate-dependent emergence of EADs.
Therefore, synergy between these two mechanisms, rather
than either one alone, appears necessary for EAD generation
(Fig. 5 C). With regard to the role of CaMKII phosphoryla-
tion of RyRs, model results indicate that RyR phosphoryla-
tion either alone or in combination with CaMKII-mediated
LCC phosphorylation does not result in EAD generation in
response to increased H2O2 (Fig. S9). Similar results with
no EADs are obtained if instead of LCCs, CaMKII targets
both RyRs and Naþ channels.



FIGURE 5 Comparative analysis of CaMKII

target effects in the presence of oxidative stress

(200 mMH2O2) under a 2 s and a 6 s PCL protocol.

Simulated APs are shown from both PCL protocols

in the presence of 200 mM H2O2 and under the as-

sumptions that CaMKII targets only Naþ channels

(A), only LCCs (B), or both Naþ channels and

LCCs (C). In the case of PCL¼ 6 s, all APs exhibit

EADs. To see this figure in color, go online.
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Since H2O2-induced EADs are related to changes in both
the INaL and ICaL, we evaluated the possible role of the NCX
current (INCX) in the occurrence of EADs. To examine its
depolarizing contribution to H2O2-induced EADs, we per-
formed simulations at long PCL with H2O2 (Fig. 6 A) and
in the presence of INCX inhibition (Fig. 6 A, ROS þ NCX
block). Blocking the INCX ablates the formation of EADs,
confirming the experimental findings of Zhao et al. (28).
Because NCX is the primary pathway for Ca2þ efflux
from the cardiac cell, inhibition of INCX (Fig. S10 A) in-
creases diastolic [Ca2þ]i significantly (from 67 nM to
208 nM) and systolic [Ca2þ]i to a lesser extent (from 0.85
mM to 1.08 mM) (Fig. 6 B). The time course of [Ca2þ]i
before and after NCX block is shown in Fig. S10 B. NCX
block also leads to an ~2 mM reduction in intracellular
Naþ concentration ([Naþ]i). As a consequence of both a
higher [Ca2þ]i and a lower [Naþ]i, the reversal potential
(RP) of NCX—defined as the membrane potential at which
the NCX driving force, and thereby INCX, equals zero—is
shifted toward more depolarized potentials (Fig. 6 B, NCX
RP). To determine the phase of the AP in which NCX RP
occurs, the time (from AP upstroke) to NCX RP (time to
FIGURE 6 Effects of NCX and RyR inhibition

on H2O2-induced EADs. (A) Simulated APs from

a 6 s PCL protocol in the presence of oxidative

stress (ROS) including the presence of either

NCX inhibitor (ROS þ NCX block) or RyR inhib-

itor (ROS þ RyR block). Note that no EADs occur

in the ROS þ NCX block condition, whereas they

are present in the ROS þ RyR block condition.

Whole-cell NCX current (INCX), as well as RyR

flux (JRyR), before and after block are shown in

Figs. S10 A and S13 A. (B) Box plots of diastolic

[Ca2þ]i, systolic [Ca2þ]i, and NCX RP under

ROS, ROS þ NCX block, and ROS þ RyR block

conditions. (C) Box plots of APD, absolute

TTRP, and TTRP/APD (i.e., normalized TTRP)

under the same conditions. To see this figure in

color, go online.
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RP (TTRP)) is computed and normalized to APD (Fig. 6 C,
TTRP/APD). Thus, TTRP/APD represents the fraction of
the APD in which the NCX was in reverse mode versus
forward mode (37). In the comparison of the ROS and
ROSþ NCX block conditions, APD is significantly reduced
(approximately twofold) after NCX block (Fig. 6 C, APD),
whereas the absolute TTRP decreases as much as twofold
(Fig. 6 C, TTRP). As a result of this symmetric variation,
the normalized TTRP (TTRP/APD) remains nearly the
same before and after NCX block. Similar results are ob-
tained even when simulations are performed at an interme-
diate pacing rate (PCL ¼ 2 s (Fig. S11)).

In the case of EADs that arise with ROS, the NCX RP
(Fig. 6 A, blue asterisk) appears to occur early in the AP
plateau (long before the EAD upstroke). Using the moment
of NCX reversal as a critical event of the AP, we next
compared major plateau currents (e.g., INaL and ICaL) at
this time before and after NCX block. Interestingly, INaL
increases significantly (p < 0.001) from a median value
of �0.37 pA/pF in ROS (with EADs) to �0.53 pA/pF in
ROS þ NCX block (no EADs) (Fig. 7 A). On the other
hand, ICaL (Fig. 7 B) decreases after NCX block due to
a shift in LCC gating toward stronger inactivation that
occurs via Ca2þ-dependent inactivation (CDI) (Fig. 7 C)
and voltage-dependent inactivation (VDI) mechanisms
(Fig. S10 C). As a result, more LCCs become inactive,
reducing the likelihood of their recovery from both CDI
and VDI and thereby their reopening during the AP plateau.
Complementary to this, upon NCX inhibition, the fraction
of available (i.e., noninactivated) LCCs significantly de-
creases (Fig. 10 D). Since [Ca2þ]dyad affects the intrinsic
rates of CDI, we further plotted [Ca2þ]dyad before and after
NCX block and found that, as expected, it is further elevated
Biophysical Journal 109(4) 838–849
during the AP plateau as a result of NCX block (Fig. S10D).
With regard to the total membrane current (Fig. S10 E, Itot),
model simulations show that it changes from 0.017 pA/pF in
ROS to 0.056 pA/pF in the ROS þ NCX block condition.
This is likely due to the preceding decrease in ICaL. Based
on our analysis of the timing of NCX RP, we further
repeated the NCX block simulations (PCL ¼ 6 s) following
a different intervention strategy. Rather than block NCX at
the beginning of the simulation, we blocked it at the moment
NCX reverses to forward mode (i.e., at TTRP) in the pres-
ence of ROS (Fig. S12, asterisk) and maintained the NCX
block for only 200 ms. As a result of this acute intervention,
EADs were still abolished (Fig. S12, dashed line), which
suggests that the inward (forward-mode) INCX is a key
player in the formation of these EADs.

Since [Ca2þ]dyad is heavily influenced by RyR function,
we further assessed its effect on CDI of LCCs, and thereby
ICaL, by repeating the H2O2-dependent simulations in the
presence of RyR inhibition. In this particular case (referred
to as ROS þ RyR block (Figs. 6 and 7)), EADs still appear
on every AP but are prolonged, consistent with the experi-
mental findings by Zhao et al. (28). Simulated APDs before
and after RyR block are shown in Fig. 6 C. Similar to the
above analysis, the time of NCX reversal (Fig. 6 A, brown
asterisk) also occurs long before the onset of the EAD.
Comparison of the ROS and ROS þ RyR block conditions
shows that diastolic [Ca2þ]i increases significantly, from
67 nM in ROS to 125 nM after RyR block, whereas systolic
[Ca2þ]i decreases from 0.85 mM to 0.44 mM after RyR
block. The latter is expected due to reduced RyR activity
and, thereby, SR Ca2þ release flux (Fig. S13 A, JRyR). As
a result of this decrease, fewer LCCs enter CDI (Fig. 7 C)
and the fraction of LCCs that are not in VDI also increases
FIGURE 7 (A and B) Box plots of INaL (A) and

ICaL (B) in the presence of ROS and after NCX in-

hibition (ROS þ NCX block) or RyR block

(ROS þ RyR block), as simulated at the time of

NCX reversal from a 6 s PCL protocol. (C) Box

plot of the total fraction of LCCs undergoing

CDI under the same conditions. (D) Box plot of

the total fraction of available LCCs as simulated

at the time of NCX reversal under the same condi-

tions (ROS, NCX block, and RyR block). To see

this figure in color, go online.
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(Fig. S13 B). As a consequence, more LCCs are likely to be
available—not in CDI or VDI—for reactivation after RyR
block (Fig. 7 D). This in turn increases the likelihood of
LCC opening, and thereby ICaL, from �0.6 pA/pF in ROS
to �0.7 pA/pF after RyR block (p < 10�16). Despite this in-
crease, INaL significantly decreases from �0.4 pA/pF in the
ROS condition to �0.3 pA/pF after RyR block (longer
APDs with EADs). Despite this nonintuitive decrease, Itot
is not significantly altered after RyR block (median value
~0.017 pA/pF (Fig. S13 C)). Based on the analysis of the
model, however, the longer EAD-containing APDs occur-
ring with RyR block can be explained via subsequent shifts
of LCC gating toward reduced inactivation that occur early
in the AP plateau (at the time of NCX reversal) and thereby
allow for maintaining the plateau phase.

We next used the model to predict the NCX RP for all
slow-rate-dependent EADs generated by ROS (Fig. 8).
Consistent with the above simulations, the NCX TTRP
(Fig. 8 A, asterisks) also occurs before the EAD upstroke,
and the NCX RP lies within a narrow voltage range (from
0 to�10 mV) (Fig. 8 B). Similar results are obtained if these
rate-dependent simulations are repeated with the same
[Naþ]i as that seen experimentally under ROS at a PCL of
2 s (12 mM (Fig. S14)). To extend these results, the NCX
RP is plotted as a function of TTRP/APD for all H2O2-
induced EADs including stable APs simulated either at
faster pacing rates (e.g., PCL % 1 s) or under interventions
such as ROS þ NCX block. In the latter case, NCX-block
simulations are performed not only at slow pacing rates
(e.g., PCL ¼ 6 s), as seen experimentally, but also at inter-
mediate pacing rates (e.g., PCL ¼ 2 s). As shown in Fig. 9,
the development of EADs generated by either ROS or
ROS þ RyR block (colored asterisks) is correlated with a
shift in the NCX TTRP from the repolarization phase toward
the AP plateau (median TTRP/APD ~0.3). This shift was
further accompanied by a change in the NCX RP that placed
it within a voltage range from �10 mV to þ5 mV, referred
to here as the EAD voltage range. Based on this voltage
range, the median NCX RP value is ~�2 5 2 mV and
thus hyperpolarized. Previous studies have shown that the
EAD take-off potentials—defined as membrane voltages
at which EADs occurred in the H2O2 model—were within
a wide range (fromþ20 mV to�30 mV), which was consis-
tent with that corresponding to the window current of ICaL
(28). Although it should be clarified that NCX RP does
not represent the EAD take-off potential (NCX TTRP
consistently occurs well before the EAD upstroke), here,
the time of NCX reversal serves as a critical phase of the
AP that clearly distinguishes the occurrence of EADs
from stable APs. In the case of stable APs arising from
NCX block (Fig. 9, triangles), the NCX RP shifts toward
a range of more depolarized potentials with a median value
of ~þ9 5 2 mV. As such, NCX block shifts the NCX RP
toward potentials that are more depolarized than the EAD
voltage range (median ~�2 mV). Note that NCX RP in-
creases with increased [Ca2þ]i and/or decreased [Naþ]i
(Fig. S15, A and B). Similar depolarizing shifts in NCX
RP are also obtained in the case of stable APs simulated
in the presence of ROS but at faster pacing rates (e.g.,
PCL ¼ 0.5 s). In this case, the NCX RP is significantly de-
polarized (Fig. 9, magenta squares) due to the frequency-
dependent increase in [Ca2þ]i (Fig. S15 C). Interestingly,
in the case of a 1 s PCL protocol, stable APs (Fig. 9, black
squares) are correlated with significant delays in TTRP. In
this particular case, NCX transitions from reverse to forward
mode during the repolarization phase of the AP (Fig. S16)
and thereby compromises the development of EADs by pre-
venting ICaL reactivation. Taken together, we consider that
if the timing of NCX reversal occurs during the AP plateau,
inward INCX may facilitate EADs by maintaining the AP
FIGURE 8 (A) Simulated EADs in the presence

of oxidative stress (H2O2) at low pacing rates

(PCL R 2 s). The NCX RP is marked with

colored asterisks. (B) Box plot of the NCX RP

for all H2O2-induced EADs. To see this figure in

color, go online.
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FIGURE 9 Emergence of H2O2-induced EADs is related to a shift in the

time of NCX current reversal. The NCX RP for all EADs (asterisks) gener-

ated in the presence of ROS (PCLR 2 s), including those with interventions

such as RyR inhibition, lies within a narrow voltage range. Squares repre-

sent stable APs simulated in the presence of ROS either at a fast pacing rate

(e.g., PCL % 1 s) or at a slower pacing rate (e.g., PCL ¼ 2 s). Note that at

PCL ¼ 2 s, both stable APs (green squares) and EADs (green asterisks)

occur in the model output. For a PCL of 4 s, only four stable APs out of

50 simulated APs are predicted. Stable APs as a result of NCX inhibition

at PCL¼ 2 s and PCL ¼ 6 s are shown by green and blue triangles, respec-

tively. To see this figure in color, go online.
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plateau phase in a range of voltages that allow for ICaL
reactivation.
CaMKII-INaL positive feedback loop in the
presence of H2O2

Accumulating evidence shows that the activities of CaMKII
and INaL are interrelated. It is well known that overexpres-
sion of CaMKII in ventricular cardiomyocytes enhances
INaL (12,32,38). Further studies have shown that such an in-
crease in INaL is sufficient to activate CaMKII (and enhance
target phosphorylation) via elevation of [Ca2þ]i mediated by
Biophysical Journal 109(4) 838–849
reverse-mode NCX activity (39). These findings suggested
the presence of a positive feedback loop in which
CaMKII-dependent increases of INaL, and the resulting in-
crease of [Naþ]i, alters Ca2þ homeostasis and leads to
further CaMKII activation. Along these lines, the positive
feedback loop from Naþ to Ca2þ to CaMKII was tested in
the modeling study of Morotti et al. (40), who investigated
the arrhythmogenic role of an increase in [Naþ]i at fast pac-
ing rates similar to those reported in failing mouse ventric-
ular myocytes. Upon this increase in [Naþ]i, the model of
Morotti et al. (40) predicts Ca2þ overload and enhancement
of CaMKII activity, which in turn increases RyR phosphor-
ylation and spontaneous Ca2þ release events, leading to
electrophysiological instability. Using our model, we focus
on analyzing the function of the CaMKII-INaL positive feed-
back pathway at slow pacing rates, i.e., examining whether
an increase in INaL similar to that reported in oxidative stress
(200 mM H2O2) in the presence of a basal level of ICaL
facilitation can shift the NCX RP toward the EAD voltage
range and thereby sufficiently promote EADs. To rule out
the possibility that perturbed Naþ fluxes underlie changes
in the NCX RP, simulations are performed with [Naþ]i
clamped to 12 mM, similar to the level observed experimen-
tally under ROS (8). Notably, under this condition, where
only oxidation-dependent ICaL facilitation is blocked but
INaL is allowed to increase during H2O2 (referred to as
[H2O2 (INaL) þ WT (ICaL)]), the model predicted no
EADs at both intermediate (PCL ¼ 2 s) and long pacing
rates (PCL ¼ 6 s) (Fig. 10, left). However, if both ICaL
and INaL are allowed to increase as a result of ROS-mediated
CaMKII activation, EADs do occur (Fig. 10, right). Thus,
these results indicate that ROS-mediated enhancement of
both ICaL and INaL is required for the genesis of these
EADs. The increase in these inward currents is likely to pro-
long the APD and form a conditioning phase that facilitates
the synergy between INCX and ICaL. Our simulations demon-
strate that the occurrence of H2O2-induced EADs can be
related to the NCX RP (Fig. 9). It is therefore likely that
FIGURE 10 (Left) CaMKII-INaL positive feed-

back during oxidative stress at an intermediate

(PCL ¼ 2 s) and a slow pacing rate (PCL ¼ 6 s)

with [Naþ]i ¼ 12 mM. Simulated APs from a 2 s

and 6 s PCL protocol in the presence of 200 mM

H2O2 and under the assumption that oxidized

CaMKII increases INaL, but not ICaL. Note that we

assume that basal (or wild-type) CaMKII-mediated

phosphorylation of LCCs is intact. This condition

is referred to as H2O2 (INaL) þ WT (ICaL). For

simplicity, the effect of CaMKII on RyRs is not

considered, because it is not necessary for the

genesis of EADs. (Right) Simulated APs from

both PCLs in the presence of ROS, with [Naþ]i ¼
12 mM, and assuming that oxidized CaMKII

increases both INaL and ICaL, referred to as H2O2

(INaL þ ICaL). To see this figure in color, go online.
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NCX plays a key role in this synergism by maintaining the
AP plateau phase in a range of voltages that allow for ICaL
reactivation.
DISCUSSION

To clarify the role of oxidative CaMKII activation in the
genesis of H2O2-induced EADs at different PCLs, a stochas-
tic CaMKII model was developed that includes both the
phosphorylation-dependent and the newly identified oxida-
tion-dependent activation pathways. This model reproduces
a wide range of experimental data describing the CaMKII-
Ca2þ/CaM interaction, measured autophosphorylation and
oxidation rates, and the frequency dependence of CaMKII
activation. After incorporation into our local-control cardiac
myocyte model (17), the experimentally measured rate
dependence of H2O2-induced EADs was reproduced as an
emergent behavior of the model. We then used the model
to study the impact of CaMKII-dependent modulation of
LCCs, RyRs, and Naþ channels on rate dependence of
EADs caused by H2O2. Our simulation results show that
the underlying mechanism involves oxidative CaMKII acti-
vation of both ICaL and INaL, since activation of either cur-
rent in isolation is insufficient to generate H2O2-induced
EADs. The increase in these currents alters membrane po-
tential as well as Ca2þ/Naþ homeostasis, and consequently,
NCX RP and INCX are altered as well. Further modeling re-
sults implicate this indirect activation of NCX as another
key player in EAD generation. Of more importance, the
emergence of slow-rate dependence of H2O2-induced
EADs was correlated with a shift in the NCX TTRP from
the repolarization phase toward the AP plateau. TTRP
consistently occurred well before the EAD upstroke, and
its shift to an earlier time within the AP clearly distinguished
the occurrence of EADs from stable APs. The shift in TTRP
was accompanied by a change in NCX RP that placed it
within a narrow voltage range from �10 mV to 0 mV;
referred to here as the EAD voltage range. Interestingly, at
faster pacing rates (e.g., PCL ¼ 1 s), stable APs were corre-
lated with significant delays in TTRP. In this particular case,
NCX transitioned from reverse to forward mode during the
repolarization phase of the AP. On the other hand, in the
case where APs were stable as a result of NCX inhibition,
the normalized timing (TTRP/APD) of the NCX RP did
not significantly vary; rather, it was the RP itself that was
shifted beyond the EAD voltage range toward more depolar-
ized potentials. Based on these findings, we conclude that
once NCX reverses during the AP plateau, inward INCX
may facilitate EADs by maintaining the AP plateau phase
in a range of voltages that allows for ICaL reactivation.

The model reveals that oxidative activation of both ICaL
and INaL lengthens the APD and forms a conditioning phase
that facilitates the synergy between INCX and ICaL reactiva-
tion. Upon INCX inhibition, APs became stable and the
model predicted an increase in INaL, as measured at the
time of NCX reversal. Despite this counterintuitive increase,
ICaL significantly decreased due to shifts of LCC gating to-
ward more inactivation via CDI and/or VDI. As a result,
more LCCs became inactive during the plateau phase of
the AP, and this in turn prevented LCC reactivation and
reduced arrhythmia propensity. Further analysis was also
performed for another intervention, that of RyR inhibition.
The model predicted that upon RyR inhibition, EADs would
occur within every AP, yielding longer APDs, as seen exper-
imentally. Surprisingly, in this condition where APD is pro-
longed, INaL amplitude was significantly decreased. Despite
this decrease, Itot estimated at the time of NCX reversal did
not vary significantly. It was, however, ICaL that increased
during the plateau after RyR block. This particular increase
was attributed to a higher fraction of available LCCs at
the time of NCX reversal (early in the AP plateau) due
to reduced inactivation. In this context, the appearance
of EADs reflects integrative effects of many underlying
changes whose functional consequences are difficult to
deduce using intuition alone. Using the time at which the
membrane potential crosses the NCX RP as a critical event
in the AP and an early predictor of EADs, this study pro-
vides quantitative insights into these synergistic effects
that would otherwise be difficult to experimentally dissect.
Limitations

Although our in silico H2O2 model predicts an increase in
SR Ca2þ leak (Fig. 4 B, JRyR) from 9.2 mM/s (control) to
64.3 mM/s (200 mM H2O2), this is ~15-fold less than that
measured experimentally at a PCL of 2 s (8). Wagner
et al. (8), however, provide additional evidence indicating
that their observed increase in Ca2þ leak does not require
the presence of CaMKII, suggesting an important role for
CaMKII-independent mechanisms of ROS-mediated alter-
ation of cardiac ECC as well. For instance, ROS can directly
oxidize RyRs, leading to increased Ca2þ spark frequency
(41). In addition to this, the model is unable to replicate
H2O2-induced Naþ and Ca2þ overload and the subsequent
occurrence of DADs. Wagner et al. (8) proposed that the in-
crease in [Naþ]i accompanying oxidative stress precedes the
major rise in [Ca2þ]i based on their observation that a reduc-
tion of [Naþ]i slowed the rise in [Ca2þ]i. This elevation of
[Naþ]i was further shown to mediate shifts in NCX activity
(reverse mode) and cause substantial Ca2þ entry, which may
be sufficient to increase INCX (forward mode) and may
thereby underlie membrane depolarization generating a
DAD. Although DADs are more commonly seen at fast
heart rates, H2O2-induced DADs have been observed in ex-
periments only occasionally after prolonged treatment with
H2O2 (28). Typically, DADs occur after repolarization of the
membrane and are triggered by synchronized large-scale
events of Ca2þ release from the SR propagated as a wave
(24,42–44). The model presented here, however, lacks the
necessary mechanisms (e.g., no subsarcolemmal or other
Biophysical Journal 109(4) 838–849
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spatial tracking of [Ca2þ] gradients) essential for the genesis
of these waves and, hence, DADs. This limitation of the
model should have little to no impact on the results of this
study, because the model was developed to understand the
underlying mechanism of H2O2-induced EADs as seen in
experiments during acute exposure to H2O2, a condition
where DADs are not typically observed. Although H2O2-
induced [Naþ]i overload was experimentally shown by
Wagner et al. (8) to be facilitated by a CaMKII-dependent
increase in INaL, this was not completely abolished upon
CaMKII inhibition. Thus, other mechanisms (e.g., ROS-
mediated impairment of Naþ/Kþ ATPase (NKA) function
(45)) may also be involved in H2O2-induced [Naþ]i over-
load. To test this hypothesis, we repeated the simulations
of increased H2O2 at slow pacing in the presence and
absence of NKA inhibition. From the modeling standpoint,
the gain of [Naþ]i is modestly increased (by ~2 mM) in the
absence of NKA inhibition. However, upon inhibition of
NKA (~50% reduction), the model accounts for an overall
6 mM gain in [Naþ]i (Fig. S17) demonstrated by the
experiments of Wagner et al. (8). Taken together, the ar-
rhythmogenic effects of ROS are clearly multifactorial.
These additional ROS-mediated effects require further ex-
amination in future studies.

A simplifying feature of the cardiac Naþ channel model
is that it does not include dynamic CaMKII-mediated phos-
phorylation of Naþ channels. Modeling such phosphoryla-
tion would require data on the underlying phoshorylation
dynamics (e.g., phosphorylation and dephosphorylation
rates), which are not yet available. To simulate the
CaMKII-dependent effect of H2O2 on INaL, the value of
the transition rate between background and bursting modes
of INa (referred to as a8 in the model of Grandi et al. (26))
was increased so that the model reproduced experimental
data for the amplitude of INaL (8). Since these data ac-
counted only for the amplitude of INaL, a8 was the only
parameter modified within the INa model. Other previously
observed CaMKII effects on INa (e.g., shifted steady-state
inactivation, recovery from inactivation) were not measured
in this H2O2 experimental protocol. Hence, the kinetic
parameters of the INa model that underlie these processes
were not modified in the presence of H2O2. To assess the
impact of this assumption on H2O2-induced EADs, we
modified the H2O2 exposure model to incorporate a shift
in steady-state inactivation and a slowing of recovery
from inactivation, as seen with CaMKII overexpression.
Relevant INa model parameters were increased to the values
reported previously by Grandi et al. (26) for CaMKII over-
expression. At a PCL of 6 s, H2O2 simulations were
repeated with this model (Fig. S18) and the results were
essentially the same as those from our original model, in
which CaMKII-mediated effects on INa are limited to a
functional change only in the INaL (Fig. 2 D). Based on
this finding, in the simulations performed in this study, we
limited the impact of H2O2-induced CaMKII activity on
Biophysical Journal 109(4) 838–849
INa to a change only in INaL, not in other kinetic properties
of the current.

Moreover, the model does not incorporate CaMKII-
dependent alterations of the transient outward Kþ current
(Ito), which tends to increase Ito and shorten APD in rabbit
ventricular myocytes (46). Since APD of rabbit cardiac
myocytes is prolonged during oxidative stress (8,9), these
CaMKII effects would play a less important role in H2O2-
induced EADs. On the other hand, ROS can directly
decrease outward currents such as Ito (47) and hence may
be responsible for the observed H2O2-induced APD prolon-
gation. We have previously shown (48) that the relationship
between APD and Ito density is complex, suggesting strong
coupling between ICaL and Ito. Future work will investigate
how this coupling is modulated at low pacing rates, with
emphasis on its potential influence on APD prolongation
caused by H2O2.
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Model Description  

Changes to the Ca2+/CaM Model (dyad) 

In the ordinary differential equation (ODE) model of Chiba et al. (1), the binding reaction 
between Ca2+ and CaM is computed deterministically using the sequential four-step Ca2+ binding 
model of Holmes et al. (2). This model includes cooperative Ca2+ binding within each CaM lobe 
(C-terminal and N-terminal lobe) and assumes that the C-terminal Ca2+ binding sites are 
occupied before the N-terminal sites. CaM binds two Ca2+ ions to its C-terminal lobe with a high 
affinity (Kd of ~1-2 µM) and two Ca2+ ions to its N-terminal lobe with a low affinity (Kd of 
~2.6-13 µM). It is therefore expected that CaM will bind four Ca2+ ions in the presence of high 
Ca2+ concentration ([Ca2+]) (e.g. at sites of Ca2+ release where [Ca2+]dyad is relatively high) 
forming the fully Ca2+-bound CaM (CaMCa4). Predicated upon this, we simplified the four-step 
Ca2+/CaM binding scheme to a one-step process (Eq. S1) by assuming that all reactions in the 
dyadic cleft rapidly reach equilibrium.  
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(S1) 

All kinetic rate constants (e.g. k-1, k-2, k-3, k-4 …k1, k2, k3, k4) have values in agreement with 
those reported previously (1) as shown in Tables S1 and S2. As shown in Fig. S3, for high 
[Ca2+]dyad (e.g. > 25 µM) consistent simulation results for [CaMCa4] are obtained both with the 
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four-step Ca2+ binding scheme of Chiba et al. (1) and the proposed simplified Ca2+/CaM scheme. 
For lower [Ca2+] (e.g. cytosolic [Ca2+]i), the equilibrium approximation is no longer valid and 
therefore we employed the four-step Ca2+/CaM binding scheme of Chiba et al. (1) without any 
further modification.  

Changes to the model of Hashambhoy et al. (3)  

The following changes were made to the model of Hashambhoy et al. (3):  

1. The CaMKII activation model of Hashambhoy et al. (3) is replaced by our new CaMKII 
model that includes both the phosphorylation-dependent activation pathway and the 
newly identified oxidation-dependent activation pathway. The activity of a single 
CaMKII holoenzyme is defined as in the original model of Hashambhoy et al. (4).  

2. In order to obtain physiologically relevant ICaL facilitation (Fig. S4A), the LCC 
dephosphorylation rate is reduced by a factor of 2. This parameter (new value 0.6 units 
PP2A x (units CaMKII)-1) controls the peak ICaL simulated in the ICaL facilitation (voltage 
clamp) protocol as illustrated in Fig. S4A. This value is similar to that originally 
published by Hashambhoy et al (4).  

3. The mode 2 mean open time is reduced from 10 ms to 6 ms which lies within the 
experimental range of 5 to 10 ms (5, 6). This reduction is achieved by scaling the mode 2 
rate of LCC closing by 1.67 as compared to that of Hashambhoy et al. (3).With this new 
value, the model has a 12-fold reduction in the LCC closing rate for mode 2 versus mode 
1. This adjustment was necessary to obtain stable action potentials.  

4. Following incorporation of the proposed CaMKII activation model into our canine 
cardiac myocyte model (3), the conductance of IKr (GKr) is increased by 70%. This 
scaling was derived from recent experimental data of Szabo et al. (7). These data indicate 
a far greater density of IKr (e.g. 0.8 pA/pF) at depolarized test potentials (e.g. + 40 mV) 
than those measured in earlier studies. As a result of this change, the model simulates a 
peak IKr density = 0.5 pA/pF at 1 s PCL pacing which is consistent with the reported 
experimental value of 0.55 pA/pF (8).  

5. Minor adjustments were made to the SR Ca2+ pump cycling rate (15% increase) and the 
density of INCX (12% increase) to ensure normal Ca2+ transient properties (Δ[Ca2+]i ~ 0.8 
µM) at 1 s PCL pacing.  

6. The rate of RyR dephophosphorylation (kRyRDephosph) is constrained such that during 2 s 
PCL pacing, the RyR phosphorylation levels match those measured experimentally (9). 
By increasing kRyRDephosph from its original value of 0.000952 ms-1 to 0.0019 ms-1, the 
model simulates 8% RyR phosphorylation as reported in the experiments.  

7. The parameter that represents Ca2+ sensitivity in the opening rate of phosphorylated RyRs 
(Cashift) is increased from 1.3 to 1.35. This change is validated by simulating the Ca2+ 
spark frequency (CaSpF) protocols of Guo et al. (10) in the absence of PLB (see 
Methods section). Under this condition, the model yields a 99% increase in CaSpF which 
is in agreement with the reported experimental value of 98%.  
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8. All transition rates of the Na+ channel Markov model are replaced with those previously 
published by Grandi et al. (11) with the exception of the control (WT) value of the rate 
α8, which is reduced from 4.7 x 10-7 ms-1 to 3.2 x 10-7 ms-1. Using this new rate, the 
model simulates a physiologically accurate late INa (INaL) under the voltage clamp 
protocol of Wagner et al. (12) (simulated value is 0.13% of peak INa consistent with the 
experimental range 0.23 ± 0.1%).  

Modeling the effects of H2O2 on INaL  
A key limitation of the cardiac Na+ channel model is that dynamic CaMKII-mediated 
phosphorylation of the protein is not modeled. Modeling this reaction would require kinetic data 
for reactions rates which are not yet available. In order to simulate the CaMKII dependent effect 
of H2O2 on INaL, the rate a8 is increased such that the model reproduces the relevant 
experimental data (13). To elicit INaL, myocytes were voltage-clamped from a holding potential 
of -120 mV to a test potential of -30 mV for 1000-ms under both control and oxidative stress 
conditions (200 µM H2O2). By increasing a8 from 3.2 x 10-7 (control or WT condition) to 5.4 x 
10-7 ms-1 (oxidative stress condition) the total Na+ charge transported (integral of INaL) between 
50 and 500 ms after onset of the test pulse before and during H2O2 exposure is -163.89 pC/µF 
and -271.83 pC/µF, respectively. These values lie in general agreement with the reported 
experimental values: -203.5 ± 21 (WT) and -380.1 ± 101.1 pC/µF (200 µM H2O2) (13).  

Modeling the effects of H2O2 on CaMKII-PP1  
Using both experimental in vivo and in vitro ischemia models, O’Loghlen et al. (14) 
demonstrated that protein phosphatase 1 (PP1) activity is inhibited upon H2O2-treatment which 
results in increased target phoshorylation levels; however, the mechanisms underlying this 
observation remain unknown. To explore the potential role of oxidative stress on CaMKII 
dephosphorylation rate due to PP1 inhibition, we have introduced an inhibitory constant (KmROS) 
in the catalytic rate of PP1 (kcat_PP1) defining a new parameter (kcat_PP1

new) as follows:  
cat _ PP1new

cat _ PP1
2 2

mROS

k
k [H O ]1

K

=
+

 

For low values of KmROS (e.g. 0.1 mM) and increased oxidative stress ([H2O2] = 1 mM) (Fig. 
S5), the model predicts significant CaMKII autophosphorylation which is consistent with the 
experimental evidence from Song et al. (15). Without this inhibitory constant, the model is 
unable to reproduce the experimentally observed degree of CaMKII autophosphorylation.  

Equation Rates and Parameters  
Most of the rates of the stochastic CaMKII model are identical to those published previously by 
Chiba et al. (1) with the exception of the phosphorylation rate (referred to as B1 in Fig. 1A) and 
those that have been newly introduced in this model (e.g. rates C2, C3 involved in the oxidation 
pathway). More specifically, the phosphorylation rate B1 is described by an expression similar to 
that used by Hashambhoy et al. (4), based on the assumption that a CaMKII monomer can be 
phosphorylated by an adjacent monomer from either side: 
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HoloAct
cat B Monomer(L) Monomer(R )2 2

HoloAct T

CaMKIIB1 k c c c
CaMKII k

= ⋅ ⋅ ⋅ +
+

 

In the above equation, cB represents the activity coefficient associated with the active Ca2+/CaM-
bound conformational state (state B in Fig. 1) and CaMKIIHoloAct represents the total activity of 
CaMKII holoenzyme in the dyad. The term Monomer(L) Monomer(R )c c+  describes the activities of 
neighboring subunits in the holoenzyme and the incorporation of the Hill-type term is essential 
as previously discussed in (4). Specifically, in the absence of this nonlinear term, the model 
predicts very fast dynamics in CaMKII autophosphorylation upon Ca2+/CaM stimulation which 
are not in agreement with the experiments of De Koninck et al. (16). This indicates that there 
may be additional factors that influence the rate of CaMKII autophosphorylation within the 
holoenzyme. Hence, the empirical Hill-type function as discussed here may account for such 
cooperative and nonlinear interactions.  

The oxidation dependent rate, kox(mM-1 ms-1), is estimated using the dose-response activation of 
CaMKII by H2O2 as measured by Erickson et al. (17). Additionally, the reductase rate mediated 
by methionine sulfoxide reductase A (MsrA), kcat_MsrA (ms-1), is constrained using the oxidation 
dependent ICaL facilitation data of Song et al. (15). All parameter values used in simulations are 
shown in Tables S1 and S2. 
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Figure S1 

A 

 

B 

 

C 

 

D 

 

Figure S1. Stochastic simulations (STOCH, blue circles) using the proposed model compared to the deterministic simulations 
(ODE, solid lines) using the model of Chiba et al. (1) (A, B) Steady state activation of CaMKII by Ca2+/CaM. These simulation 
data were generated under the following in vitro conditions: (A) 500 µM Ca2+ in the absence of ATP was incubated with different 
[CaM] (1-10,000 nM) for 1 min. The fraction of CaMKII subunits in the Ca2+/CaM bound state (WB), referred to as state B in 
Fig. 1A, is plotted against [CaM]; (B) In the absence of ATP and in the presence of different levels of [Ca2+] (0.1-100 µM), 
CaMKII was incubated with 5 µM CaM for 1 min. (C, D) Relationship between the autophosphorylated level of CaMKIIα and 
[Ca2+]. Experimental conditions used for simulations in panel C (absence of PP1):  in the presence of 2mM ATP and different 
[Ca2+] (0.1-100 µM), CaMKII was incubated with 50 µM CaM for 5 min at 0 oC. The percentage of CaMKII 
autophosphorylation is plotted against [Ca2+]. Experimental conditions used for simulations in panel D (presence of PP1): in the 
presence of 2 mM ATP and different [Ca2+], CaMKII and 1.25 µM PP1 were incubated with 5 µM CaM at 0 oC. The steady-state 
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value of the CaMKII autophosphorylation percentage (%) is plotted against [Ca2+]. All stochastic simulations are averaged over 
50 random iterations. 

Figure S2 

A 

 

B 

 

C 

 

D 

 

Figure S2. Relationship between [CaM] and the level of autophosphorylated CaMKIIα (A) and CaMKIIδ (B). Simulation results 
(open circles) using the proposed stochastic model of CaMKII activation are compared to the deterministic simulations (solid 
lines) using the ODE model of Chiba et al. (1). Kinetic parameters of the stochastic model are appropriately adjusted to account 
for the molecular difference between the two isoforms (i.e. cardiac δ isoform has higher affinity for CaM compared to neuronal α 
isoform). (C) Frequency dependent activation of CaMKIIα. Experimental conditions used for simulations are taken from (18): 
The phosphorylation mixture (500 µM Ca2+, 100 nM CaM and 0.25 mM ATP) was applied to CaMKIIα for 200 ms at different 
frequencies (open black circles, open blue circles, and open red circles represent 1, 2.5 and 4 Hz, respectively). Solid lines 
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represent simulation results using the CaMKII ODE model of Chiba et al. (1). (D) Dependence of CaMKIIδ activity on [CaM]. 
Experimental conditions used for simulations: CaMKIIδ was incubated with saturating Ca2+ (0.5 mM) and varying [CaM] for 1 
min at 30 oC. Stochastic simulations (red circles) are compared to experimental data from (19).   

Figure S3 

A 

 

B 

 

 
Figure S3. (A) Time course of the Ca2+ transient ([Ca2+]) using the model of Chiba et al. (1) at a stimulus frequency of 1 Hz. (B) 
Simulation results for fully Ca2+-bound CaM [CaMCa4] obtained both with the four-step Ca2+ binding scheme of Chiba et al. (1) 
(solid lines) and the proposed simplified Ca2+/CaM scheme (dashed lines). 
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Figure S4 
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Figure S4. Ca2+-dependent ICaL facilitation mediated by CaMKII. (A) Normalized ICaL amplitude during a 200-ms test pulse to 0 
mV from -80 mV after a pre-pulse of -40 mV for 100 ms (1 Hz pacing stimulation). Two consecutive pulses were delivered 
consistent with the protocol employed by Hashambhoy et al. (4) and 20 random trials were performed for each experimental 
simulation (n = 20). Results in the presence (blue line) and absence (green line) of CaMKII are presented. (B) Simulated 
averaged percent of total LCCs that are open (black solid line) and percent of mode 2 LCCs that are open (blue line) under 1 Hz 
pacing protocol. (C) Average ICaL (taken over 5th to 20th pulse) in the 1 Hz pacing protocol in the presence (blue solid line) and 
absence (green solid line) of CaMKII. Note the substantial slowing of macroscopic ICaL inactivation due to shifts in modal 
distribution. (D) Simulated double pulse protocol in the presence and absence of CaMKII as employed by Hashambhoy et al. (4). 
ICaL was measured as the difference between peak current and the residual current at the end of the pulse and normalized to peak 
ICaL measured after a 10 s inter-pulse interval. 
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Figure S5 

 

A 

  

B  

 

Figure S5. (A) Effects of H2O2 on ICaL. ICaL was simulated as recorded by Song et al. (15) by applying depolarizing voltage step 
pulses once every minute from a holding potential of -70 mV. Prior to a depolarization to 0 mV for 300 ms to activate ICaL, Na+ 
currents were inactivated by a pre-pulse to -40 mV for 200 ms. Before the application of H2O2, the model predicts peak ICaL of 
3.75 pA/pF (black line) with a half inactivation time (τ1/2) of ~30 ms. The application of 1 mM H2O2 increased both the peak 
amplitude of ICaL and the average τ1/2 by ~ 24% (green lines). In the case where H2O2 is assumed to inhibit PP1 activity (KmROS 
= 0.1 mM), the model predicts further increase in the peak amplitude of ICaL (~35%) (blue line) compared to ~24% increase 
(green line) which is simulated in the absence of H2O2-mediated PP1 inhibition. In both cases, the simulated increase in ICaL lies 
within the experimental range (26.0 ± 1.3%, 34.3 ± 3.9%) measured by Song et al. (15) during 5 min (acute) H2O2 exposure. (B) 
Effects of H2O2 on CaMKII autophosphorylation. Levels of phosphorylated CaMKII were simulated as measured by Song et al. 
(20) during exposure of resting myocytes to 1 mM H2O2 (5 min). In the case where H2O2 targets only CaMKII with no effect on 
PP1, the model predicts negligible CaMKII autophosphorylation (< 4 %). When these simulations are repeated in the presence of 
H2O2-mediated PP1 inhibition, the fraction of CaMKII subunits undergoing autophosphorylation (blue line) increases 
significantly. 
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Figure S6 

 

Figure S6. Predicted local dynamics in beating cardiac myocytes at 2Hz AP pacing: (A) Ca2+ transient ([Ca2+]i), (B) fully Ca2+-
bound CaM [CaMCa4], (C) total (cytosolic) CaMKII activity and (D) PLB phosphorylation (%). 
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Figure S7  
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Figure S7. APD histograms under oxidative stress conditions and at various pacing frequencies (PCL ≥ 1 s). Open bars represent 
stable APs while filled bars represent EADs. AP pacing protocol simulations are performed at (A) 1 s PCL; (B) 2 s PCL; (C) 4 s 
PCL and (D) 6 s PCL.  
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Figure S8 

A 

 

B 

 

C 

 

D 

 

Figure S8. (A) Simulated CaMKII autophosphorylation at 2 Hz AP pacing protocol. (B) Steady-state APs simulated for PCLs of 
500 (2Hz, blue), 1000 (1Hz, black) and 2000 (0.5Hz, green) ms. APD90 increases with PCL consistent with the experimental data 
of Li et al. (21) (C, D) Simulated rate-dependence of dyadic CaMKII activity and INaL under control conditions. 
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Figure S9 
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Figure S9. Simulated APs from both a 2 s and 6 s PCL pacing protocol in the presence of 200 µM H2O2 and under the 
assumption that CaMKII targets (A) only RyRs; (B) only Na+ channels and RyRs; (C) only LCCs and RyRs; or (D) LCCs, RyRs 
and Na+ channels. 
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Figure S10 
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Figure S10. (A) Effects of oxidative stress (ROS, PCL = 6 s) on INCX before (ROS: black line) and after NCX inhibition (NCX 
block: blue line). (B) Simulated [Ca2+]i at a PCL of 6 s under the same conditions. (C) Box plots of fraction of LCCs under VDI 
before and after NCX block. The latter is estimated at the time of NCX reversal. (D) Time course of dyadic [Ca2+] before and 
after NCX block. (E) Box plot of Itot as measured at the time of NCX reversal before and after NCX block.  
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Figure S11 

PCL = 2 s 
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Figure S11. Box plots of (A) APD, (B) TTRP, (C) normalized TTRP (TTRP/APD) and (D) NCX RP before (ROS) and after 
NCX block during a 2 s PCL pacing protocol.  
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Figure S12 

 

Figure S12. Simulated APs from a 6 s PCL pacing protocol under the presence of oxidative stress (200 µM H2O2) before (solid 
line) and after NCX block (dashed line). Note that NCX is blocked at the moment it reverses to forward mode in the presence of 
H2O2 (blue asterisk) and maintained for only 200 ms.  
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Figure S13 
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Figure S13. (A) Dynamics of SR Ca2+ release flux (JRyR) before and after RyR block. As expected, RyR inhibition significantly 
decreases JRyR by ~ 80%. (B) Box plot of fraction of LCCs that are not undergoing VDI – estimated at the time of NCX reversal 
– under the same conditions  (C) Box plot of Itot  as measured at the time of NCX reversal before and after RyR inhibition.  
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Figure S14 

A [Na+]i = 12 mM 

 
B  

 
C  

 
Figure S14. (A) Simulated EADs in the presence of oxidative stress (H2O2) at low pacing rates (PCL ≥ 2 s) with [Na+]i = 12 
mM. The moment that membrane potential crosses the NCX reversal potential is marked with colored asterisks. (B, C) Box plots 
of the NCX RP and normalized TTRP (TTRP/APD) for all H2O2–induced EADs with [Na+]i = 12 mM.  
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Figure S15  
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Figure S15. (A, B) Box plots of [Ca2+]i and [Na+]i as measured at the time of NCX reversal before (ROS) and after NCX block 
at a PCL of 2 s and 6 s. (C) Box plots [Ca2+]i and [Na+]i as measured at the time of NCX reversal in the presence of ROS and at 
fast pacing rates (PCL ≤ 1 s) where no EADs occur.  



20 

 

Figure S16  

 

Figure S16. Simulated stable AP in the presence of ROS at a PCL of 1 s. Note that the NCX RP is marked with an open square. 

Figure S17 

 

 

Figure S17. Effects of NKA inhibition on intracellular [Na+] in the presence of 200 µM H2O2. 
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Figure S18 

 

 

Figure S18. Simulated APs, all of which exhibit EADs for a 6 s PCL pacing protocol, under conditions of elevated oxidative 
stress (200 µM H2O2) including the full range of experimentally observed changes in INa properties as seen with CaMKII 
overexpression; including a shift in steady-state inactivation and a slowing of recovery from inactivation. Relevant INa model 
parameters (referred to as P1b5, P1b6 and P1a7 in the model of Grandi et al. (11)) were adjusted to the values reported by Grandi et 
al. (11) for CaMKII overexpression.  
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Supplemental Tables 

Table S1: Model parameters of the stochastic CaMKII activation model 

Parameter 
Value 

Reference 
α isoform δ isoform 

[CaM]dyad 0.2 mM (4) 

[PP1]dyad 0.096 mM (22) 

[CaMKII]dyad 0.120 mM (22) 

k1 2.5 mM-1 ms-1 (1) 

k-1, k-2 0.05 ms-1 (1) 

k2 88.25 mM-1 ms-1 (1) 

k3 12.5 mM-1 ms-1 (1) 

k-3, k-4 1.25 ms-1  (1) 

kasso 5.34 mM-1 ms-1 Model fit 

k_disso 4.36 x 10-4 ms-1 1.62 x 10-4 ms-1 Model fit  

k_dissoCa 4.4 x 10-3 ms-1 1.6 x 10-3 ms-1 Model fit  

k_disso2 4.36 x 10-7 ms-1 1.62 x 10-7 ms-1 Model fit  

k_dissoCa2 4.4 x 10-6 ms-1 1.62 x 10-6 ms-1 Model fit  

kcat (at 0oC) 4.17 x 10-4 ms-1 4.8 x 10-4 ms-1 Model fit  

kcat (at 30 oC) 2.4 x 10-3 ms-1 6.9 x 10-4 ms-1 Model fit* 

kT 3.3 Model fit 

kox 0.0128 mM-1 ms-1 Model fit 

kMsrA 1.0 x 10-4 ms-1 Model fit 

KmCaM
 3.0 x 10-5 mM (1) 

KmATP 19.1 x 10-3 mM (1) 

kcat_PP1 1.72 x 10-3 ms-1 (1) 

Km_PP1 11.0 x 10-3 mM (1) 
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*The value of parameter kcat is further adjusted to scale for a difference in temperature. Based on the 
Arrhenius plot of Bradshaw et al. (23), kcat at 37 oC is ~ 2-fold greater than kcat at 30 oC. Considering the 
case for δ isoform, kcat (at 37 oC) = 1.4 x 10-3 ms-1 (value used in whole-cell simulations).  

Table S2: Cytosolic CaMKIIδ ODE model parameters for whole-cell simulations. Reaction rates 
for the phosphorylation dependent pathway are identical to those of Chiba et al. (1).  

Parameter 
Value 

Reference 
δ isoform 

[CaM]cyt 50 µM (24) 

[PP1]cyt 14.3 µM (4) 

[CaMKII]cyt 3.159 nM (4) 

k1 2.5 mM-1 ms-1 (1) 

k-1, k-2 0.05 ms-1 (1) 

k2 88.25 mM-1 ms-1 (1) 

k3 12.5 mM-1 ms-1 (1) 

k-3, k-4 1.25 ms-1 (1) 

kasso 2.1 mM-1 ms-1 (1) 

k_disso 0.7 x 10-4 ms-1 (1) 

k_dissoCa 0.95 x 10-3 ms-1 (1) 

k_disso2 0.7 x 10-7 ms-1 (1) 

k_dissoCa2 0.95 x 10-6 ms-1 (1) 

kcat (at 37 oC) 2.0 x 10-4 ms-1 Adjusted1 

KmCaM 3.0 x 10-5 mM (1) 

KmATP
 19.1 x 10-3 mM (1) 

kcat_PP1 1.72 x 10-3 ms-1 (1) 

Km_PP1 11.0 x 10-3 mM (1) 
1The parameter kcat (at 37 oC) is estimated using the relevant data of Gaertner et al. (19) measured at 
30 oC and then adjusted to body temperature using the Arrhenius plot of Bradshaw et al. (23).  
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Table S3: State variable initial conditions in the presence of 200 µM H2O2  

Variable PCL = 1 s PCL = 2 s PCL = 4 s PCL = 6s 
Vm (mV) -92.896 -91.635 -92.922 -93.186 

[Ca2+]i (mM) 1.468 x 10-4 5.452x 10-4 1.468 x 10-4 7.179 x 10-5 

[Ca2+]JSR (mM) 0.743 0.620 0.754 0.777 

[Ca2+]dyad (mM) 5.486 x 10-4 1.629x 10-3 5.368E-04 2.035E-04 

[Ca]NSR (mM) 0.754 0.651 0.765 0.779 

[Na+]i (mM) 10.051 11.231 10.155 10.134 

[K+]i (mM) 131.776 131.574 131.866 131.994 

IC3 (INa) 0.052 0.046 0.053 0.055 

IC2 (INa) 4.707 x 10-4 5.151 x 10-4 4.662 x 10-4 4.419 x 10-4 

IF (INa) 2.955 x 10-5 6.085 x 10-5 1.988 x 10-5 1.459 x 10-5 

IM1 (INa) 0.229 0.505 0.150 1.363 x 10-3 

IM2 (INa) 0.024 0.135 0.022 4.824 x 10-5 

C3 (INa) 0.688 0.310 0.767 0.935 

C2 (INa) 5.706 x 10-3 2.948 x 10-3 6.346 x 10-3 7.516 x 10-3 

C1 (INa) 1.730 x 10-5 1.044 x 10-5 1.915 x 10-5 2.194 x 10-5 

O (INa) 9.301 x 10-9 8.881 x 10-9 9.650 x 10-9 9.698 x 10-9 

LC3 (INa) 1.532 x 10-4 6.621 x 10-4 1.562 x 10-4 4.433 x 10-4 

LC2 (INa) 1.270 x 10-6 6.285 x 10-6 1.292 x 10-6 3.563 x 10-6 

LC1 (INa) 3.832 x 10-9 2.193 x 10-9 3.885 x 10-9 1.039 x 10-8 

LO (INa) 0.0 0.0 0.0 0.0 

xKs (IKs) 2.339 x 10-4 2.656 x 10-3 1.779 x 10-4 1.720 x 10-4 

[LTRPNCa] 

(mM) 

0.133 0.364 0.133 0.067 

[HTRPNCa] 

(mM) 

0.986 0.995 0.985 0.960 

CO (IKv4.3) 0.957 0.957 0.957 0.957 

C1 (IKv4.3) 0.023 0.025 0.023 0.022 
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C2 (IKv4.3) 2.009 x 10-4 2.426 x 10-4 2.002 x 10-4 1.924 x 10-4 

C3 (IKv4.3) 7.927 x 10-7 1.053 x 10-6 7.881 x 10-7 7.425 x 10-7 

O (IKv4.3) 1.173 x 10-9 1.714 x 10-9 1.164 x 10-9 1.074 x 10-9 

CIO (IKv4.3) 0.015 0.015 0.015 0.015 

CI1 (IKv4.3) 4.614 x 10-3 5.102 x 10-3 4.606 x 10-3 4.514 x 10-3 

CI2 (IKv4.3) 7.095 x 10-4 8.638 x 10-4 7.069 x 10-4 6.790 x 10-4 

CI3 (IKv4.3) 5.743 x 10-5 7.698 x 10-5 5.711 x 10-5 5.376 x 10-5 

OI (IKv4.3) 8.716 x 10-7 7.995 x 10-7 6.966 x 10-7 5.469 x 10-7 

CO (IKv1.4) 0.679 0.419 0.771 0.859 

C1 (IKv1.4) 0.083 0.057 0.094 0.102 

C2 (IKv1.4) 3.798 x 10-3 2.957 x 10-3 4.295 x 10-3 4.557 x 10-3 

C3 (IKv1.4) 7.733 x 10-5 6.769 x 10-5 8.724 x 10-5 9.034 x 10-5 

O (IKv1.4) 5.948 x 10-7 5.991 x 10-7 6.666 x 10-7 6.716 x 10-7 

CIO (IKv1.4) 0.215 0.470 0.120 0.031 

CI1 (IKv1.4) 0.012 0.029 6.523 x 10-3 1.665 x 10-3 

CI2 (IKv1.4) 4.632 x 10-3 0.013 2.568 x 10-3 6.403 x 10-4 

CI3 (IKv1.4) 1.783 x 10-3 5.522 x 10-3 9.861 x 10-4 2.395 x 10-4 
OI (IKv1.4) 1.134 x 10-3 3.939 x 10-3 6.233 x 10-4 1.448 x 10-4 
†Initial values for APs are obtained at each PCL following 10 beats (steady state). We would like to clarify that the 
notion of “steady-state” for unstable APs (e.g. EADs) refers to the condition in which the SR Ca2+ cycles in a stable 
repeating pattern on a beat-to-beat basis. In the case of a 2 s PCL pacing protocol, steady state values are obtained 
following 60 beats.  

Table S4: Parameters modified to simulate the block of a current or channels such as RyR 

Intervention Parameter WT value Value (after block) Definition 
INaL block α8 5.4 x 10-7 ms-1 5.4 x 10-8 ms-1 (11) 

ICaL block α, β 8.0 x 10-4 ms-1 8.0 x 10-5 ms-1 (4) 

INCX block kNaCa 0.27 pA pF-1 0.27 x 10-1 pA pF-1  (24) 

JRyR block koCa 6500 mM-2 ms-1 130 mM-2 ms-1 (25) 
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