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Materials and Methods

1 Sample collection and processing

Biospecimen collection and processing of materials for nucleic acids is described in detail
in (6) . All samples analyzed here are those defined in the GTEx Pilot analysis set (see
Table S1). Excluded samples and the reasons for their exclusions are described in the
“sample attributes” file that accompanies the data released to dbGaP. Following
processing and QC, RNA samples were available from blood, from cell lines (LCL and
Fibroblast), and from PAXgene preserved and Frozen tissue samples. All samples that
met the criteria of having an RNA Integrity Number (RIN) value of 6.0 or higher and at
least 1 pg of total RNA, were included and batched for RNA sequencing. To the extent
possible, based on sample availability, batches for library construction were designed to
include a range of samples from different tissue types and spanning multiple donors, to
minimize both donor and/or tissue-specific batch effects. A set of 9 tissues was
prioritized for sequencing from as many donors as possible to increase statistical power
for eQTL analyses. The 9 tissues were: adipose (subcutaneous), tibial artery, heart (left
ventricle), lung, muscle (skeletal), tibial nerve, skin (sun exposed), thyroid, and whole
blood (Table S1). These tissues were selected based on abundance (they were routinely
sampled and received), and they generally tended to meet RNA QC criteria. For the
donors from whom brain tissue samples were available, all RNA samples that met QC
were included for sequencing, so as to sample a broader array of tissues on some donors,
along with those sampled more deeply on most donors. One control sample (K-562)
underwent library construction and sequencing with each sample batch, and a set of
samples were run in triplicate across separate sequencing runs. Unless otherwise
specified, for most of the analyses presented here, samples were combined at the tissue
level (e.g. adipose, subcutaneous was combined with adipose, visceral and is simply
denoted as “adipose”) to increase sample sizes for the less deeply sampled tissues (see
Table S1).



2 RNA sequencing, expression quantification, and quality
control

2.1 RNA Sequencing and QC

Library preparation and sequencing, as well as the data QC pipeline are described in
detail in (6). Briefly, RNA samples meeting QC criteria were sequenced using a standard
non-strand specific protocol with poly-A selection of mRNA (the Illumina Tru Seq™
protocol as implemented using a large scale automated protocol at the Broad Institute -
[llumina: TruSeq Protocol Info). Sequencing was performed on Illumina HiSeq 2000
instruments, with sequence coverage to a minimum of 50M reads (corresponding to a
minimum of 25M 76bp paired-end reads).

RNA-seq data were aligned with Tophat version v1.4.1 (24) to the UCSC human genome
release version hgl9 (Genome Reference Consortium GRCh37). Gencode version 12 (9)
was used as the transcript model reference for the alignment as well as for all gene and
isoform quantifications. Gencode annotated a total of 53,934 genes, which includes
20,110 protein coding genes, 11,790 long noncoding RNA’s (IncRNA’s), and 12,648
pseudogenes. Expression levels were produced at the gene and exon level in RPKM units
(RPKM = reads per kilobase per million mapped reads [controlling for gene length and
sequencing depth]), (25) using RNA-SeQC (8). Exon coordinates per gene were derived
from the Gencode GTF using an isoform collapsing procedure: exons labeled as
'retained intron' were excluded; overlapping intervals were merged; intervals associated
with multiple genes were discarded; and a final gene level model was produced in GTF
format.

To produce gene and exon level read count and gene level RPKM values, reads were
filtered based on the following: (1) reads must be uniquely mapped (for Tophat this
equates to mapping quality equal to 255); (2) reads must have proper pairs; (3) alignment
distance must be <=6; (4) reads must be contained 100% within exon boundaries. Reads
overlapping introns were not counted. For exon read counts, if a read overlapped multiple
exons, then a fractional value equal to the portion of the read contained within that exon
was allotted.

Several additional quality control metrics were applied to RNA-seq samples to determine
inclusion in the final GTEx consortium pilot analysis set. All samples with fewer than 10
million mapped reads were removed, and sample outliers were identified using a
correlation-based statistic, and sex incompatibility checks using the methods of (26) and
(6) for more details. For all processing replicates (the same sample sequenced twice),
only the sample with the greater number of reads was retained for inclusion in the final
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analysis set. Samples derived from the two individuals with Klinefelter’s Syndrome
(which failed the sex-specific expression check) and from one individual with multiple
tissues that were D statistic outliers were also excluded.

Transcript isoform reconstruction was performed using the Flux Capacitor (version 1.2.3,
http://flux.sammeth.net) to quantify the expression of multiple transcriptional elements.
Flux quantifications distinguished 3 transcriptional elements: (1) splice junctions (gtf-
feature “SJ”): all read-pairs compatible with the annotation are considered, and those
aligning immediately up- and downstream of an annotated intron are considered to
quantify the corresponding splice junction; (2) introns (gtf-feature “intron”): all read
mappings of which one mate agrees with the reference annotation and of which the other
mate falls in a region that is not overlapping with any Gencode exon are considered to
quantify the retention of the corresponding intronic region; and (3) transcripts (gtf-

feature “transcript”). Following the deconvolution strategy described in (27), all read-
pairs that comply with the reference annotation are represented as a system of linear
equations. Based on read counts obtained by the deconvolution the RPKM measurement
is then computed (25). More details are described in (6).

2.2 Comparison of gene expression array and RNA-seq data

To enable a benchmark comparison between RNA expression as measured by gene arrays
and by RNA sequencing, the project ran the first approximately 1000 samples on both
platforms. For the gene arrays mRNA expression data was obtained using the Affymetrix
Human HT exon expression array, HuGene-1.1-ST-vl 96HTA, according to the
manufacturer’s specifications. Array preparation and scanning was performed by the
Genetics Analysis Platform at the Broad Institute. Gene-centric expression values were
obtained using updated probe set definition files (CDF files) from Brainarray (28); and
background correction was accomplished using RMA (Robust Multichip Average) (29)
and quantile normalization (30).

Following QC, there were a total of 835 RNA samples that were run on the Affymetrix
Human Gene 1.1 ST array. Expression values for these samples, for 22,704 genes, were
summarized using Bioconductor (http://www.bioconductor.org/). RNA-Seq data were
also available for 736 of these samples. In total there were 22,273 genes which could be
mapped unambiguously between the two platforms, and for which we could compare
gene expression. We examined the correlation of gene expression between the platforms
and variation in signal intensity among different expression classes. Considering all
samples together the Pearson Correlation of gene expression between the two platforms
was 0.829. Figure S3A show a correlation that is linear for moderately expressed genes,
but somewhat sigmoidal when considering the extremes. RNA-seq tends to retain
dynamic range at the high end of the expression spectrum. Conversely, the lowest

5



expressed genes tend to show very little signal, while Affymetrix intensities do show
variability at that end. Figure S3B indicates that RNA-seq exhibits the lowest amount of
variation for highly expressed genes but the greater variation for the low expressed genes.
The variation in Affymetrix signals tends to vary moderately with little impact of
expression level on signal variation. This is consistent with previous studies (31, 32).

2.3 Analysis of ischemic time effects on GTEx gene expression data

Considering that the GTEx tissue samples are acquired post-mortem, we wanted to
investigate to what extent they are representative of the same tissue samples acquired
from living tissues. Acknowledging that differences will always be observed when
comparing datasets across platforms and projects, we asked the general question of
whether expression differences observed between GTEx samples and those of other
living tissue dataset projects were comparable to, or greater than, the differences also
observed between any two of the living tissue datasets. To compare GTEx tissue
expression data (obtained from deceased donors) to the gene expression patterns from
similar samples collected from living donors, we downloaded raw expression data from
609 samples available from the Gene Expression Omnibus (GEO) and compared their
gene expression signatures to 798 GTEx samples (see Table S2). The GEO samples
spanned 35 distinct collections and 5 different Affymetrix platforms (Table S2). A total
of 8 tissue sites that overlapped with GTEx tissue sites were represented. All GEO
samples were selected to be ‘normal’ (or adjacent-normal) i.e. non-diseased samples, so
as to be as similar to GTEx samples as possible. Initial probe-set mapping, background
correction, normalization, and calculation of gene-centric expression values for GEO
samples were performed as described above. The GTEx data set was pre-processed as
follows: (1) Removed non-protein coding genes, (2) Removed genes with low expression
(RPKM<10) and low variation (Fold Change < 2 and Delta < 10) across samples, (3)
Applied ceiling to extremely high RPKM values (RPKM >10,000), (4) Rank normalized
expression values. All GEO data sets were column-rank normalized.

As a preliminary analysis we calculated the spearman correlation coefficients between
the GTEx samples and the GEO samples, matched by tissue. Choosing the same number
of GTEx and GEO samples in each tissue group, we computed a correlation matrix,
producing a value for each combination of samples from GTEx with samples from GEO.
For each tissue we recorded the median values of the correlation matrix. The median of
values for the five tissues investigated was 0.723. We then repeated the analysis
comparing results from among the different GEO data sources over five tissues. This
produced the nearly identical level of correlation of 0.718.

Given that many factors can contribute to discrepancies across platforms and projects, we
investigated whether factorization methods would be more powerful for finding the
strongest distinct biological signals in the GTEx and external data and then performing
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the comparison utilizing these factors. This was done by employing the metagene
projection methodology described by Tamayo and colleagues (12, 33). This methodology
is ideal for cross platform comparison of gene expression data sets because it compares
linear combinations of gene expression values, or metagenes, rather than individual gene
expression values.

Prior to performing the metagene projection, we used consensus non-negative matrix
factorization (NMF) to determine the optimal number of latent factors, or metagenes, to
extract from the GTEx gene expression dataset. Evaluation of the values of &k from 4-13
revealed that &=7 was the optimum number of metagenes to extract that best defined the 8
tissues in the GTEx dataset (34). The number of clusters was determined objectively by
the method, using consensus clustering and maximizing the cophenetic correlation
coefficient, which does not force a structure on the data. A support vector machine
(SVM) classifier was trained on the GTEx data set: (1) The GTEx data set was split into
train and test data sets (2) metagene class weights were derived for each tissue type for
the training data set, and (3) the tissue types of the test data set were then predicted.
Results are summarized in Figure 1C and Table S3A. To assess how well the GTEx
samples represent the gene expression patterns of samples collected from living donors,
each GEO data set was then projected into the metagene space via a pseudo inverse
projection. Similar to principal component analysis, this procedure reduces the entire
gene expression data set to k&=7 metagenes. The tissue type of each sample in the GEO
data sets was then predicted using the previously developed SVM, which was highly
accurate in predicting the tissue type of the samples collected surgically. Results are
summarized in Figure 1C and Table S3B.

3 Gene expression analysis

3.1 Expression data summary statistics

For each RNA-seq experiment, mapped read statistics were computed using an in-house
script based on the bam file. Briefly, the primary alignments were partitioned into the
following categories: exonic, intronic, exonic-intronic, intergenic and other. Mappings
were also further subdivided into contiguous mappings and split mappings. Figure S1
shows the proportion of mapped reads in the different genomic categories across all the
tissues.

We considered a gene to be detected/expressed if it had normalized expression value
greater than 0.1 RPKMs (RPKM > 0.1). The consortium chose 0.1 RPKM as a threshold
for the GTEx pilot data set (and all related analyses) because it corresponded to about 5
reads in most genes. Considering RNASeq to be a Poisson-like sampling exercise this



cutoff reduced the sampling noise drastically while remaining broadly inclusive. This
corresponds to about 88% of protein coding genes, and 71% of IncRNAs being expressed
at > 0.1 RPKM in at least one sample. In other words, ~12% of protein coding genes and
29% of IncRNAs are expressed between 0 and 0.1 RPKM across all samples. The 0.1
threshold allowed us to investigate expression of IncRNAs, which are typically expressed
at lower levels. Indeed, while 31% of IncRNAs are detected on average per sample at the
0.1 threshold, only 13% are detected at more than 1 RPKM. Thus, a substantial number
of IncRNAs are detected in the > 0.1 and < I range. Also, as noted by our comparison
with microarrays (Figure S2), at the 0.1 threshold for RNASeq data, there is still
substantial variation detected by microarrays.

The number of expressed genes across all the samples was categorized for all genes,
protein-coding according to the Gencode annotation (9). Long non-coding RNAs
(IncRNAs) were classified according to gene group described in Table S20 as in (35).

3.2 Selection of samples and tissues for analyses

As described above (Section 1) the distinctly sampled tissue sites described in Table S1
were analyzed separately in some instances, or were combined at the tissue level (e.g.
“adipose, subcutaneous” was combined with” adipose, visceral” and simply denoted as
“adipose”) dependent on the analysis being done, to increase sample sizes for the less
deeply sampled tissues. For the analyses were larger sample sizes were required we
focused on the nine tissues that were used for eQTL analysis in the main paper (6),
combining samples at the tissue level. These are denoted here simply as: adipose, artery,
heart, lung, muscle, nerve, skin, thyroid and blood and we refer to them as the 9 main
combined tissues across the manuscript. Brain is the tissue with the largest ‘combined’
sample size but due to the heterogeneity of its sub-sampled regions, and unless stated
otherwise, it was only used in analyses that specifically considered its different sub-
regions. For some analyses we have included tissues other than the primary 9 combined
tissues, in cases where these were relevant, for example including testis in the analysis of
tissue specificity of splicing given its predominant role in the earlier analysis of tissue
specificity. Overall, for differential expression analysis we considered the twenty tissues
with ten or mores samples.

3.3 Tissue Clustering and multi-dimensional scaling

We explored gene expression similarity between tissues and across samples, by
performing hierarchical clustering (HC) using different settings. RPKM values were used
in log2-transformed (log2(1+rpkm)) scale. Distance between samples being defined as
distance = 1 — correlation. Pearson was used as the correlation measure, although
Pearson and Spearman correlations showed similar results (results not shown). Average
linkage method was used for all the tested settings. All the genes from the annotation



were considered. To create a genealogy of tissues (Figure 1B), we calculated the centroid
expression by obtaining the median expression across all the samples of a given tissue.
HC was then performed as described above. Multidimensional scaling was performed to
represent the distances among samples in a parsimonious way. We used the isoMDS
function from R, with the distance being defined as for the HC analysis (36).

34 Transcriptome complexity analysis

We calculated the average contribution of each gene to the total transcriptional output of
a tissue (37), following the procedure below:
1. We calculated the average expression of each gene across all samples of the same
tissue
2. For each tissue, we sorted the average expression values in decreasing order and
divided each value by the sum of all average expression values. This measures
how much each gene contributes to the overall transcriptional load of that tissue.
3. We plotted (figure 1D) the cumulative distribution of the contribution of each
gene to the total transcriptional output.
4. Standard deviations were also divided by the sum of all mean RPKM values and
depicted as error bands.
Low complexity tissues will be those tissues in which a low number of genes contribute
to a large fraction of the transcriptional output whereas high complexity tissues will have
many genes equally contributing to the total transcriptional output. We calculated
transcriptome complexity for all genes and all tissues with more than one sample (Figure
1D). Genes are classified according to gene group described in Table S20, except for
genes encoded in the mitochondria that are treated as a separate group. The top hundred
most expressed genes in each tissue can be found in Table S4.

35 Differential gene expression across tissues and tissue specificity analysis

In this section we used the twenty tissues with at least ten or more samples. For statistical
tests across the manuscript we used a False Discovery Rate (FDR) implemented through
Benjamini-Hochberg (BH) (38) implemented in the R package multtest (39) or Q-value
estimation (40) where 1- Q-value =FDR. We used for the majority of the analysis a
threshold of 0.05. In some specific analysis we required a more stringent FDR threshold
of 0.01.

3.5.1 Pairwise differential gene expression analysis

Differential expression was performed with NOISeq (4/) and DEseq?2 (42). We used the
noisegbio function with q > 0.95 (q = 1-FDR thus FDR=0.05) as cut-off for statistical
significance and FDR=0.05 in DESeq2. For NOISeq we used as input RPKM normalized
values and for DESeq2 we used the read counts after TMM normalization (43). All
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pairwise combinations between all tissues were tested. We took a conservative approach
and defined genes differentially expressed as those found to be in common between the
two methods and passing the thresholds above (see figure S8).

3.5.2 Tissue preferential gene expression analysis

The analyses were performed in a similar manner as the differential gene expression
between tissues, but in this analysis, due to scalability issues, only the NOISeq method
was used. We used the noisegbio function with q > 0.99 (FDR=0.01) and log2 fold
change >= 4 to call tissue preferential gene expression after comparing the samples from
a given tissue to those samples that did not belong to the tissue (Figure S9 and Table S5).

3.5.3 Tissue exclusivity analysis

To find tissue exclusive genes, we calculated the phi correlation coefficient on the
contingency table generated by dividing the samples based on two conditions. The first
condition selected samples that were either expressed (RPKM > 0.1) or were not
expressed (RPKM < 0.1). We selected a threshold of 0.1 RPKM to conservatively select
tissue specific genes that had substantial expression. The second condition selected
samples coming either from the tested tissue or from all other tissues. We calculated the
phi-correlation coefficient using function phi of the R package psych (44). Phi correlation
coefficient measures association between two binary variables. We defined those genes
with phi values higher or equal than 0.95 or lower or equal than -0.95 as tissue exclusive
genes (Figure S10 and S11, and Table S6). To assess whether a threshold of expression >
0.1 to define expressed genes could affect our results; we run the same analysis using
different thresholds (Table S7).

3.6 Repeat elements analysis

3.6.1 Repeat elements expression analysis

We used the RepeatMasker annotation (http://www.repeatmasker.org/) to define repeats
and we removed those repeats overlapping coding regions (CDS in Gencode v12
annotation). We counted the number of reads overlapping each annotated repeat instance
in the 1,486 samples from the 10 tissues with highest sample size (the 9 main combined
tissues plus brain considering all samples together). We normalized read counts using
TMM normalization (43) package to correct for differences in library sizes.

To discriminate true expression from noise, we used expression profiles from those
repeats that were most likely not expressed. For each tissue, we selected those repeat
instances that had no reads mapped in at least half of the samples. Then, expression
values in the other half of the samples were used as a proxy of noise expression
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distribution. We used the 99th percentile of this expression distribution as a threshold so
that a repeat was considered expressed in a tissue if the median expression across the
samples was above the noise threshold. Using this approach, from the 5,285,549
annotated repeats, 209,541 were expressed in at least one tissue.

We ran hierarchical clustering based on average linkage criterion on the read counts of
the 209,541 repeats using the same settings as for gene expression. The clustering
recapitulated tissue classification. This clustering held when focusing on the subset of
repeats (62,539) located more than 3kbp away from a gene, suggesting that expression
likely originates from actual tissue-specific patterns as opposed to by-products of gene
expression (Fig S12A).

3.6.2 Expression correlation analysis of repeat element and nearby genes

Because some repeats may induce expression of the gene nearby by recruiting relevant
transcription factors (45), we compared expression of each repeat to its nearest gene
(upstream or downstream). We computed Pearson correlation between repeat and gene in
each tissue separately. We assessed significance by computing correlations between
randomly chosen pairs of repeat/gene. A p-value for positive (negative) correlation was
computed from the number of control pairs with higher (lower) correlation. Finally, to
correct for multiple testing we applied False Discovery Rate control using BH algorithm
(38). While no significant negative correlation was found, thousands of repeats
expression were significantly positively associated with gene expression.

Additionally, if a particular repeat is indeed affected by some regulatory processes, it is
likely to show similar expression patterns at the family level. This could be explained
because repeat from the same repeat family share extensive sequence similarity and
hence could be regulated by the same or similar factors. For each repeat family, we
computed the average of the Pearson correlation between all possible pairs of repeats
from the same family. We assessed significance by computing the average Pearson
correlation between repeat pairs selected from a group of repeats of size equal to the
studied family that had been randomly chosen. We then corrected for multiple testing
(FDR <0.05) using BH method. In total, 3966 repeats showed significant correlation
(FDR <0.05) between their expression and the gene nearby as well as significant family
co-expression (FDR <0.05) in at least one tissue. These instances are potentially
implicated in the regulatory processes controlling gene expression. Moreover, 276 of
these repeats are located upstream of the gene, far enough (3kbp) not to be confounded
by gene expression by-products (see last column of Table S8).

Multiple mapping reads could cause spurious correlations between repeats of the same
family. Moreover, we did not use mapping quality filter because we wanted to use the
maximum number of reads for the analysis. In order to test the existence of multiple
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mapping biases in our analysis, we explored the relation between expression correlation
between two repeats of the same family and their sequence similarity. If there is no
significant correlation, we can dismiss the effect of mapping bias. Figure SI3A shows an
example of a small repeat family with no clear relationship between pairwise sequence
similarities between pairs of repeats and correlated expression. Pearson correlation was
used to calculate expression correlation across samples. Sequence similarity was
calculated as the proportion of matched nucleotides when aligning both repeats sequences
(global-local alignment with gap opening and extension penalties of -10 and -4
respectively).

Then, for each repeat family, we selected the pair of repeats with the highest expression
correlation and computed their sequence similarity. We also replaced one of the paired
repeats by another repeat of similar size from the same family but with no expression
correlation and computed their sequence similarity. Figure S13B, represents the
distribution of the difference in sequence similarity between the coexpressed pair of
repeats and the non-coexpressed pair. This distribution is nicely centered in zero meaning
that, on average, two co-expressed repeats in a family are as similar as two non-
coexpressed ones. Therefore, for the majority of families, co-expression is not due to
mapping artifact. Figure S13B also shows the difference in expression correlation
between the coexpressed pair of repeats and the non-coexpressed pair.

3.6.3 Estimation of repeat element effect on IncRNA expression

The set of Gencode 19 IncRNA transcripts (35) were intersected with RepeatMasker
repeats using a custom script based on Bedtools IntersectBed (46). Those transcripts
whose annotated transcription start site fell within an annotated repeat were defined to be
repeat-promoted and selected for further study. Analysis was carried out at the level of
Repeat Class. For each tissue, the mean expression of the repeat-promoted IncRNAs was
computed. The top 500 most expressed IncRNAs were selected and classified according
to Repeat Class. Then, a contingency table crossing tissue and Repeat Class was
obtained, where cells had the observed frequencies of each Repeat Class at each tissue.
To investigate the relationship between repeat promoter and tissue expression we carried
out Correspondence Analysis. This technique can represent a contingency table as a map
of points representing the rows and columns of the table where those variables that are
correlated will appear closer in the plot (Figure S12C). The ca library from R package
(47) was used to carry out the Correspondance Analysis.
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4 Analysis of the contribution of tissue, individual, sex,
ethnicity and age to gene expression variation

4.1 Estimation of tissue and individual contribution to gene expression variation

To assess the contribution of tissue and individual to gene expression variation, we used a
linear mixed model (LMM). Gene expression was modeled as a function of tissue and
individual (considered as random factors). The LMM was implemented in the R package
Ime4 (48). Genes not expressed (RPKM > 0) in any of the samples were excluded from
the analysis (overall 31,059 genes, 11,508 IncRNAs and 19,550 protein coding, were
analyzed). We used log2 (RPKMs) to normalize the data and pseudocounts to deal with
zero expression values. To obtain the variance components, we divided the restricted
maximum likelihood (REML) estimators for the random effects of tissue, individual and
residual variance by their sum (Table S9).

To compare protein coding genes and IncRNAs with similar expression levels, we
computed the median of the log2 expression across samples (1641 samples) for each
gene. We visually examined the scatter plot of the contribution to expression variation of
tissue plus individual versus median expression. We observed that there was a correlation
between them and that this correlation reached a plateau at around median expression
greater than 2.5 RPKMs. We then selected those IncRNAs and protein coding genes with
higher median expression than 2.5 and calculated the average contribution of individual
and tissue to gene expression variation.

4.2 Sex, ethnicity and age differential gene expression analysis

We investigated the effect of sex, ethnicity and age in gene expression extending the
LMM model above to incorporate sex, ethnicity and age as covariates together with
individual and tissue. Available methods such as DESeq (49) or NOISeq (4/) can not
analyze mixed models. We considered individuals as block random effects (note that
individuals are not necessarily the same for all tissues; some individuals may provide a
subset of tissues). We used the function Ime of the nlme (50) package of R. We can write
the model as

Vi =L +g; +b, +e,

i=1,...,T; T = #tissues

j=1,...,L; L= #levels of the factor

k=1,...I; I= #individuals

Where y,, represents the jkth observation (log gene expression) on the ith tissue jth

level of the factor and kth individual, e, represents the random error present in the ijkth
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observation on the ith tissue jth level of the factor and kth individual. Tissue is a fixed
effect, sex and ethnicity are fixed factors and age is a covariate, and Individual is the
random effect of the mixed model. We use t; to denote the tissue effect, g; to denote the
factor (sex/ethnicity/age) effect and by the individual effect. Individual random effects b,
are assumed to be normally and independently distributed with var(b) = o;1 . The errors

e, are assumed to be normally and independently distributed with var(e) = o’1.

RPKM values were log2 normalized. A minimum amount of variation across individuals
and tissues was necessary to fit our model. Therefore, we selected those genes that had
expression higher than 0.1 RPKMs in at least 5% of the samples and focused on protein
coding genes and IncRNAs. All tissues were included in this analysis.

All analysis were corrected for multiple testing at FDR < 0.05 using BH method .To run
functional enrichment analysis we used the program DAVID (57) with default settings.
GWAS hits were seek using the GWAS table downloaded UCSC (52). To find genes
laying in regions reported to be under positive selection in Europeans or African
Americans we used information from (53, 54) of regions reported to be selected either in
Bantu or Yoruba populations or populations of European ancestry.

To assess whether the genes that decreased expression with age had significantly more
SNP hits for Parkinson and Alzheimer GWAS than the rest of genes in the genome we
run a fisher exact test (p<0.05).

Genes differentially expressed by sex, ethnicity and age can be found at tables S10, S11
and S12 respectively.

4.3 Sex and ethnicity differential gene expression analysis tissue by tissue

We used DESeq (49) to perform differential expression analysis by gender and ethnicity
within each tissue separately. We analyzed those tissues with at least 10 samples per
condition. In the case of brain, we analyzed it region by region. All analysis were
corrected for multiple testing at FDR < 0.05 using BH method (38). To run functional
enrichment analysis we used the program DAVID (57) using default settings. GWAS
hits were seek using the GWAS table downloaded from UCSC (52). To assess whether
skin had significant more ethnicity differentially expressed genes than other tissues we
run a binomial test (p<0.05). Sex and ethnicity differentially expressed genes in each
tissue can be found in tables S13 and S14 respectively.

4.4 Gender differential co-expression network analysis
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We explored differential analysis of co-expression networks (55) between males and
females using gene expression. Data from the nine main combined tissues (with n>60 per
tissue), plus breast was used in a total of 381 female and 637 males samples.

The purpose of constructing the coexpression networks is to discover groups of genes
that are functionally related (either perform similar functions or are part of the same
biological process). By comparing the topology of equivalent modules across data sets, i.
e. males vs females, we can identify biological processes or parts of processes that are
performed differently between data sets; moreover, by examining differences in hub
genes we also get information on the genes driving the observed differences. (The
criterion for grouping genes has been shown to produce biologically meaningful modules
and by adopting a systems-level view - modules rather than individual genes - we
significantly alleviate the multiple testing issues).

We built co-expression networks independently for each gender and identified 42
modules in males and 46 in females. We matched them based on the number of
overlapping genes using Fisher's exact test and found 39 modules in common between
males and females. For each module, we assessed the preservation of its topology across
the two groups using a measure of intramodular connectivity similarity (correlation of
kME, see below). We found that in 36 out of 39 modules the network topology is similar
in both data sets. Figure S16 shows examples of modules that were identified in both sets
but exhibit different topologies, as well as modules that were only identified in one data
set (either in males or in females).

4.4.1 Network Construction
Networks for each dataset were constructed using weighted correlation network analysis
(55, 56). For each dataset, we computed an adjacency matrix:

aij = |C0r“r'(ei, ej)lﬁ

where e, is the expression of gene n, corr is the Pearson correlation and f is the soft-
thresholding power (56). We set f = 6, the default value for unsigned networks (there is
no motivation for applying the scale-free topology criterion here, as our samples
comprise several different tissues). The adjacency matrix was then transformed to a
similarity measure appropriate for clustering, the Topological Overlap Matrix (TOM):

Yo Aiy Ay j + Qi
min{Zu Ay Do aju} +1-—ay
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The TOM is a measure of the interconnectedness of genes i and j (specifically, their
shared neighbors). It has been shown to produce biologically meaningful and tighter
modules than the correlation of expression alone (57).

4.4.2 Module Detection

The TOM was transformed to a dissimilarity measure (1-TOM) and genes were clustered
using average linkage hierarchical clustering. Modules were derived from the
dendrogram using the Dynamic Tree Cut package (56), which eliminates the need for
manual choice of a cutoff height — something that could result in poor module definition
in complicated dendrograms. The minimum module size was set to 30, in accordance
with common practice.

The expression profile of each module is summarized by its eigengene, which is the first
principal component.

4.43 Intramodular connectivity - hub preservation using KME

kME is calculated as the Pearson correlation of expression of a gene with the module
eigengene and it is a measure of intramodular connectivity (58). Hub genes exhibit a high
kME. In order to assess hub preservation of a module across datasets, we compute the
Pearson correlation of KME of the genes comprising the module of interest. If the
correlation is high (implying preservation of intramodular connectivity), genes with high
kME in all datasets retain their hub status.

4.4.4 Module comparison

In order to compare male to female modules, we first identified similar modules in
terms of gene content between male and female networks. Then, for each gene in a given
module, we computed kME (the Pearson correlation of its expression with the module
eigengene). This was done separately for males and females. Then, we computed the
correlation of KME between the two datasets (the kME correlation between the male and
the female module). High correlation of kME suggests preservation of connection
patterns for the module genes.

We then refer to modules that are common across data sets but whose network topology
is not preserved, for those modules where the correlation of kME in the two data sets is
below 0.7. Male- or female-specific modules are those that only occur in one of the data
set and have no counterpart in the other. For such modules we also plotted the
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connections of that same group of genes in the other data set to highlight the differences
in connection patterns (Figure S16A, B).

5 Alternative splicing analysis

5.1 Splice junction analysis

5.1.1 Detection of annotated and novel splice junctions

We selected split-mapped reads (reads that do not map contiguously to the genome but
when split in two parts can be mapped independently) from TopHat mappings (24) to
identify exon-exon junctions. By default TopHat reports "GT-AG", "GC-AG" and "AT-
AC" introns. Split-mapped reads were clustered and each splice junction (SJ) was
annotated with the number of supporting reads and the tissues/samples where it occurred.
Reads from all the samples were also pooled to obtain a transcriptome wide set of splice-
junctions. Comparison with introns from the Gencode annotation allowed classifying SJ
as known/annotated (if already present in the annotation), novel SJ with one known splice
site (if one splice site is present in the annotation and the other is unknown), novel SJ
with two known splice sites (if both splice sites are present in the annotation but the
intron between them is not annotated) or novel SJ with unknown splice sites (if both
splice sites are not in the annotation) (Figure S17).

We defined two sets of splice junctions: a) high confidence set SJ and b) a less filtered set
of SJ. To identify a set a) of strongly supported highly reliable splice junctions, we
employed a stringent threshold of entropy > 3 computed on the distribution of split-points
in reads aligned to each splice junction. Using this threshold, we identified 329,984 splice
junctions, of which about 25% (87.005) are novel. Strongly supported novel junctions
tend to be more tissue specific, detected in fewer number of samples (Figure S17A). A
set of less stringently selected SJs b) was defined by selecting those SJ that are supported
by at least 3 split-mapped reads when pooling all the samples of a given tissues. This set
support millions of novel splice junctions in the human genome (Figure S17B).

To find one-to-one orthologous mouse to human splice junctions, human splice sites were
projected onto the mouse genome by a per-nucleotide lift-over procedure (59) using
filtered pairwise whole-genome chain alignments (60). Similarly, mouse splice sites were
projected to the human genome. Splice sites that were mapped uniquely and bijectively
(i.e., the human-to-mouse and mouse-to-human projections were mutually inverse as
functions) were said to be one-to-one orthologs. A human splice junction was said to be
one-to-one orthologous to a mouse splice junction if the corresponding splice sites were
orthologous (as defined above).
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5.1.2 Proportion of genes with novel splice junctions

Given that different tissues express different number of genes, we calculated the
proportion of genes with unannotated splicing events per sample. For each sample, we
divided the number of genes with at least one unannotated splice junction detected by the
number of genes where at least one annotated splice junction was detected. This ratio
corresponded to the proportion of genes with unannotated alternative splicing events over
all genes spliced per sample (Figure S22).

5.2 Exon inclusion based clustering

5.2.1 Percent spliced in (PSI) estimation

Exon inclusion levels were calculated for all internal exons of genes with three or more
exons. We calculated the ‘Percent Spliced-in’ (PSI) (67) as in (62). The PSI measure for
each exon is defined as the ratio between the reads that support the inclusion of the exon
and the sum of the reads that support the inclusion plus the exclusion of the exon. PSI
values range between 0 and 1, where 1 represents full inclusion of the exon and 0 full
exclusion. For an internal exon C and its neighbor exons Al and A2, Inc corresponds to
reads that support the junction A1-C and Inc’ the junction C-A2. Exc reads support the
junction A1-A2. The PSI formula is then defined as PSI = avg(Inc,Inc’) / (avg(Inc,Inc’) +
Exc). Only exons supported by a sufficient number of reads, Inc + Inc’ + Exc >= 10,
were considered.

5.2.2 Correlation analysis between expression patterns of RNA binding proteins and
splicing patterns of all genes across samples

We selected a set of 67 human curated RNA-binding (RBP) splicing regulatory proteins
from the SpliceAid-F database (63) to analyze the relation between the expression levels
of these genes across tissues and the differential splicing patterns found across tissues.
Splicing hierarchical clustering was performed for all samples based on PSI values
(selected 54,330 exons with PSI values in more than 90% of the samples). We used the
same settings as the HC performed in expression clustering, i.e. distance= 1 — Pearson
correlation, and average linkage clustering method. The "na.or.complete" parameter was
used to handle missing values. We then plotted the normalized gene expression of the 67
RBPs according to the order of the samples derived from the splicing clustering (Figure
S18).

5.2.3 Exon differential and preferential inclusion analysis
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Differential and preferential exon inclusion was performed using PSI values. For
differential exon inclusion, tissues were compared in a pairwise manner (Figure S19A).
For preferential exon inclusion analysis, we compared exon inclusion values in one tissue
with the remaining tissues (Figure S19B, Table S15). We applied the Wilcoxon test in R
(64), with p-values corrected by the BH method (38). Tissues with ten or more samples
were selected for this analysis. Following the methodology in (65) for differential exon
inclusion, exons are considered differentially included if FDR < 0.01 and absolute
difference in median PSI between groups > 0.1.

5.3 Differential exon inclusion

5.3.1 Tissue exclusivity analysis of exons

We analyzed 20,219 exons in which there was PSI variation across samples (at least two
PSI values were different). For each exon and for each (tested) tissue, we computed a
two-way contingency table calculating the sample frequency depending on two
conditions. The first condition selected samples that either had a PSI value > 0.8 or had a
PSI value < 0.5. The second condition selected samples coming either from the tested
tissue or from all other tissues. Then, we calculated the phi-correlation coefficient using
function phi of the R package psych (44). Phi correlation coefficient measures association
between two binary variables. We selected those exons with phi values higher than 0.95
or lower than -0.95 for further study. Tissues analyzed included the main 9 combined
tissues plus brain (given its differential splicing pattern) and testis (given its high number
of tissue specific genes) (Figure S20, Table S16).

5.3.2 Tissue exclusivity analysis in microexons

We selected multi-split alignments (i.e., the alignments that were split at least twice)
requiring that (1) each split had the canonical GT/AG splice sites and (2) each split was
confirmed by at least two staggered reads (not necessarily multi-split). The sum of at
least five reads supporting inclusion and exclusion was required to compute PSI in each
sample. The presence call for a short exon was made if PSI value could be computed in at
least 25% of samples. In total, we detected 335 exons shorter than 16nt (referred to as
microexons), of which 28 were not annotated in the latest version of Gencode (v19). To
assess whether some microexons were preferentially expressed in specific tissues, we
computed the phi statistic for each tissue and microexon from a 2x2 contingency table
depending on two conditions. The first condition selected samples that either had a PSI
value > 0.8 or had a PSI value < 0.5; samples with intermediate PSI values were
discarded. The second condition selected samples coming either from the tested tissue or
from all other tissues. Only the twenty tissues with at least ten samples were used for this
analysis. Functional enrichment for genes containing microexons was calculated using
the R package GOstat (66). To test whether microexons were more included in brain
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compared to the other tissues, we run Wilcoxon test on the phi distributions in brain vs.
non-brain tissues for microexons (length<15nt) and the same for other small exons (50<
length (nt) <80). The phi distribution values for microexons across tissues can be seen in
Figure 3B and for short exons in Figure S21.

5.3.3 Contribution of tissue and individual to exon inclusion variation

In a manner parallel to that for gene expression, we assessed the contribution of tissue
and individual to exon inclusion (PSI) variation. We used Percent spliced in (PSI) values
as calculated in section “Percent spliced in” (PSI) estimation and selected the 20,219
exons for which PSI values varied at least between two samples.

To assess the contribution of tissue and individual to exon inclusion variation, we used a
linear mixed model (LMM). Exon inclusion was modeled as a function of tissue and
individual considered as random factors. The LMM was implemented in the R package
Ime4 (48). The restricted maximum likelihood (REML) estimators for the random effects
of tissue, individual and residual variance were normalized by their sum to give the
variance components (Figure S23).

5.3.4 Effect of ischemic time on splicing and expression

We performed hierarchical clustering (distance=1-Pearson correlation and average
clustering method) on the samples of the nine main combined using exon inclusion levels
(PSI). Across the different tissues, we detected two distinct clusters of individuals (a
larger and smaller sub-cluster). For each tissue, we then split the dendrogram in order to
retrieve these two distinct clusters (using cutree function in R). Next, for the different
tissues we intersected the respective larger and smaller cluster samples. We then retrieved
the identifiers of the individuals that are common across the larger and smaller clusters in
the different tissues. In the smaller sub-cluster we found a set of samples originating from
17 individuals that are common to the corresponding sub-cluster in at least 5 tissues. We
colored the samples corresponding to these individuals in red and the remaining samples
in black. We also performed hierarchical clustering for gene expression in these same
nine main combined tissues (clustering was performed for each tissue using the same
settings as for the MDS analysis, see Tissue clustering section). Finally, we plotted the
distribution of the ischemic time (in minutes) between the “red” and “black™ group of
individuals (Figure S24).

We additionally investigated if this effect had a bias in some particular part of the
transcript, for example if there might be an effect due to partial transcript degradation of
exons located in the 3' part of the gene that are more affected. We ranked exons by their
differential splicing between these two groups of individuals and classified then
according to the relative distance (0 to 1) to the start of the transcript. However, we found
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that differential spliced exons have no particular enrichment along the transcripts,
suggesting no evident effect of 3’ degradation.

This data suggest that even though we do not see a substantial impact of ischemic time on
the gene expression, there could be a larger impact on gene splicing. We will continue
these analyses, as larger sample numbers are available across both tissues, and ischemic
time points.

5.3.5 Analysis of the contribution of tissue and individual to splicing variation

In a manner parallel to that for gene expression, we assessed the contribution of tissue
and individual to splicing variation. We analyzed 10,597 protein-coding genes with more
than one isoform and for which the sum of transcript expressions was greater than zero in
all samples. We used ten tissues (9 main combined tissues + brain, considering all
samples together). We used only individuals for which data existed for all these tissues.
This resulted in 38 individuals. We used quantifications of abundances of transcript
isoforms. Because the splicing of a gene is, thus, represented as a multivariate
distribution, we developed an approach to estimate the components of the splicing
variability in each gene based on an orthogonal decomposition of the gene’s total sum of
squares. In detail:

Let y,, denote the square root relative abundance of the isoform 7 in the tissue j in the

individual . Let J (=10) denote the number of tissues and let K (=38) denote the number
of individuals. The square root transformation used to measure the variability follows the

approaches in (67) and in (68). Equivalent expressions can be derived by using x_. , the

ijk 2
square root absolute abundance of the i isoform in the tissue j of the & individual.

The total sum of squares for a specific gene, SS7, is given by adding the total sum of
squares of all the transcripts in the gene. Following the classical ANOVA decomposition
of variability sources, the total sum of squares of each transcript, SS7;, decomposes as the
sum of the sum of squares among tissues, SSTs;, plus the sum of squares among
individuals, SS7;, plus the residual sum of squares, SSR;. That is:

SST = 2 SST, = j{SSTsi +SSI, + SSR, } = j SSTs, + j SSI, + i SSR.

If y, denotes the mean relative expression of the isoform i in the tissue j, y, the mean of

the isoform i, and y,, denotes the mean expression of the isoform i in the individual £,
the sources of variation can be expressed as:

J
SSTs, = Kz(ylj _yi..)z 5
J
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K
SSI, =J Z (V=)

J K
SSR; = EZ(yiJk _J_/ij: = Vix +)_/i“)2'
J

Finally, the relative variability components are estimated by

Eﬁﬁi iﬁﬂ j&m

SST ~ SST SST
which are, respectively, the relative variability among tissues, the relative variability
among individuals and the relative residual variability respect to the total variability of
the gene.
The contribution of individual and tissue to splicing variation across genes can be seen in
Figure 3D and for each gene values can be found in Table S17.

b

5.4 Contribution of gene expression and alternative splicing to transcript
abundance variation

Gene expression contribution to transcript abundance variation was computed following
the methodology developed in (67). In a nutshell, for each gene, samples are represented
in a multidimensional space using their transcript abundances as coordinate. The
contribution of gene expression in the transcript abundance variation is computed by the
variation after projecting the samples into a model of constant splicing (a line in the
multidimensional space) divided by the total variation without projection (see below). If
this ratio is close to 1 so that projecting into the "no splicing" model did not reduce
transcript variation, the main contributor to transcript abundance variation would be gene
expression. Conversely, if the ratio is close to 0, alternative splicing would be responsible
for most of the variation in transcript abundance. Additionally, we implemented two
improvements on the version described in (67). First, the effect of outlier samples is
mitigated by means of a bootstraping approach. Second the contribution of gene
expression to transcript abundance when the major isoform is extremely abundant can be
overestimated. Here we reduced this effect by rescaling transcript abundances using
square-root transformation. Each tissue was analyzed separately.

We have extended the methodology of (67) to include the analysis of a between source of
variation in the "no-splicing" model. The contribution of gene expression in transcript
abundance variation within a tissue was generalized for the multiple-tissue design when
samples from different tissues are studied together. Precisely, we asked how much of the
transcript variation attributed to tissue is due to changes in gene expression. In practice
we compared the proportion of variation explained by the tissue classification after and
before projecting the samples into the “no splicing” model. The proportion of variance
explained by tissue classification was derived from classical ANOVA decomposition.
The “no splicing” model was represented by a line in the multi-dimensional space formed
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by the different transcripts abundances. As in the within-tissue analysis, a value around 1
means that the projection didn't affect the estimate of variance explained, supporting a
full contribution of gene expression. A ratio around 0 means that the variance explained
was greatly reduced after projection, supporting a major contribution of alternative
splicing. We then asked the same question about isoform abundance variation between
individuals. Here the samples were grouped according to their individual of origin to
assess the contribution of gene expression in the variation attributed to individual
variation. To avoid bias from inconsistent sample availability, we used only samples from
the nine main tissues and individuals with samples available for all these tissues.

More precisely, if X stands for the square root absolute abundance of the i isoform in

the tissue j of the k individual, the multiplicative model defined in (67) can be expressed
here giving the expression level for each transcript as the product of a global expression
parameter A of the tissue of this individual multiplied by the relative expression level p;
of each transcript:

X1k b

X,

2k D,
Xp=| =

X ik P

The model assumes therefore a constant splicing ratio over all the individuals and tissues.

Let define the sample size of each tissue by K, the total number of samples by K =7; K,
and X=[ xl_j_k] as the matrix of counts organized in / rows and K columns. In (67) 1t is

shown that using the least square criteria to fit the above model, with the restrictions
Ax=>0 and p;>0, allow to obtain the projections of the samples in the constant splicing
model subspace expressed in terms of the first left singular vector u; of X:
Zy i
~ 22k -
Zp=| | = w
Zy
The line of R’ defined with the above formula minimizes the distance between the
original and the K projected points. Vs is defined in (67) as the variability explained by
the multiplicative model. V;; can be expressed in terms of ), the sample covariance
matrix of the /-dimensional vectors of splicing counts:

Y,

=2,

The total variation V7 of X is defined as the sum of the variances of the alternative splice
forms across the K; individuals of the J tissues. Similar to the Variability decomposition
splicing section above, V7 can be decomposed in a tissue variability term (between) and a
residual (within) variability term:

SS, =KV, =Ktr(Z) =SS, + S,
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If }’; are the J sample covariance matrices on the different groups/tissues, the between
term can be expressed as:

J I J
§8, = Kti(2) - 3 K () = 2 YK, (%, -x.F

j=1 i=l j=1
Considering again the constant splicing model, if SStys is the total variability of the
projected samples and } 7 the sample covariance matrix of the projected points z , , we
have:
SSy =KV, =Ktr(Z,) = KuZu,

Defining by } 7; the J sample covariance matrices of the projected points on the different
groups, the within tissue variability of the projected points SSyis is:

J J
SS,, = 2 K tr(2,) = 2 Kus u,
J= J=

The between tissues Vériability of the projected points SSgjs can be computed by any of
the following expressions:

SS,,, = Ktr(Z,) - i K () = Ku'Su, - inuij U = 2 EKJ. (z,-z.F
7= 7=

=1 7=l
Finally, the ratio of between variability explained by the constant splicing ratio model can
be obtained, for instance, by:

J
Ktr(X,) - K tr(Z..
S _ %2) E )

SS,

Ktr(S) - i K tr(E)

A brief summary of the relation between the different sums of squares is:
SS, =SS, +SS,

SS, =88, +S8S,,
SSus _ S5y
Ss, SS,
The contribution of gene expression to variation in isoform abundance within each tissue

can be found in Figure S25A and the contribution of gene expression to the between-
individual and between-tissue variation in isoform abundance in figure 3E.

We investigated the reproducibility of our results with Cufflinks, a different transcript
abundance quantifier (69). Cufflinks quantifications were available for a subset of 8§76
samples, of which we could use 133, corresponding to 19 individuals with samples across
the same 7 tissues. This design approaches as much as possible the one used on Flux
Capacitor's quantifications (38 individuals across 10 tissues) in terms of tissues and
individuals numbers. We then performed the same analysis on the same genes and
compared the distribution of the contribution of gene expression to the between-
individual and between-tissue variation in isoform abundance. The results are remarkably
consistent (Fig 25B) even though samples could not be fully matched. The average
contribution of gene expression is 0.82 and 0.54 for the between-tissue and between-
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individual variation using Cufflinks against 0.84 and 0.45 for Flux Capacitor analysis.
These results support the robustness of our conclusions.

5.5 Major isoform switch detection across tissues

Differences in transcript usage across tissues might be subtle or they could imply a
change of major isoform when the most expressed isoform from a gene changes from
tissue to tissue. A transcript was identified as the major isoform if it was the most
expressed transcript consistently in at least 80% of the tissue samples. Genes with
different major isoforms in two tissues were retrieved. We compared their coding
sequences using the coding sequence annotation from Gencode v12 (9). Indeed, some
transcripts may differ only on their UTRs, which should not impact the protein produced
ultimately (Table S19).
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Figure S1. Proportion of mapped reads across the genome. Proportion of different types of
mapped reads (split, continuous or both) in different genomic domains (exonic, intronic, exonic-
intronic, intergenic and other categories) for each RNA-seq sample. Primary alignments of each
read were classified into exonic or intronic when they were fully included in exon or introns
respectively, exonic-intronic when they overlapped both, intergenic when they were fully included
in intergenic regions and other when they were at the boundary between exons and intergenic
regions. Then, we calculated the proportion of reads that fell in each category, considering all
reads, those reads that had been split-mapped (different portions of the read mapped in different
genomic locations), or those that were contiguously mapped (not split reads).
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Figure S2. Comparison of Microarray and RNA-seq. A. Density plot showing the correlation
between gene expression measured using microarrays (Affymetrix) and RNA-seq (lllumina). B.
Coefficient of variation as a function of mean gene expression (log2 RPKM).
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Figure S3. Multi dimensional scaling (MDS) of GTEx samples based on gene expression.
First and third principal components (PC) of MDS shown here. The first PC separates well solid
and non-solid tissues (LCL and Blood). The third PC separates brain sub-tissues and also
clusters muscle and heart separating them from testis, in contrast to what is observed in PC2.
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Multi dimensional scaling (MDS) of GTEx samples based on IncRNA
expression. Multi-dimensional scaling of all samples based on expression levels of IncRNAs
(log2 RPKM transformed, distance = 1 — Pearson correlation). As when using all genes,
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Figure S5. Hierarchical clustering based on gene expression of GTEx samples (annotated
with clinical variables). Hierarchical clustering of all the samples based on gene expression of
all genes (log2 RPKM transformed, distance= 1 — Pearson correlation). For each sample we
show the respective tissue color and the values in some of the clinical traits associated to the
samples. Each clinical trait was normalized to [0,1] range, where gray represents unknown
values, and the remaining values are represented in a white (lower values) to red (higher values)
gradient scale.

Scales and meaning of the traits: Continuous values: Age, BMI (range:18.46-35.87). Gender
(1=Male, 2=Female). Ethnicity (0=Not Hispanic or Latino, 1=Hispanic or Latino). Binary Variables
(0=Negative=white;1=Positive=red): 'CMV Total Ab' = Test performed to determine the presence
of a genus of the family herpesviridae;'EBV IgG Ab' = Test performed to determine the amount of
immunoglobulin G present in a sample;'EBV IgM Ab' = Test performed to determine the amount
of immunoglobulin M present in a sample;'HBcAb IgM' = Test performed to determine the amount
of Hepatitis B virus core antibody and the amount of immunoglobulin M present in a
sample;'HBcAb Total' = Test performed to determine the amount of Hepatitis B virus core
antibody present in a sample. 'HCV Ab' = Test performed to determine the presence of a small,
enveloped, positive sense single strand RNA virus in the family Flaviviridae and protein made by
B lymphocytes in response to a foreign substance (antigen);HIV 1 NAT' = Any of various
amplification and detection strategies applied to detection of virus contamination in donor blood,
specifically the virus isolated and recognized as the etiologic agent of AIDS. 'HIV | Il Ab' = Test
performed using HIV antibodies produced by B-cells, human immunodeficiency virus (HIV)
antibodies that react with HIV antigens. Other reported conditions:
'Alzheimers','Arthritis','Hypertension','Schizophrenia','Alzheimer/Dementia’,'Bacterial
Infection','Diagn. of Cancer 5yrs' = Cancer diagnosis within the preceding 5 years,'Respiratory
disease','Diagn. of Cancer','Cebrovascular disease','Sexually Trans. disease'.

30



= Brain

. Cerebellar Hemisphere

) ® ;
g | e O... Brain . Cerebellum
e = Brain . Cortex
s55 o Brain . Frontal Cortex
S |e ® e¢ @ ° o - Bra!n . H|ppocampu§
S Q oo © = Brain . Substantia nigra
® ‘ @ B) ® ) = Brain . Anterior cingulate cortex

S e @ L) & ° O(% = Brain . Amygdala
= 37 oon o° Brain . Caudate
al ® = Brain . Nucleus accumbens
o (&} P @ = Brain . P
g 9 o & ® o rain . Putamen
£ 3 ® 0%g = Brain . Hypothalamus
5 ® ’3 o0 = Brain . Spinal cord
O S loe ® o %2

< e

3 ° Oo ’ 'ﬁg)

— )

7 “

©

o | (©)

o

[ \ \ \

-0.05 0.00 0.05

Coordinate 1 (36%)

Fig. S6. Multi dimensional scaling (MDS) of GTEx brain samples based on gene
expression. Multidimensional Scaling for brain samples based on gene expression of all genes
(log2 transformed RPKM, distance = 1 — Pearson correlation). Cerebellum and cerebellar
samples are clearly separated from the rest of the brain sub-tissues.
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Figure S7. Fraction of the total transcriptional output originating from mitochondrial
genes. The fraction is measured in each sample by the proportion of the sum over all RPKM
values of genes encoded by the mitochondrial genome. Kidney has the by far highest

mitochondrial activity, but also brain, heart and skeletal muscle show elevated levels of

mitochondrial genes.
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Figure S8. Pairwise differential expression of protein coding genes between tissues.
Genes are called differentially expressed if they are called by two different methods NOISeq (q >
0.95, corresponding to FDR < 0.05) and by DESeqg2 (FDR < 0.05). A. Pairwise differential gene
expression for the 20 main tissues with 10 or more samples. Testis is the sample with the largest
number of up-regulated genes and blood with largest down-regulated genes. The average
number of differentially expressed genes across all pairs is 3918. B. Pairwise differential gene
expression for brain sub-tissues. Cerebellum and Cerebellar hemisphere have the most
differentiated behavior. The average number of differentially expressed genes across all pairs is
2322.
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Figure S9. Genes with tissue preferential expression. Number of down and up-regulated
genes when comparing expression in the samples of a given tissue to the samples of the
remaining tissues. Only tissues with ten or more samples were considered. The analysis was
performed with NOISeq and genes were considered tissue specific if g>=0.99 (FDR=1%) and

log2 fold change was greater than 4.
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Figure S10. Genes with tissue exclusive expression. The distribution of the phi correlation is
given for all genes within each tissue. For each pair (gene, tissue) the phi statistic is computed
from a 2x2 contingency table that includes the number of samples from the tissue in which the
gene is expressed (RPKM>0.1) and not expressed (RPKM<0.1), and the number of samples from
the rest of the tissues in which the gene is expressed and not expressed. Vertical red lines
indicated an absolute value of phi equal to 0.95. Values of phi close to 1 indicate that the gene is
expressed in (nearly) all samples from the tissue, and (nearly) no samples from the rest of the
tissues. Values of phi close to -1 indicate that the gene is not expressed in (nearly) all samples
from the tissue and it is expressed in (nearly) all samples form the rest of the tissues. Only a few

genes have phi values > 0.95 or < -0.95.
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Figure S11. Expression of genes with tissue exclusive expression. A. Expression patterns
of 35 tissue specific genes (phi > 0.95) including all non-testis specific genes and some randomly
selected testis specific genes. Gene name and tissue in which the gene is expressed are
indicated in the title of each plot. B. Expression patterns of all tissue anti-specific genes (phi < -
0.95). Gene name and the tissue in which the gene is not expressed are indicated in the title of
each plot.
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Fig. S12. Repeat expression. A. Hierarchical clustering of all samples based on repeat
expression. We analyzed expression patterns of 62,539 repeats. Distance between samples
was defined as distance = 1 — Spearman. We used the average linkage criterion to perform the
clustering. B. Distance between a gene and the closest upstream associated repeat. Repeats
and genes are considered to be associated when they have significant correlated expression
across samples within a particular tissue. The nine main tissues used in the analysis are
highlighted in bold in the tissue legend. C. Correspondence analysis of tissues and repeat
classes. The analysis was carried out using transcript expression values across tissues and
information on which repeats intersected the promoter region of each of these transcripts.
Correspondence analysis plots tissues and repeat classes onto two leading principal axes and
the distance between repeat classes and tissues in the chart represents the strength of the
correlation between having a repeat class in the promoter and being expressed in that tissue.
The plot suggests that ERVL repeats may be driving expression of certain IncRNAs in testis.
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Figure S14 Expression levels of intergenic X-chromosomal IncRNAs A. Expression levels of
intergenic X-chromosomal IncRNAs upregulated in females. Intergenic X-chromosomal IncRNA
ordered left to right and top to bottom from higher to lower expression differences between males
and females. XIST and JPX, known to be involved in X chromosome inactivation, have the first
and third largest differences respectively. The second largest is a lincRNA located in the PAR
region. B. Nuclear vs cytosolic enrichment of these lincRNAs. Using fractionation data from the
ENCODE project, we computed the ratio of nuclear vs cytosolic enrichment for each lincRNA as
the ratio of the gene RPKM in the nucleus over the gene RPKM in the cytosol. Nuclear/ cytosolic
ratios for each gene in those cell lines of female origin are given in the Y-axis. In the X-axis we
provide the value of gene expression in whole cell. The kernel distributions correspond to the
distributions of protein coding genes (black) and IncRNAs (blue), as in Figure 3 from (717). Most of
the X chromosome lincRNAs overexpressed in females are enriched in the nucleus, a necessary
property if they were involved in the process of X inactivation.
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Figure S15. A. Top. Expression of the RP11-345M22.2 lincRNA in African and European
Americans across tissues. In Europeans — the population under positive selection - this gene is
most highly expressed in skin. Bottom. Genomic location of RP11-345M22.2 lincRNA showing
that this region has been detected to be under positive selection in two independent studies (53,
54). B. Top. Expression of the COL28A1 in African and European Americans across tissues. This
gene is mostly expressed in nerve. Bottom. Zoom in of the expression of COL28A1 across
tissues. COL28A1 lies in a region under positive selection in Europeans and harbors a SNP
(rs17168526) that had been linked to resistance to smallpox. C. Expression of PLEKHA7 in male
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Figure S16. Sex differential expression network modules. A-D Co-expression networks were
built for males and females independently. Nodes in networks correspond to genes and their size
represents intramodular connectivity, i.e., connectivity of nodes to other nodes within the same
module. Edges represent the topological overlap between two nodes, which measures
interconnectedness between nodes. A higher topological overlap between two nodes means a
node is connected to all of the neighbors of the other node. Edges are colored according to their
topological overlap with darker colors corresponding to higher topological overlap. The
histograms close to each module represent the distribution of topological overlap of the network
edges. The same set of genes is represented in male and female modules. On the right of the
figure are the GO terms that were found to be enriched among the genes in the modules.

Among male specific modules we found for instance a module related to sexual reproduction and
spermatid differentiation depicted in A. Among female specific modules, we found one related to
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epidermis and ectoderm development, depicted in B. Differential network expression, capture
therefore the important structural differences between male’s and female’s skin, which are not
well captured by differential expression of individual genes. This is further supported by one of the
two modules with conserved gene sets, but contrasting network topology. This module is enriched
for genes related to keratin, hair follicle morphogenesis and development shown in C. Conversely
in D we have a module with male to female topology change with a loss of interconnectedness
between nodes from male to female. E. Alternative view of network module depicted in C (81
genes). Arcs represent network edges with correlation > 0.6 and node degrees are proportional to
node size. The number of edges between sexes differs with females having a higher number of
edges than males.
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Figure S17. Splicing across tissues. Upper panel: High confidence splice junctions. The
number of splice junctions (SJ) with log2 (average count)>=x in at least y tissues (A) or in at least
y samples (B). The four categories of SJs are: no SS known (no splice site is annotated); one SS
known (one splice site is annotated and the other is not), annotated (both splice sites are
annotated and so is intron between them); and, both SS known (both splice sites are annotated
but the intron between them is not). Lower panel: Unfiltered junctions. C. Distribution and support
of detected splice junctions. Number of reads supporting five types of SJs: Both Novel SS (none
of splice sites is annotated); 5’ or 3’ SS known (one splice site is annotated and the other is not),
annotated (both splice sites are annotated and so is intron between them); and, Novel junction,
known SS (both splice sites are annotated but the intron between them is not). The x-axis shows
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the number of reads (in log2 scale) that support the junction; the y-axis the number of tissues
where the junction is found (pooling all samples of a given tissue). The ‘both novel SS, ‘novel
junction, both SS known’, and ‘3prime/5prime SS known’ tend to be more tissue specific,
occurring in fewer tissues and they are less frequent than annotated junctions.
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Figure S18 Relation between tissue specific splicing patterns and expression of RNA
binding proteins. The heatmap shows normalized gene expression profiles (Z-score
normalization by gene) of 67 RNA binding proteins (RBP) in all samples. The order of the
samples, however, is determined by the hierarchical clustering solution based on the exon
inclusion values for ~50,000 exons expressed in those samples (PSI, see Figure 1(6)). Tissues
are described by the color row in the top of the matrix. In Some RBP, expression is higher in
samples that have been clustered together because they share a specific splicing program. This
suggests that some of these RBP may be playing an active role in generating such differential
splicing patterns. Twelve out of the 67 analyzed RNA binding proteins (63) show tissue
preferential gene expression. Seven out of these twelve are preferentially expressed in brain.
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Figure S19. Tissue differential, preferential and exclusive exon inclusion

A. Pairwise differential exon inclusion between tissues. Only tissues with 10 or more samples are
considered. Exons are considered to be differentially included if the absolute differences between
the median PSI values in the two tissues is larger than 0.1 and the FDR is below 0.01 (adjusted
non-parametric Wilcoxon test). B. Number of exons with tissue-specific differential inclusion for all
tissues with 10 or more samples. A comparison is performed between the samples of a given
tissue and the samples from the remaining tissues. Exons are considered to be differentially
included if the absolute differences between the median PSI values in the two tissues is >0.1 and
the FDR < 0.01 (adjusted non-parametric Wilcoxon test).
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Figure S20. Tissue exclusive inclusion across tissues. A. Phi statistic distribution across
tissues. For each pair (exon, tissue) the phi statistic is computed from a 2x2 contingency table
with the number of samples from the tissue in which the exon is included (PSI>0.8) and excluded
(PSI<0.5), and the number of samples from the rest of the tissues in which the exon is included
and excluded. Vertical red lines indicated an absolute value of phi equal to 0.95. Values of phi
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close to 1 indicate that the exon is included in (nearly) all samples from the tissue, and excluded
in (nearly) all samples from the rest of the tissues. Values of phi close to -1 indicate that the exon
is excluded in (nearly) all samples from the tissue and included in (nearly) all samples form the
rest of the tissues. There are only a few exons with tissue specific inclusion or exclusion at the
0.95 and -0.95 phi thresholds.B-E. Exon—intron structure, exon inclusion levels and expression
values for several exons. Exon inclusion may be accompanied by changes in gene expression,
but this is not always the case. B. An exon from the GABBR1 gene specifically included in brain.
This exon contains a STOP codon that shortens the protein and impairs it to have a
transmembrane domain that normally anchors it to the membrane. So GABBR1 isoforms
expressed in brain will most likely be soluble (70). C. An exon from the APP genes specifically
excluded in brain. This exon contains glycosylation domain so that the proteins expressed in
brain will not have it (77). D. An exon from the BIN1 gene specifically included in muscle. BIN1 is
related to a myopathy (72). E. Brain-specific exon exclusion on exon 7 of the EPN1 gene. Exon 7
is specifically excluded in brain and lower expression levels of EPN1 in brain cannot explain this
pattern. 7tm_3 = 7 transmembrane sweet-taste receptor of 3 GCPR. OX2 = glicosilation domain.
UID = ubiquitin domain.
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Figure S21. Short exon inclusion exclusivity across tissues. The distribution of phi is given
across all short exons (15bp<length<60bp) within each tissue. For each short exon and for each
tissue, the phi statistic is computed from a 2x2 contingency table with the number of samples
from the tissue in which the exon is included (PSI>0.8) and excluded (PSI<0.5), and the number
of samples from the rest of the tissues in which the exon is included (PSI>0.8) and excluded
(PSI<0.5). Vertical red lines indicated an absolute value of phi equal to 0.95. Values of phi close
to 1 indicate that the exon is included in (nearly) all samples from the tissue, and excluded in
(nearly) all samples from the rest of the tissues. Values of phi close to -1 indicate that the exon is
excluded in (nearly) all samples from the tissue and included in (nearly) all samples form the rest
of the tissues. The observation that microexons (length<15bp) tend to be more included in brain
does not hold for short exons shown here.
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Figure S22. Proportion of genes with novel splicing events. Proportion of genes with a
detected: novel 5’ splice site usage (if 3’ splice site is annotated and the 5’ is not), novel 3’splice
site usage (if 5’ splice site is annotated and the 3’ is not) or novel junction with known splice sites
(if both splice sites are present in the annotation but the intron is not annotated) over the number
of genes with a detected annotated splice junction. A. Tissues. B. Brain sub-tissues. Testis is the
tissue with the largest proportion of expressed genes with unnanotated splicing events, and

cerebellar tissues have the largest among brain subtissues.
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Figure S23. Contribution of tissue and individual to exon inclusion (PSI) variation in
protein-coding genes. The circle is centered at the mean of individual and tissue contributions

to exon inclusion variation and the segment lines correspond to half standard deviation. The
number inside the circle is the sum individual and tissue contributions to exon inclusion variation.
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Figure S24. Effect of ischemic time on splicing and expression. A. Hierarchical clustering for
splicing (exon inclusion levels quantified as PSI) and expression (gene expression levels
quantified as RPKM) for the nine main tissues. For thyroid, both dendrogram and heatmap are
shown. Clustering based on PSI values consistently identified an outgroup that included from 16
to 26 individuals (mean of 18). Samples from 17 individuals that belong to the outgroup in at least
5 out of the 9 main tissues are highlighted in red. B. Distribution of ischemic time for the samples
that belong to the 17 individuals in the outgroup (red) and for the remaining samples (black).
Differences between the two groups are significant (Wilcoxon test W = 2095.5, p-value < 5-e05).
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Figure S25. A. Contribution of gene expression to variation in isoform abundance within each
tissue. Using a multiplicative model (see text) we estimate the fraction of the variation in isoform
abundance across individuals that can be explained by variation in gene expression. The figure
shows the distribution of this fraction for each gene in different tissues. With the exception of
blood, variation in gene expression contributes less than 50% to the observed variation in isoform
abundance across individuals. A fraction of the unexplained variation can be attributed to splicing
variability. B. Contribution of gene expression to the between-individual and between-tissue
variation in isoform abundance when using Flux Capacitor or Cufflinks quantifications. Due to
fewer available samples, Cufflinks analysis used 133 samples (19 individuals across 7 tissues)
compared to 380 samples (38 individuals across 10 tissues) for Flux Capacitor analysis. The

same genes were analyzed.
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Supplementary tables

Table S1. Characteristics of the 1,641 RNA-sequenced samples included in the GTEx pilot data
analysis freeze. Column’s A-C show the official tissue name, tissue site abbreviation and color assigned to
each tissue in the GTEXx pilot project (as used in several analyses here, and in (6)). The 9 tissues prioritized
for sequencing, and with largest sample sizes, are indicated in bold and with a # symbol. Column D shows
which tissues were combined for some analyses and their corresponding colour used. The Brain regions
shown in the box are two regions each sampled in duplicate, the Cerebellum (BRNCHA and B), and Cortex
(BRNCTXA and B). The “A” samples were sampled at the collection site with the other tissues, and
preserved in PAXgene tissue preservative [PAX]. The “B” samples were re-sampled at the Miami Brain Bank
and were frozen [F] (see Section1, and (6)). AA = African American, EA = European American, AS = Asian.
The EBV-transformed lymphocytes (LCL) were cultured from whole blood. Fibroblast samples (FIBRBLS)

were cultured from skin adjacent to the Skin-Sun Exposed (Lower Leg) (SKINS) samples.

Sample
Ischemic .
Combined  Analysis Time Gender Ethnicity
Tissue site Tissue Freeze (min) Age

Tissue Site Detail Abbreviation Color n Mean Mean M F AA EA AS
Adipose - Subcutaneous # ADPSBQ Adipose 94 422 48 33 61 14 79 1
Adipose - Visceral (Omentum) ADPVSC 19 401 47 4 15 3 16 0
Adrenal Gland ADRNLG 12 173 51 5 7 3 9 0
Artery - Aorta ARTAORT 24 262 51 7 17 5 19 0
Artery - Coronary ARTCRN 9 312 55 4 5 1 8 0
Artery - Tibial # ARTTBL 112 487 48 46 66 15 94 2
Brain - Amygdala BRNAMY 23 NA 51 9 14 1 2 0
Brain - Anterior cingulate cortex

(BA24) BRNACC 17 NA 51 7 10 1 16 0
Brain - Caudate (basal ganglia) BRNCDT 36 NA 53 14 22 1 33 1
Brain - Cerebellum [PAX] BRNCHA 30 869 52 14 16 0 29 1
Brain - Cerebellar Hemisphere [F] BRNCHB 24 NA 50 8 16 1 22 1
Brain - Cortex [PAX] BRNCTXA 23 837 51 10 14 1 23 0
Brain - Frontal Cortex (BA9) [F] BRNCTXB 24 NA 55 11 12 0 23 0
Brain - Hippocampus BRNHPP 24 NA 51 9 15 0 24 0
Brain - Hypothalamus BRNHPT 23 NA 51 10 13 0 22 1
Brain - Nucleus accumbens (b.g) BRNNCC 28 NA 53 13 15 1 25 1
Brain - Putamen (basal ganglia) BRNPTM 20 NA 50 8 12 1 18 1
Brain - Spinal cord (cervical c-1) BRNSPC 16 NA 53 9 7 0 15 1
Brain - Substantia nigra BRNSNG 25 NA 54 11 14 1 23 1
Breast - Mammary Tissue BREAST [ 27 646 50 13 14 5 2 0
Cells -EBV-transformed lymphocytes ~ LCL 39 -60 46 13 26 9 30 0
Cells - Transformed fibroblasts FIBRBLS 14 545 49 4 10 1 12 0
Colon - Transverse CLNTRN 12 237 46 4 8 1 11 0
Esophagus - Mucosa ESPMCS -E ; 18 331 52 6 12 2 16 0
Esophagus - Muscularis ESPMSL sophagus 5, 311 48 5 15 3 17 0
Fallopian Tube FLLPNT 1 520 51 1 0 1 0o 0
Heart - Atrial Appendage HRTAA = 25 492 59 6 19 2 23 0
Heart - Left Ventricle # HRTLV 83 381 48 28 55 9 72 2
Kidney - Cortex KDNCTX 3 583 56 0 3 1 2 0
Liver LIVER 5 365 43 2 3 1 4 0
Lung # LUNG 119 447 49 43 76 14 104 1
Muscle — Skeletal # mscLsk [N 138 486 49 51 87 18 117 2
Nerve — Tibial # NERVET 88 464 49 34 54 13 73 2
Ovary OVARY 6 401 44 6 0 2 4 0
Pancreas PNCREAS 19 200 49 6 13 7 12 0
Pituitary PTTARY 13 841 52 5 8 0 13 0
Prostate PRSTTE 9 231 50 0 9 4 5 0
Skin-Not Sun Expsd (Suprapubic) SKINNS = 23 557 49 7 16 3 20 0
Skin-Sun Exposed (Lower leg) # SKINS 96 499 49 36 60 11 83 2
Stomach STMACH 12 250 48 6 6 4 8 0
Testis TESTIS 14 294 52 0 14 3 11 0
Thyroid # THYROID [ 105 429 49 40 65 13 9 2
Uterus UTERUS 7 313 49 7 0 2 5 0
Vagina VAGINA 6 415 54 6 0 1 5 0
Whole Blood # wHLBLD [ 156 238 50 57 99 24 129 2
All 1641 419 50 618 1023 203 1408 24




Table S2. Data sets used to investigate the post-mortem effect on transcriptome patterns.
Data sets used to compare the expression data from GTEx tissues with the same tissues
obtained from living donors (e.g. surgical samples). All GTEx data analyzed were generated by
RNA sequencing. All external data sets were microarray-based datasets downloaded from GEO
or Array express, and derived from normal tissues that matched GTEXx tissue sampling sites. A
total of 798 GTEx samples were compared to 609 surgical samples representing 8 tissue sites.

Tissue Number of Number of Number of Number of
GTEXx External External datasets External
(Deceased) (Surgical) microarray types
samples samples

Adipose 93 45 4 1
Blood 69 Pre/74 Post 169 3 3
Breast 21 13 3 1
Heart (ventricle) 84 24 4 3
Lung 119 70 4 3
Muscle (skeletal) 136 139 4 2
Skin 95 123 8 4
Thyroid 107 26 5 2
Total 798 609 35 19
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Table S3. Tissue classification of samples from living donors, using GTEx tissues (A).
Results of the support vector machine (SVM) classifier trained on a subset of the GTEx data set
(model). Metagene class weights were derived from the training (model) data set and were used
to predict the tissue types of the remaining (test) GTEx data set (Section 1 and 2). Green cells
along the diagonal highlight correctly predicted tissues. Orange cells highlight misclassified
samples. Only a single breast sample was misclassified as adipose, and pathology notes on the
sample indicated it had high adipose content. (B) Results of the test classification of external,
surgically collected samples using the GTEx data as model. Despite the number of different
studies represented (each with different processing and array-based assay conditions), the GTEx
model provides a highly accurate classification of the tissues. Blood is the only GTEXx tissue for
which a subset of samples was collected ante-mortem. The observation that the expression
patterns of those samples is a better classifier of the external bloods obtained from living donors
demonstrates that we do observe an ischemic time effect on the data. Overall, however, we
observe that strong tissue-specific expression profiles, representative of living tissues, are
maintained in the postmortem GTEx samples. LV = left ventricle, Sk = skeletal.

A
GTEXx Tissues (Model)
GTEx
Tissues Blood Blood Heart Muscle
(test) Adipose  (Ante) (Post)  Breast (LV) Lung (Sk) Skin Thyroid
Adipose 93 0 0 0 0 0 0 0 0
Blood-Ante 0 69 0 0 0 0 0 0 0
Blood-Post 0 0 74 0 0 0 0 0 0
Breast 1 0 0 20 0 0 0 0 0
Heart (LV) 0 0 0 0 84 0 0 0 0
Lung 0 0 0 0 0 119 0 0 0
Muscle (Sk) 0 0 0 0 0 0 136 0 0
Skin 0 0 0 0 0 0 0 95 0
Thyroid 0 0 0 0 0 0 0 0 107
B
GTEXx Tissues (Model)
External
Tissues Blood Blood Heart Muscle
(test) Adipose (Ante) (Post)  Breast (LV) Lung (Sk) Skin Thyroid
Adipose 43 0 0 0 0 0 1 0 0
Blood 0 166 3 0 0 0 0 0 0
Breast 4 0 0 9 0 0 0 0 0
Heart (LV) 0 0 0 0 24 0 0 0 0
Lung 0 0 1 0 0 69 0 0 0
Muscle (Sk) 0 0 0 0 0 0 137 2 0
Skin 1 0 0 0 0 0 122 0
Thyroid 0 0 0 0 0 0 0 0 26
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Table S4 Top Expressed genes. The hundred most expressed genes in each tissue and their
cumulative contribution to the global amount of gene expression in that tissue. Table is an excel
file.

Table S5. Tissue preferentially expressed genes. We used NOISeq to call a gene tissue
preferentially expressed by comparing the samples from a given tissue to those samples from
the rest of the tissues. The table shows all instances where the mean expression of the gene
in the tested tissue was significantly higher (FDR<0.01 and a log2 fold change >= 4) than in
the samples from the rest of the tissues. Table is an excel file.

Table S6. Tissue exclusive expressed genes. Genes with high tissue specificity (phi>=0.95)
or tissue anti-specificity (phi < -0.95). For each pair (gene, tissue) the phi statistic is computed
from a 2x2 contingency table that includes the number of samples from the tissue in which the
gene is expressed (RPKM=>0.1) and not expressed (RPKM<0.1), and the number of samples
from the rest of the tissues in which the gene is expressed and not expressed. Values of phi
>=0.95 indicate that the gene is expressed in (nearly) all samples from the tissue (it is
exclusive of the tissue), and in (nearly) no samples from the rest of the tissues. Genes with phi
< -0.95 indicate that it is (nearly) not expressed in samples from the tissue and it is expressed
in (nearly) all samples form the rest of the tissues. Table is an excel file.

Table S7. Number of tissue exclusive expressed genes with different expression
thresholds. Number of genes with high tissue specificity (phi>=0.95) or tissue anti-specificity (phi
< -0.95) using different thresholds to consider a gene expressed (threshold expressed) or not
expressed (threshold not expressed). For each pair (gene, tissue) the phi statistic is computed
from a 2x2 contingency table that includes the number of samples from the tissue in which the
gene is expressed (RPKM> threshold expressed) and not expressed (RPKM< threshold not
expressed), and the number of samples from the rest of the tissues in which the gene is
expressed and not expressed. For all thresholds, most tissue exclusive genes are from Testis.
Table is an excel file.
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Table S8. Repeat expression and correlation with nearby genes. Columns 3-5, number of
significantly correlated (Pearson p-val<0.05) repeats and closest gene (average distance 2.8
Kb). Percentage in parenthesis represent the number of repeats correlated with a gene nearby
with respect to the number of repeats experessed in that tissue. Column 6, the number of
repeat families with significant instances of co-expression. Columns 7-9, intersection of the
two analysis above: the number of repeats whose expression is associated with the gene
nearby and co-expressed with the other instances of its family. Columns 10-12, "Upstream
candidates" refer to repeats with family co-expression, located more than 3kb upstream of the
associated gene. Skin has similar numbers of expressed repeats than the other tissues but
has half as much repeat-gene association compared to the other tissues (only 1.1% of the
repeats that are expressed are co-expressed with a gene).

comelation | FePSRL | enes and repests .
between genes ef:;::i:ig-n and between_repeats and_ Upstream candidates
and repeats elements of their repeat family
Tissue re# pzfat gz:;s reﬁ:afts # fc;:ﬁipeesat gz:;s reﬁ:afts re# Rz_fat gz:;s reﬁ:afts re# Rz_fat
expressed (%) (%) families (%) families
Adipose 122830 1300 (281502) 213 591 (01.253/0) 111 27 (0.32%) 27
Artery 118196 1513 ‘g}? 305 783 (} _43%2) 187 34 (0_0%33% ) 36
Blood 60313 345 (18_200/0) 98 91 (01_;30) 23 4 (0_00%9%) 4
Brain 98754 938 (2250/10) 271 303 (0i178(3’/o) 118 21 (0_03311 %) 20
Heart 103411 1074 (3?25"2) 252 590 (: _11‘3,2) 128 20 (0_0333_’2% ) 23
Lung 134514 1443 (;1228"/10) 240 729 (01335/0) 125 24 (0_0221 %) 20
Muscle 81594 1272 (22302) 169 389 (05.330) 75 17 (0_02351 %) 11
Nerve 145566 1246 (22802) 237 521 (0%911&) 136 42 (0.07408%) 31
Skin 113784 470 (: 21%/60) 235 214 (03307/0) 81 5 (0_00‘14%) 5
Thyroid 143520 1425 (3%502) 233 737 (01323/0) 121 36 (0_07531 %) 32
All 209541 3046 (15025/3 592 1731 (?%i/so) 379 136 (0_217;;/0) 97
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Table S9. Contribution of individual and tissue to variation in gene expression of
protein coding and IncRNAs. Relative contribution of individual, tissue and residual to the
variance in gene expression. Table is an excel file.

Table S10. Genes differentially expressed between males and females (FDR <0.05)
Table is an excel file.

Table S11. Genes differentially expressed between African American and individuals of
European ancestry (FDR<0.05). Table is an excel file.

Table S12. Genes differentially expressed across age. Genes that changed (FDR<0.05)
expression with age across all GTEXx tissues based on LMM analysis. Table is an excel file.

Table S13. Genes differentially expressed between males and females within each
tissue (FDR<0.05). Table is an excel file.

Table S14. Genes differentially expressed between African American and individuals of
European ancestry within each tissue (FDR<0.05). Table is an excel file.

Table S15. Tissue preferential Exon Inclusion. Number of exons differentially included
between a given tissue and the remaining tissues. An exon is considered to be differentially
included if FDR < 0.01 and APSI>0.1 Table is an excel file.

Table S16. Tissue exclusive Exon Inclusion. Number of exons that have high tissue
exclusivity (phi>=0.95) or tissue anti-exclusivity (phi <-0.95) Table is an excel file.

Table S17. Individual and Tissue contribution to variation of splicing in protein coding
genes. Table is an excel file

Table S18. GO enrichment analysis for genes with high contribution of individual to
splicing variation. Analysis was carried out with the 139 genes that could be mapped in the
DAVID database. Twenty-nine clusters were detected. The figure shows the first 2 most
enriched clusters. The first cluster has 9-fold enrichment for functions related to translation and
the ribosomes. Table is an excel file.
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Table S19. Number of genes changing major isoform between tissues. Top right, the
isoform switch involves changes in the coding sequence. Bottom left, the isoform switch involves
changes in the 3'UTR, 5’UTR or the coding sequence.

At(ijsizzze Blood | Artery | Brain | Heart | Lung | Muscle | Nerve | Skin | Thyroid

At?si';ﬂze 47 3 63 | 21 14 22 10 | 21 21
Blood 53 54 113 | 46 40 47 80 45 68
Artery 3 57 62 24 16 30 11 67 50
Brain 71 121 74 59 57 85 54 67 50
Heart 27 84 29 64 25 20 36 34 33
Lung 14 44 18 65 31 52 23 22 13
Muscle 30 53 37 95 22 62 42 51 58
Nerve 11 87 14 58 39 24 47 30 25

Skin 26 53 45 76 45 25 63 38 28
Thyroid 25 76 38 54 40 14 70 29 37
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Table S20. GENCODE gene biotypes. Gene classification based on GENCODE 12 biotypes.

Gene Group Number gencode gene types
protein_coding 20110 protein_coding
pseudogene 12648 pseudogene
IncRNA 11790 3prime_overlapping_ncrna, antisense, lincRNA,
non_coding, processed_transcript, sense_intronic,
sense_overlapping
smallRNA 6963 Mt_rRNA, Mt_tRNA, miRNA, misc_RNA, rRNA,
snBNA, snoRNA
smallRNA_pseudogene 1838 Mt_tRNA_pseudogene, miRNA_pseudogene,
misc_RNA_pseudogene, rRNA_pseudogene,
scRNA_pseudogene, snRNA_pseudogene,
snoRNA_pseudogene, tRNA_pseudogene
IGorTR 364 IG_C_gene, IG_D_gene, IG_J_gene, IG_V_gene,
TR_C_gene, TR_D_gene, TR_J_gene, TR_V_gene
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