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Supplementary Note 1: NCI-DREAM Drug Sensitivity 
Prediction Methods 

Kernel method 1 

Summary 
Multiple views of the genomic datasets were generated, training and predictions 
were made using a kernelized regression method that combines multitask and 
multiview learning, and uses Bayesian inference to estimate model parameters.  
 
Introduction 
When there are multiple outputs or related tasks (here, predicting sensitivities of 
cell lines against a number of drugs), one can consider learning them 
simultaneously instead of treating them as independent problems, which is 
known as multitask learning. It is expected to perform better than learning 
independent models due to the possibility of capturing the correlation between 
different outputs or tasks during training. When multiple representations for data 
samples are available, instead of using a single representation, it is possible to 
learn a model of the underlying phenomena using all of the representations 
together, which is known as multiview learning. There are different multiview 
learning strategies, and multiple kernel learning is a principled way of combining 
multiview learning and kernel-based learning to introduce nonlinearity into the 
model1. Since the challenge problem included both multiple outputs and multiple 
input representations, we integrated multitask learning and multiview learning 
into a kernelized regression model. We formulate a novel probabilistic algorithm 
that uses a common similarity measure among the tasks (outputs) by sharing the 
weights over the kernels calculated on different representations. 
 
Methods 
Bayesian multitask multiple kernel learning: In order to obtain a Bayesian 
multitask multiple kernel learning algorithm, a fully conjugate probabilistic model 
is formulated and a deterministic variational approximation mechanism is used 
for inference. Figure K1 illustrates the proposed probabilistic model with a 
graphical model. The main idea is to calculate intermediate outputs from each 
kernel using the same set of sample weight parameters and to combine these 
intermediate outputs using the kernel weights and the biases to estimate the 
target outputs2.  
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Figure K1 Graphical model of Bayesian multitask multiple kernel learning. The 
shaded nodes are observed variables while the other nodes are random 
variables. 

 
The notation used is as follows: the subscripts 𝑡, 𝑖, and 𝑘 index tasks, training 
samples, and kernels, respectively. The numbers of tasks, training samples for 
each task, and input kernels are denoted by 𝑇, 𝑁!, and 𝐾, respectively. The 
𝑁!  ×  𝑁! kernel matrices for each task-view pair are denoted by 𝐾!,!. The 𝑁!  ×  1 
vectors of weight parameters 𝑎!,! and their priors 𝜆!,!   are denoted by 𝑎!  and 𝜆!, 
respectively. The precision priors for intermediate outputs are denoted by 𝜐!. The 
𝑁!  ×  𝐾  matrices of intermediate outputs are represented as 𝐺!, where the 
columns of 𝐺! are represented as 𝑔!,!. The bias parameters and their priors are 
denoted by 𝑏! and 𝛾!, respectively. The 𝐾  ×  1 vectors of kernel weights 𝑒! and 
their priors 𝜔!   are denoted by 𝑒 and 𝜔, respectively. The precision priors for 
target outputs are denoted by 𝜀!. The 𝑁!  ×  1 vectors of target outputs are 
represented as 𝑦!. 
 
The distributional assumptions of the proposed model are defined as 

𝜆!,!   ~  𝒢 𝜆!,!;   𝛼!,𝛽!         ∀(𝑡, 𝑖)  
𝑎!,!|𝜆!,!   ~  𝒩 𝑎!,!;   0, 𝜆!,!!!         ∀(𝑡, 𝑖)  
𝜐!  ~  𝒢 𝜐!;   𝛼!,𝛽!         ∀𝑡  
𝑔!,!|𝑎! ,𝐾!,! , 𝜐!~  𝒩 𝑔!,!;   𝐾!,!𝑎! , 𝜐!!!𝐼         ∀(𝑡, 𝑘) 

𝛾!  ~  𝒢 𝛾!;   𝛼! ,𝛽!         ∀𝑡     
𝑏!|𝛾!  ~  𝒩 𝑏!;   0, 𝛾!!!         ∀𝑡 
𝜔!   ~  𝒢 𝜔!;   𝛼! ,𝛽!         ∀𝑘 
𝑒!|𝜔!   ~  𝒩 𝑒!;   0,𝜔!!!         ∀𝑘 
𝜀!  ~  𝒢 𝜀!;   𝛼! ,𝛽!         ∀𝑡 

𝑦!|𝑏! , 𝑒,𝐺! , 𝜀!~  𝒢 𝑦!;    𝑒!𝑔!,!

!

!!!

+ 𝑏!1, 𝜀!!!𝐼         ∀𝑡 

where 𝒩 ⋅;   𝜇, Σ  represents the normal distribution with mean vector 𝜇 and 
covariance matrix Σ, and 𝒢 ⋅;   𝛼,𝛽  denotes the gamma distribution with the 

ωk

ek

Kt,kλt at

υt gt,k

γt bt yt ϵt

tasks
kernels
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shape parameter 𝛼 and the scale parameter 𝛽. 

Learning model parameters:  Exact inference for the probabilistic model is 
intractable and using Gibbs sampling is computationally expensive. We instead 
formulate a deterministic variational approximation, which is more efficient in 
terms of computation time. The variational methods maximize a lower bound on 
the marginal likelihood using a factored approximation of the posteriors to find 
the joint parameter distributions3. We can write the factorable ensemble 
approximation of the required posterior by defining each factor in the ensemble 
just like its full conditional distribution. We can bound the marginal likelihood 
using Jensen’s inequality and optimize this bound by maximizing with respect to 
each factor iteratively until convergence. For the proposed model, thanks to the 
full conjugacy, the resulting approximate posterior distribution of each factor 
follows the same distribution as the corresponding factor. 
 
Formulating the challenge as a multitask multiple kernel learning problem: 
The problem of predicting cell line sensitivities against different drugs can be cast 
into multitask multiple kernel learning. In addition to the genomic measurement 
data, three types of knowledge-enhanced data views were computed from the 
measurement data: (i) gene set views aggregating measurements across 
functionally related genes as defined in C2 and CP collections from MSigDB4, (ii) 
measurement combination views integrating expression with copy number 
variation or DNA methylation, using the PARADIGM tool5 and gene-wise 
multiplication, and (iii) transformation of continuous data into present-absent 
calls. This resulted in 22 data views in total. 
 
Each of the views were used to calculate a kernel between cell lines, using the 
Gaussian kernel for real-valued data and the Jaccard similarity coefficient for 
binary-valued data. Drugs are considered to be the tasks in multitask formulation. 
For this particular problem, the notation defined for tasks, kernels, and cell lines 
can be interpreted as follows: 

• 𝑡: the index for drugs, 
• 𝑘: the index for genomic views, 
• 𝑖: the index for cell lines, 
• 𝑇: the number of drugs, 
• 𝐾: the number of genomic views, 
• 𝑁: the number of cell lines in the training set. 

After learning the shared kernel weights 𝒆, the drug-specific cell line weights 𝒂!, 
and the drug-specific biases 𝑏!, the sensitivity values for test cell lines can be 
calculated. The predicted sensitivity values are converted into rankings by sorting 
them. 
 
Calculating similarities between cell lines: For real-valued genomic views, the 
training samples are first normalized to zero mean and unit standard deviation 
using 𝑧-normalization. Then, the similarity between cell lines is calculated using 
the Gaussian kernel, which is defined as  

Nature Biotechnology: doi:10.1038/nbt.2877
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𝑘!,! 𝑥!,!,! , 𝑥!,!,! = exp −
||𝑥!,!,! −   𝑥!,!,!||!

2𝜎!,!!
        ∀(𝑡, 𝑘, 𝑖, 𝑗) 

where 𝜎!,!!  is set to the dimensionality (i.e., the number of features) of the 
corresponding genomic view.  
 
For binary-valued genomic views, the similarity between cell lines is calculated 
on the original training samples using the Jaccard similarity coefficient, which is 
defined as 

𝑘!,! 𝑥!,!,! , 𝑥!,!,! =
𝑥!,!,!! 𝑥!,!,!

𝑥!,!,!! 𝑥!,!,! + 𝑥!,!,!! 𝑥!,!,! − 𝑥!,!,!! 𝑥!,!,!
        ∀(𝑡, 𝑘, 𝑖, 𝑗) 

where it is guaranteed to take values between 0 and 1, similar to the Gaussian 
kernel. 
 
Discussion 
In post-analysis the nonlinearity due to the kernels turned out to have the largest 
impact on the model performance, followed by multitask learning and (weighted) 
multiple kernel learning. The learned combination of data views performed better 
than any individual data view. Gene expression was the most informative original 
data view, but further performance was gained by integrating it with gene set 
views of the same data. Prediction performance varied across drugs, but was 
above team average for drugs with wider dynamic range. Further improvements 
by designing views and selecting features are conceivable. 

Kernel method 3 

Summary  
Separate normalizations were applied to each dataset, several SVM classifiers 
were independently trained (varying kernels and input data), and final predictions 
were made using a weighted average of all SVM outputs. 
 
Introduction 
The NCI-DREAM challenge is to train a robust classifier that predicts dose 
responses from the supplied genomic datasets. We have used support vector 
machines (SVM)6 for this supervised regression problem, as SVMs are robust 
machine learning tools for learning supervised data and are able to capture 
linear, as well as various non-linear relationships with the use of different kernels. 
Publicly available libSVM library for MATLAB was used for our implementation.7 
 
One challenge is that six genomic datasets are available, each of which could be 
processed in different ways, and further, different SVM kernels may be more or 
less appropriate for different datasets (see Table K3). For effective prediction, 
the optimal combination of these parameters needs to be discovered. To address 
this problem, we used an computationally expesive cross-validation (CV) 
approach that separately trains a classifier and predicts dose response for the 
test cell lines for all these combinations, evaluates the classifiers for each 
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combination on the training dataset, and then integrates the predictions on the 
test cell lines based on the evaluations.  
 
Methods 
Setting model parameters:  For each drug, several different models were 
evaluated based on dataset, data normalization, and SVM parameters (see 
Table K3). 
 
Table K3: All combination setups of dataset, data normalization and SVM 
kernel parameter 
Datasets Data Normalization (L2 

normalization of genes x 
cell lines matrix) 

SVM kernel parameter 

Gene expression Raw Linear x 3  
(c = 1, 10, 100) 

Methylation Row (gene) normalization Polynomial x 3 
(c = 1, 10, 100) 

RNAseq Col (cell line) normalization Radial x 3  
(c = 1, 10, 100) 

RPPA Row-col normalization 
(normalized row first the 
column) 

Sigmoid x 3  
(c = 1, 10, 100) 

Exome seq  (Mismatch(alt) 
- Mismatch(ref) was used) 

Col-row normalization 
(normalized column first the 
row) 

 

 
Learning parameters through cross-validation:  For training purposes, the 
training drug response data was randomly divided into two sets: training and test. 
An SVM was trained on the training set using 20 iterations of bagging.8  Each 
iteration of bagging used 80% of the training set, and the SVM model was used 
to predict drug response results on the held out test half. The median of the 20 
values was used as the actual prediction. The full learning process was repeated 
20 times. For each repeat, the SVM predictions on the test set were evaluated. 
For each drug, the number of times (out of 20 runs) the prediction had Pearson 
correlation coefficient > 0.5 and p-value < 0.05 was counted and used for 
weighting models to integrate predictions.  
 
Integrating predictions from all models:  SVM with 80% bagging (100 
iterations) was run on the complete training data across different parameters 
outlined in Table K3. The predictions appeared to have a different distribution 
compared to the training data, so the predictions were linearly transformed such 
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that the mean and the standard deviation of the dose response predictions for a 
compound was equal to that of the training set. The predictions were then 
combined using a weighted average over all SVM configurations. The counts (out 
of 20) for each model evaluated using CV were used as weights for this linear 
combination. 
 
Dealing with trivial exceptions:  Some drugs had flat GI50 distributions (Drugs: 
5, 12, 13, 24, 26, 27). For these drugs, the median drug response was assigned 
to all test cell lines and ranks for these drugs were arbitrary. 
 
Discussion 
We used an approach that involves learning across a combination of several 
dataset/normalization/SVM parameter choices, and then integrating the 
predictions based on their CV performance. We found that the predictions from 
this approach were substantially better than random predictions. Furthermore, we 
found that this approach was more robust to over-fitting compared to the 
alternative approach of choosing the combination that shows the best 
performance or uniform averaging. Another advantage of this approach is that 
each SVM combination is independent, so the approach can be easily distributed 
across processors. 
 
One difficulty in applying this approach (as well as many alternatives) is the 
relatively small number of training examples, which was exacerbated by cross 
validating with sub-sampled sets based on the drug response training data. 
Presumably, an SVM would perform significantly better when presented with 
larger numbers of training and test cell lines. 

Kernel method 4 

Summary  
Bidirectional search was used to select features, training and prediction was 
done using a support vector machine (SVM; radial basis).  
 
Introduction 
Due to the large number of features in the NCI-DREAM datasets, it is 
computationally infeasible to enumerate all possible feature subsets from the 
different datasets to determine the optimal features for prediction. Therefore, a 
heuristic bidirectional search was used to find a solution close to the optima (e.g., 
subset of features)9 that predicts the effect of the drug compounds on the 
untested breast cancer cell lines. Bidirectional search combines sequential 
forward and backward selections to find a locally optimal set of features. The 
bidirectional search was applied on the genomics profiling datasets (excluding 
exome seq) to create an ensemble approach in which the results were combined 
by averaging the ranks. The motivation for using an ensemble model is to 
facilitate the handling of the diverse sets of data,10 where each exhibits different 

Nature Biotechnology: doi:10.1038/nbt.2877



	
   9	
  

characteristics and properties. Support vector machine was used to assess the 
quality of the subsets of features.7 
 
Methods 
Feature Selection:  Bidirectional search is a parallel implementation of 
sequential forward (performed from an empty set) and backward selection 
(performed from a full set). This feature selection method was applied on five 
different datasets (RNA seq, DNA methylation, RPPA, copy number variation, 
and gene expression). For the algorithm to converge to the same solution, 
features already selected by sequential forward selection were not removed by 
the sequential backward selection. Similarly, features removed by sequential 
backward selection were not selected by the sequential forward selection. 
Missing values in the dataset were removed prior to applying the bidirectional 
search. 
 
Algorithm – Sequential Forward Selection (SFS) 

1-­‐ Start with an empty set of features 𝐹!"! =   ∅	
  
2- Select the best feature 

- 𝑏𝑒𝑠𝑡!"#$%&" =   𝑎𝑟𝑔 𝑚𝑎𝑥 𝐸𝑣𝑎𝑙𝑓𝑥𝑛 𝐹!"!! +   𝑏𝑒𝑠𝑡!"#$%&"   |  𝑏𝑒𝑠𝑡!"#$%&"   ∈   𝐹!"!   
- 𝐹!"!!!! =   𝐹!"!! +   𝑏𝑒𝑠𝑡!"#$%&" 

Sequential forward selection (SFS), a greedy search algorithm, initially starts with 
an empty set of features FSFS and sequentially selects the best feature that 
minimizes the mean squared error, the difference between the predicted and true 
compound dose response. 
 
Algorithm – Sequential Backward Selection (SBS) 

1- Start with a full set of features 𝐹!"! = {𝐴𝑙𝑙  𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠} 
2- Select the worst feature 

- 𝑤𝑜𝑟𝑠𝑡!"#$%&" =   𝑎𝑟𝑔 𝑚𝑎𝑥 𝐸𝑣𝑎𝑙𝑓𝑥𝑛 𝐹!"!! −   𝑤𝑜𝑟𝑠𝑡!"#$%&"   |  𝑤𝑜𝑟𝑠𝑡!"#$%&"   ∈   𝐹!"!   
- 𝐹!"!!!! =   𝐹!"!! −   𝑤𝑜𝑟𝑠𝑡!"#$%&" 

Sequential backward selection (SBS), a greedy search algorithm, initially starts 
with a full set of features FSBS and sequentially removes the worst feature that 
maximizes the mean squared error. 
 
Algorithm – Bidirectional search 

1-­‐ Apply sequential forward selection starting with 𝐹!"! =   ∅	
  
2- Apply sequential backward selection starting with 𝐹!"! = {𝐴𝑙𝑙  𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠} 
3- Select the best feature 

𝑏𝑒𝑠𝑡!"#$%&" =   𝑎𝑟𝑔 𝑚𝑎𝑥 𝐸𝑣𝑎𝑙𝑓𝑥𝑛 𝐹!"!! +   𝑏𝑒𝑠𝑡!"#$%&"   |  𝑏𝑒𝑠𝑡!"#$%&"   ∈   𝐹!"!  &    𝑏𝑒𝑠𝑡!"#$%&" ∈ 𝐹!"! 

𝐹!"!!!! =   𝐹!"!! +   𝑏𝑒𝑠𝑡!"#$%&" 

4- Select the worst feature 
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𝑤𝑜𝑟𝑠𝑡!"#$%&"
=   𝑎𝑟𝑔 𝑚𝑎𝑥 𝐸𝑣𝑎𝑙𝑓𝑥𝑛 𝐹!"!! −   𝑤𝑜𝑟𝑠𝑡!"#$%&"   |  𝑤𝑜𝑟𝑠𝑡!"#$%&"   ∈   𝐹!!"  &  𝑤𝑜𝑟𝑠𝑡!"#$%&"   ∈   𝐹!"!   

𝐹!"!!!! =   𝐹!"!! −   𝑤𝑜𝑟𝑠𝑡!"#$%&" 

Bidirectional search applies sequential forward and backward selections until the 
subset of features converges. 
 
Prediction and ranking:  A support vector machine was used to predict the 
sensitivity of different breast cancer cell lines to the drug compounds. SVM was 
trained on 35 breast cancer cell lines (i.e., training set) and applied to predict the 
sensitivity of the remaining 18 cell lines (i.e., test set). Mean squared error was 
used to assess the quality of the features in the training set. Since the underlying 
structure of the data is nonlinear, SVM maps the data to a higher dimensional 
space through the kernel function and then applies linear regression in this 
mapped space to predict the sensitivity; the kernel used was radial basis 
function: 𝑒!!∗|!!!|! where  𝛾 =    !

#  !"  !"#$%&"'
 . 

 
The bidirectional search and SVM predictions provided five ranked lists that 
corresponded to the sensitivity of the breast cancer cell lines to each drug 
compound. The average rank of the different breast cancer cell lines across the 
five ranked lists were averaged and combined into a final ranked list. We sorted 
the 53 cell lines from the most sensitive to the least sensitive with respect to each 
individual drug. 
 
Discussion 
Bidirectional search is a good heuristic approach for obtaining solutions close to 
the optimal. Missing values presents a disadvantage to the method proposed and 
degrades its general performance. Therefore in future, strategies to address 
missing values could increase the general performance of the bidirectional 
search algorithm. 

Nonlinear regression 1  

Summary  
Features were randomly selected to built an ensemble of un-pruned regression 
trees for each dataset, missing values were imputed, weights for the models 
were calculated, final predictions were made using a weighted sum of the 
individual models. 
 
Introduction 
The underlying methodology used is a Random Forest (RF) regression model.11 
Since RF generally provides good predictive performance for high number of 
variables, it is well suited for processing large-scale genomic data with more 
features than samples, as is the case with NCI-DREAM datasets. We also used 
a linear regression based approach to combine RF predictions from different 
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datasets (e.g., gene expression, methylation, etc.). Missing data were imputed 
using an average of highest and lowest expressions for that feature. 
 
Methods 
Database combination: For each training database provided, we integrated 
them with the drug response training data to generate a merged database, which 
was used for training and prediction. The cell lines in the new database are 
categorized by three categories: (C1) cell lines that have both genomic 
characterization and drug sensitivity information, (R1) cell lines that have only 
genomic characterization, and (R2) cell lines that have only drug sensitivity 
information. The number of cell lines in category C1 is often less than 35 due to 
the presence of “NA” values in drug sensitivity data or missing genomic 
characterizations.   

Feature selection: For each combined database, we use the C1 category to 
select features by random forests. First, we select n = 500 bootstrap samples 
from the original data. Then, we build an ensemble of un-pruned regression 
trees.11, 12 Each of these trees is built on bootstrap samples. A random subset of 
all the features is used for splitting the tree nodes. For each node of the tree, we 
randomly select m features to base the decision at that node. The m was 
selected to be log2M+1, where M is the number of input features.  

Regression: After selecting the features, we apply random forest regression 
algorithm (a nonlinear multiple regression approach) to generate the prediction 
model. Random forests are built by growing trees depending on a random vector
Θ ,such that the tree predictor, ),( Θxh , takes on numerical values as opposed to 
class labels. ℎ(𝑋) is the average tree response of k trees corresponding to a 
response variable Y. The mean-squared generalized error for any numerical 
predictor, ℎ 𝑋 =   𝐸!,!(𝑌 − ℎ(𝑋))!. The requirement for accurate regression 
forest is to lower correlation between residuals and low error trees.12 

Prediction and ranking: Let f be the prediction model obtained by the above 
regression algorithm for each combined training database. To sufficiently utilize 
the information in different databases, we produce a weight-based integrated 
model for prediction. We use least square regression to estimate the weights for 
each f by minimizing ∑ ∑−

j i
iij fWa 2)( , where aj is the actual drug response and 𝑊! 

is the corresponding weight of 𝑓!. Additionally, for validation, we use leave-one-
out cross-validation (CV) to estimate prediction errors of not only the weight-
based integrated model but also the individual models that uses only its own 
training information. In other words, the N training genomic characterizations can 
generate 2N-1 prediction errors and we select the model with the minimum 
prediction error as the final prediction model. Cell lines were ranked on their 
predicted GI50 values per drug. 
 
Discussion 
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Based on the leave-one-out CV, it appears that the gene expression and 
methylation datasets are more informative than the remaining datasets. The final 
model obtained for each drug usually ranged from 0 to 0.2, which represents a 
high accuracy prediction by RF. Since leave-one-out CV estimations for small 
samples can have a huge variance, for future work, we will test the robustness of 
the applied approach on other drug sensitivity datasets.  

Nonlinear regression 2 

Summary 
Features were filtered based on their correlation to dose response, random 
forests were trained for each dataset, missing values were imputed, final 
rankings were based on a ensemble score from 4 individual dataset models. 
 
Introduction 
Our method represents a two-step modeling approach. First, each of the six 
classes of genomics data and the known drug response profiles were used to 
build dataset specific models for predicting cell line drug response. Second, the 
predicted ranks from each model were summarized in the form of rank-product to 
produce the final score. Based on our previous studies, the information provided 
from each class of genomics data are complementary and important. If we pool 
all genomic data to build a single model, datasets that contain fewer variables will 
be overshadowed by dataset that contain many variables, thus, our strategy is to 
build models separately, and then combine the predicted ranks. We used random 
forests to build models from each genomics dataset and used penalized 
regression to build a model from the known drug response profiling data.  
 
Methods 
In this model, we used all the provided genomics data, namely, gene expression, 
methylation, RNA seqs, RPPA, CNV, exome seq, and the drug response matrix. 
Additionally, we used an expanded set of drug response data provided in the 
supplementary file of Heiser, et al.13  
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Figure N2. Schematic representation of the Nonlinear regression 2 method 

 
The following steps describe our method, where the numbers listed below 
correspond to the numbers in Figure N2. 

1. Gene selection: For each genomic dataset and drug pair, we calculated the 
correlation between each feature and the cell line drug responses and 
assigned p-values. The false discovery rate (FDR) was calculated from a 
beta-uniform mixture model.14 All features that passed the FDR criteria 
(FDR<10%) were included in the model construction. If there are fewer than 
100 features being identified at 10% FDR, we used the top 100 probes 
ranked according to p-values.  

2. Development of models based on genetic data: For each genomic dataset 
and drug, a random forest regression model (randomForest R package, 
default parameters were used) was built to establish correlations between 
genomic data and drug responses. Cell lines with no drug data were deleted 
before modeling.  

3. Development of the models based on drug response profiles: There is 
drug response data for 29 out of the 35 training set cell lines reported in 
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Heiser, et al.13 One cell line had too few measured GI50s, and was removed 
from the model construction. Similarly, drugs with few measurements on cell 
lines were also removed. The final drug response profiling matrix included 28 
cell lines and 62 drugs. The k-nearest neighbors (KNN) approach was used to 
impute missing values in the profiling matrix, and a penalized regression 
model was built for each of the 62 drugs.  

4. Consensus ranking from individual predictions: We used the product of 
the rank from each model to determine a composite score. The results from 
Exome Seq and Methylation data was not included in the composite score 
due to their poor performance in leave-one-out cross-validation in the training 
set. Finally, we rank cell lines based on the composite score.  

 
Discussion 
Based on our results from the leave-one-out cross-validation analysis in the 
training set, we found that the model developed from known drug response 
profiling data performs the best, while the model using RNAseq data showed the 
best performance among the 6 genomic models. Our result suggests that the 
information derived from the known drug response profiling data is important for 
accurately predicting cell lines’ responses to new drugs. It could be due to the 
fact that all the genetic information provided was obtained at the baseline state 
(before treated with any compound). Only the model built from known drug 
responses provides direct information on cell lines’ behavior under perturbation. 
Although the information is limited, as there are only data for 74 drugs from 
Heiser, et al.,13 they are still very helpful.  
 
Based on our results, we think it would be interesting to incorporate two types of 
information, and see whether they will be helpful to improve our current model. 
The first is to include pathway information in modeling. Knowledge from 
biological pathways can be useful for gene selection and gene clustering. The 
second is to utilize the provided cell lines that are resistant to compound 
treatments. Our current model only used this information during feature (gene) 
selection before any modeling. Another piece of information that cannot be 
applied in this challenge, but should be otherwise useful in real world screening, 
is the chemical features of the compounds. As similar compounds tend to trigger 
similar biological responses, a model built from a compound’s chemical features 
will also provide predictive information on cell line responses.  

Nonlinear regression 3 

Summary 
Features were filtered based on their correlation to dose response, random 
forests were trained for each dataset, missing values were imputed, final 
rankings were based on a composite score from 5 individual dataset models. 
 
Methods 
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This method is a modification of the approach presented in Nonlinear regression 
2. In the Nonlinear regression 2 method, the final cell line ranking was based on 
the composite score from 4 genomics datasets, include gene expression, RNA 
seqs, RPPA, and CNV. The predictions made from this model are based on a 
final composite score including 5 genomics datasets, including gene expression, 
RNA seqs, RPPA, CNV, and methylation.  

Nonlinear regression 4 

Summary 
Features were filtered based on their correlation to dose response, random 
forests were trained for each dataset, missing values were imputed, final 
rankings were based on a composite score from 5 individual dataset models. 
 
Methods 
This method is a modification of the approach presented in Nonlinear regression 
2. In the Nonlinear regression 2 method, the final cell line ranking was based on 
the composite score from 4 genomics datasets, include gene expression, RNA 
seqs, RPPA, and CNV. The predictions made from this model are based on a 
final composite score including 5 genomics datasets, including gene expression, 
RNA seqs, RPPA, CNV, and exome seq.  

Nonlinear regression 5 

Summary 
Features were filtered based on their correlation to dose response, random 
forests were trained for each dataset, missing values were imputed, final 
rankings were based on a composite score from individual dataset models. 
 
Methods 
This method is a modification of the approach presented in Nonlinear regression 
2. In the Nonlinear regression 2 method, the final cell line ranking was based on 
the composite score from 4 genomics datasets, include gene expression, RNA 
seqs, RPPA, and CNV. The predictions made from this model are based on a 
final composite score including all 6 genomics datasets, including gene 
expression, RNA seqs, RPPA, CNV, exome seq, and methylation.  

Nonlinear regression 6 

Summary 
Gene features were selected using linear regression and maximal information 
coefficient, pathway information was also used to derive features, training and 
prediction was done using a random forest model 
 
Introduction 
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Our approach employs a basic machine-learning algorithm with features that 
show high correlation with drug sensitivity and features aggregated at the 
pathway level. Because no information was provided on the drugs used in the 
challenge, we focused on the similarities and differences among the cell lines to 
predict the drug sensitivity (GI50) of each cell line. Our fundamental assumption 
was that certain features such as expression level or mutation state of genes 
would directly affect drug sensitivity,15, 16 while other features would affect drug 
sensitivity by changing the functional activity of a cell.13, 17 Therefore, we selected 
and used two kinds of features—features highly correlated with drug sensitivity 
and pathway-level features. We used a random forest model based on selected 
highly correlated features and pathway-level features to predict the sensitivity of 
a cell line to each drug. We ranked each cell line according to the drug sensitivity 
values predicted by trained random forest models.  
 
Methods 
The overall machine learning process is illustrated in Figure N6. Our method can 
be divided into 3 parts: feature generation, model training, and prediction. 
Because the number of available features for each cell line is large relative to the 
number of cell lines, overfitting is a problem. We used feature filtering and feature 
elimination methods to address this problem. The random forest model was used 
for training prediction models and predicting drug sensitivity. 
 
To filter the features of each cell line, we used linear regression and maximal 
information coefficient (MIC).18 We used linear regression to select the features 
linearly correlated with the sensitivity for each drug (FDR < 0.05); however, with 
this approach, only linearly correlated features can be selected. To identify 
features that have nonlinear correlation to drug sensitivity, we applied the MIC5 
method on each dataset for each drug and selected features that had strong 
association with drug sensitivity (correlation coefficient > 0.8). After this feature-
filtering step, features linearly or nonlinearly correlated with drug sensitivity for 
each drug were compiled for each cell line. 
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Figure N6. Schematic process diagram of the Nonlinear regression 6 method 

Because we assume that the functional activity of a cell contributes to its drug 
sensitivity, we calculated the functional features using well-annotated pathway 
databases. Gene expression data and exome sequencing data were mapped to 
each pathway. We used the PathOlogist17 tool to calculate each cell line’s 
pathway-level activity and consistency using gene expression data. Pathway 
information from KEGG, NCI-PID, and Biocarta databases (total pathways: 621) 
were used as input to PathOlogist. Pathway level mutation status was also 
considered. The number of mutated genes in a pathway was calculated for each 
pathway using MsigDB: c2-cp pathway (total pathways: 880), and the numbers of 
mutated genes in each pathway were used as features along with the pathway 
activity and pathway consistency features calculated with PathOlogist. 
We trained 1 to 3 models per drug owing to the incomplete data for each test cell 
line. We divided test cell lines into 3 groups as follows: cell lines with all data; cell 
lines with mutation, expression, copy number data; and cell lines with mutation 
data only. Random forest models were trained for each group of training cell lines 
if the number of available cell lines in each group was more than 13. We 
randomly sampled 3 cell lines from each group of cell lines to estimate the 
performance of each model. These sampled cell lines were excluded from the 
rest of the training procedures. 
 
We performed the feature elimination procedure to reduce the total number of 
features for each model, which range from 100 to 5,000. We used the backwards 
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feature selection method along with bootstrapping. The feature selection 
procedure was applied 25 times to all 3 models for each drug using the random 
forest learning algorithm. 
 
We trained each model with selected features using a random forest model. We 
trained models with different settings for the number of variables randomly 
sampled as candidates at each split and selected the model within 1 standard 
error deviation to avoid overfitting. The performance of each model was 
estimated by calculating the average root means square error of predicted GI50 
values of the 3 cell lines sampled before the training. For each cell line, we 
selected the model with the best performance for prediction among the models 
applicable to the cell line (according to the available data sets for the cell line). 
Final models for each drug were retrained using all available data sets and used 
for predicting the GI50 values of test cell lines for each drug. Furthermore, the 
final rank of each cell line for each drug was decided by the order of the GI50 
value of each cell line.  
 
Discussion 
We used linearly or nonlinearly correlated features and composite features 
calculated using pathway databases. With these features, we trained random 
forest models using a feature elimination method. Because our method is based 
on a machine-learning algorithm, performance is dependent on the availability of 
data and drug characteristics. 

Nonlinear regression 7 

Summary  
Random forests were constructed in a stacked approach, an ensemble of 
regression trees were constructed for all drug/dataset pairs, missing values were 
imputed, predictions were made for individual models and another random forest 
was used to combine the different predictions for the drugs to a final prediction. 
 
Introduction 
In bioinformatics, data obtained from microarrays, sequencing, images and other 
complex data types are often noisy, incomplete, high-dimensional and only 
slightly correlated with the biological process in question. For these reasons, 
there is an increasing trend to combine many different data sources in order to 
solve complex problems such as the inference of gene regulatory or protein-
protein networks.19 The NCI-DREAM drug sensitivity prediction challenge fits well 
in such a setting.  
 
This challenge can be considered as a relational learning problem in which the 
interaction between two objects is to be predicted. In bioinformatics, machine 
learning techniques for approaching this kind of problem is well known, for 
example in chemogenomics.20  This NCI-DREAM challenge setting deals with 
relating drug treatment to cell line response, with the GI50 concentraten as the 
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relation to be learned. Typically, statistical models are based on a smoothness 
assumption for the different objects (i.e., drugs and cell lines), namely, similar 
drugs will have a similar influence on the same cell line, and similar cell lines will 
react approximately the same to a given drug. 
 
Methods based on a pairwise kernel representation incorporate features of both 
objects in an elegant way in order to build a predictive model.21  One could use 
conditional ranking for this problem,22 as for a given drug the challenge is to rank 
the cell lines according to their degree of drug inhibition. Unfortunately, since the 
identities of the different drugs were unknown, no feature representation could be 
constructed for these objects. The only available features were concerning the 
cell lines. As such, we have used a stacked approach to combine different 
sources of information. We take three layers in account: 1) Using features in one 
dataset to predict the GI50 for one drug, 2) combining the different features 
across datasets with a model to obtain a better estimate of the GI50 for each 
drug/cell line combination, and 3) predicting a final value for a particular drug 
using a model that leverages the estimates for all the different drugs as inputs. 
 
In the second layer, the different features are combined, while the third layer 
attempts to process the dependencies between the drugs. Such a stacked 
approach requires building a considerable number of models, for which tuning 
can be computationally intensive. For these reasons, random forests, which are 
fast to train and do not require much tuning of the hyperparameters, were used. 
Furthermore, random forests are popular in bioinformatics for their ability to cope 
with high-dimensional feature vectors, an issue in this challenge. A final issue is 
that not all features are available for all of the cell lines. This results in missing 
values in the second layer. Although there are methods that can deal with 
missing values, we opted for using a matrix completion algorithm to infer the 
missing values as a preprocessing-step.  
 
Methods 
Let us denote a compound/drug as di. We were supplied with six genomics 
profiling datasets: 

• f1: DNA copy number variation 
• f2: Transcript expression values 
• f3: Whole-exome sequencing 
• f4: RNA sequencing data 
• f5: DNA methylation data 
• f6: RPPA protein quantification 

For f4 we have the log2 transformed estimates of gene-level expression (f4a) and 
expression status values, indicating whether the genes were detected above 
background level (f4b). Thus, we constructed a feature matrix with seven different 
datasets. Finally, let ck denote the kth of the 53 cell lines. 
 
Only the f1 dataset contained some missing values. We imputed missing values 
using random forests through the MissForest package (with standard settings).23 
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In the first step of the stacked model, a random forest was trained for each 
combination of drug and genomic dataset. Each of the 217 (7 datasets x 31 
drugs) random forest models were trained using 15,000 trees. Every split of an 
individual tree was based on five randomly selected variables. This low number 
was needed to guarantee that each of the features was considered at least once, 
as some datasets had more than 50,000 features. The cell lines with known GI50 
values for a particular drug were used to train the model. As such, predictions pijk 
were made for drug i, features j, and cell line k. These predictions where stored 
in a 1,643 x 7 matrix with each combination of a drug and cell line for rows and 
the features for columns. Since not all features were available for each cell line, 
this matrix contained missing values. These were inferred using the MissForest 
package with 5,000 trees. 
 
The predictions were averaged in a supervised manner in the second layer. For 
each di, a random forest with 1,000 trees was used to predict the GI50 for a 
given cell line based on the seven previously obtained predictions. Again, the 
GI50 values that were given for cell lines and di served as a training set. These 
31 models resulted in a complete response matrix for the 53 cell lines and 31 
compounds.  
 
In the third and final layer, information from the different drugs was combined. 
Similar to the previous layer, a random forest model was trained for each drug to 
predict the GI50 for a given cell line. This time the inputs for these models were 
the 31 GI50 values for the cell line obtained from the second layer. The random 
forest used standard settings for the number of trees and variables selected for 
regression of a dataset of this size. Finally, the predicted GI50 values were rank 
ordered for the final submission. 
 
Discussion 
We tackled the NCI-DREAM drug sensitivity prediction challenge using a stacked 
approach. The stacking allowed for exploiting the dependencies within different 
datasets without having to rely on overly complex techniques. By using a 
powerful matrix completion algorithm, we were not hindered by the partial nature 
of the data. Random forests are a popular method for these types of problems. 
One could probably do somewhat better by using techniques such as support 
vector machines with specialized kernels. In contrast to random forests though, 
these require intensive tuning and our method was fast and scalable. 

Nonlinear regression 8 

Summary 
Features were ranked according to the absolute value of Spearman's correlation, 
the average rank of all cell lines was calculated according to the top features.  
 
Introduction 

Nature Biotechnology: doi:10.1038/nbt.2877



	
   21	
  

The challenge was to build a model capable of ranking the sensitivity of the 
remaining 18 cell lines to the 31 compounds (the test set): for each of the 
compounds, challenge participants were asked to predict the rank order of the 18 
cell lines in the test set from the most sensitive to the least sensitive, in relation to 
the 35 cell lines in the training set. Considering the cell lines as cases to be 
ranked, the different genomic measurements can be treated as features of the 
cell lines. We focused our analysis on the features showing the highest absolute 
Spearman correlation with the response, across the 35 measured cell lines of the 
training set, to each of the 31 compounds. 
 
Methods 
The analysis pipeline we exploited for the current challenge is summarized in 
Figure N8; each step of the pipeline is presented below.  
 
Data merging and filtering:  For exome seq data, we merged the exome 
information at a gene level, by counting the number of mutations in each gene for 
each cell line. For DNA copy number variation data, we directly exploited the 
supplied, pre-processed dataset with gene-level changes in copy number. 
 
We merged the different genomic datasets in one large matrix (Figure N8a), with 
the genomic features on the rows and the cell lines on the columns, both training 
and test sets. Since not all types of genomics profiling data were collected for 
every cell line, unmeasured cell lines in each dataset were labelled as missing 
values. Features across all datasets were filtered according to two criteria: 1) 
filter out features with 13 or more missing values (being 12 the maximum number 
of unmeasured cell lines across the different datasets), and 2) filter out features 
with less than 5 non-zero values across the cell lines (to retain the most 
informative signals and increase the robustness of the predictions). 

 
Figure N8. Schematic representation of the Nonlinear regression 8 method 
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The next steps of the analysis were carried out separately for each compound c. 
 
Sorting features:  Considering only the cell lines in the training set (i.e., with 
measured GI50 concentrations), we sorted all the features in decreasing order 
according to the absolute Spearman correlation with GI50 values (Figure N8b). 
Spearman correlation is based on rank and is not altered by shifting or scaling: 
no further normalization or transformation was thus needed.  
 
Ranking cell lines:  Cell lines from both the training and test set were then 
ranked according to the top kc features, with the optimal number, kc, for each 
compound c tuned as described below. Cell lines were separately ranked 
according to each of the kc variables, reversing the ranks for features with 
negative correlation, then the ranks were averaged (Figure N8c): this way, we 
obtained a robust ordering of the 53 cell lines for each of the 31 compounds.24 In 
case the relative order of the cell lines from the train set were different from the 
one measured through GI50 concentrations, we reordered those cell lines, 
keeping fixed the position of the cell lines from the test set. 
 
Tuning of kc using cross-validation:  Since the optimal number of top 
correlated features, kc, can vary across compounds, we designed a cross-
validation strategy for tuning kc and separately applied it to each compound. The 
tuning procedure considers only the 35 cell lines in the training set from which it 
samples 23 cell lines (~2/3) at random as an internal training set tri and leaves 
the remaining 12 as an internal test set tsi. The sampling procedure is repeated 
20 times, thus obtaining 20 pairs of internal training and test set (tri, tsi) for each 
compound. Spearman correlation is then computed between each feature and 
the response of the cell lines from the internal training set tri; features are ranked 
in decreasing order of correlation. Starting from kc = 1 and increasing it up to 100, 
the procedure then reorders the cell lines from both tri and tsi according to their 
average rank across the top kc correlated variables and records the Spearman 
correlation between the ordered cell lines from the internal test set tsi and their 
experimentally determined GI50 values. Iterating the procedure 20 times, we 
obtain a distribution of the expected Spearman correlation of independent test 
sets. The optimal kc for each compound is selected as the one maximizing the 
median correlation across the 20 internal test sets.  
 
Discussion 
We developed a procedure for learning how to rank multiple cell lines given 
several genomic profiling datasets and dose response measurements. Since the 
objective of the learning task was to rank cell lines, rather than to predict a 
numerical value for each cell line, our learning strategy was entirely based on 
relative rank; discriminative genomic features were selected based on their rank 
correlation with the drug response and cell lines were ordered by averaging their 
ranks according to the selected features.  
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The optimal number of genomic variables to exploit for each compound was 
automatically identified with cross-validation. The number has been found to 
strongly depend on the specific compound, varying between 2 and 61. Not all 
types of data were selected by our procedure with the same frequency: RNA seq 
variables were selected for each of the 31 compounds, whereas proteins and 
copy number variations were never selected and SNPs were selected only on 2 
cases. For the other datasets, some frequent patterns could be observed: gene 
expression and methylation variables were often selected together and as an 
alternative to exome seq data. 

Nonlinear regression 10 

Summary 
Features were selected using a matrix approximation methods leveraging SVD, 
training and prediction were done using a regression tree models using gradient 
boosting.  
 
Introduction 
In measuring the comprehensive impact of a drug or small molecule on cells, 
numerous studies have identified that gene expression data can serve as an 
effective signature, with virtues of carrying sufficient variation and covering the 
whole genome. Recently, gene expression profiles measured from drug-treated 
cell lines have been successfully used to reposition established drugs through 
searching complement profiles between drug- and disease-generated gene 
expression data.25, 26 Expression profiles have also been utilized directly to model 
drug sensitivity.27 Based on these observations, we postulated that expression 
profiles could be useful in modeling drug response as well. In this analysis, we 
only used microarray profiles and RNA sequencing data as they cover all training 
and testing cell lines when combined together. We first performed feature 
selection by retaining the most important genes to make the dimensionality of 
feature space comparable to the size of training data, and then fit a nonlinear 
regression model by gradient boosting machine (GBM), which is found resistant 
to over-fitting in general and has shown promising applications in genome-wide 
association studies.28 In terms of significance measurements of genes, we 
adapted the concept of normalized statistical leverage scores from a recent 
matrix approximation algorithm,29 in which we keep features from original data 
matrix, rather than certain linear combinations of it as output from popular 
principal component analysis (PCA). The data generated by this method thus 
maintains the interpretability associated with each feature. This method has been 
used to pick up the most important genes and demonstrated excellent 
performance in a phenotype classification based on gene expression data.29 In 
GBM, we explicitly specified interactions among features in each model, as the 
addition of feature-feature interactions could improve the accuracy of drug 
sensitivity prediction.27 
 
Methods 
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We built one regression model for each drug. To cover all test cell lines, we 
trained the models on mRNA variation data from 32 training cell lines and then 
made predictions on 14 test cell lines. For the remaining 4 test cell lines, 
specifically 21NT, 184A1, MX1, and 21MT1, we used to RNA sequencing data, 
from which 29 cell lines were included in the training. For each model, we form a 
data matrix A from expression profiles, where each row represents a cell line and 
each column represents a gene. Firstly we applied singular value decomposition 
(SVD) on A, A = UDVT,where U and VT are left and right matrix consisting of 
singular vectors, respectively, and D is a diagonal matrix. The normalized 
statistical leverage score Si for gene i can be computed, Si = Vi1

2 + … + Vim
2, 

where Vij is the element (i,j) in V, and m is the number of rows of A.29 We 
retained the top m genes with the largest Si to form a new data matrix A’, which 
contains many fewer columns than original one. Next, we fit a GBM regression 
against A’ and drug response values by using the R package gbm. In the model 
parameter configuration, we specified interaction depth up to 3, which allows the 
model to include 3-way interactions among features. The underlying distribution 
was assumed to be Gaussian, and up to 3,000 trees was grown during the 
training. For a drug, the rank of each test cell line was determined by simply 
comparing its predicted GI50 value to other cell lines. 
 
Discussion 
From a machine learning perspective, one difficulty imposed by the data supplied 
in the NCI-DREAM challenge is that different classes of genomics data vary 
significantly in cell line coverage, and no single data source covers all training 
and test cell lines. In this analysis, to overcome the problem of missing data we 
chose to use gene expression profiles only, and this consideration is in part due 
to the fact that when combined together, microarray data and RNA sequencing 
data allowed us to train models using as many cell lines as possible. An evident 
pitfall of this kind of data selection, compared to a full use of all available 
sources, is that we may lose valuable information by not using data beyond gene 
expression. So it seems one possible improvement on the current approach 
could be achieved by integrating all sources together, either by imputing missing 
data or modifying present models to accommodate sources with partial coverage. 

Nonlinear regression 11 

Summary  
Features were selected for individual cell lines by constructing random forests 
and pruning (recursive feature elimination), missing values were imputed, final 
predictions were made by training a random forest using features from all cell 
lines. In addition to cell line features, bioactivity spectra of the individual 
compounds were included as compound features.	
  
 
Introduction 
Coming from the field of preclinical drug discovery we immediately appreciated 
the problem as a bioactivity spectrum prediction. Previously we were successful 
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in predicting these bioactivity spectra with regard to viral resistance. 30, 31 Our 
method (proteochemometrics, PCM) quantifies the similarity between targets 
(here cell lines) and drugs (here unknown drugs) using Random Forest with 
Recursive Feature Elimination (RFE). Subsequently PCM extrapolates from 
known activity values for combinations of the two in the training set to unknown 
activity values for combinations not present in the training set. Hence, our 
assumption was that the methods we previously used would work similar in the 
case of the NCI-DREAM challenge. However, the absence of a drug features (to 
provide a drug similarity metric) was the main problem to be tackled.  
 
The main novelty for the application in the NCI-DREAM challenge was that we 
imputed drug features. Drug features were obtained from bioactivity spectra, the 
majority of the variation was contained in the drug similarity (on average a drug 
performed roughly similar on the cell lines, yet major differences between drugs 
existed). For each drug, the bioactivity values that were present were selected. 
The mean, skew, kurtosis, standard deviation, variance and percentile values 
were calculated. On these values multidimensional scaling was performed (raw, 
PCA, CMDS or distance matrices) resulting in the similarity being described in 
reduced dimensions. This produced an activity-based drug feature. 
 
Methods 
Calculations were performed in Pipeline Pilot 8.5.32 For a schematic overview 
see Figure N11. 
 
Feature Preprocessing:  Features for the six genomic profiling datasets were 
preprocessed as follows: 

• RNA seq: The values in the supplied file were used. When multiple 
measurements of a gene were present in a single cell line, the median of 
the measurements was used.  

• Gene expression: The values in the supplied file were used. When 
multiple measurements of a gene were present in a single cell line, the 
median of the measurements was used.  

• RPPA: Only the fully validated measurements from the RPPA file were 
used without further processing. 

• Methylation: Methylation data was filtered to contain only measurements 
where Cct1 > 3 and CGct1 > 3. If multiple values were present, the 
median of the measurements was used.  

• Exome seq: Only measurements with a confidence > 150 were used. For 
each measurement the following information was kept and used as unique 
identifier: Chromosome, Type, Summary, CancerGene and gene. 
Presence or absence of these identifiers was encoded for each cell line, 
when present, 1 was used, when absent, 0 was used. Finally, we 
calculated skew, kurtosis, variance and mean value of the bitstring 
(treating each measured mutation as a bit, sorted by chromosome, type 
and gene). Additionally, several more general parameters were calculated 
for each cell line using this feature set. These were: number of mutations, 
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number of mutations in cancer genes, ratio between mutations in cancer 
genes and total mutations.  

• SNP: The values in the supplied file were used; if duplicate measurements 
were present the median was used. 

• Cancerous or not flag: A single flag was added indicating if the cell line 
was cancerous or not (based on literature research).  

 

 
Figure N11: Schematic representation of the Nonlinear regression 11 method. 
 
Feature selection using Recursive Feature Elimination (RFE):  Relevant 
features were selected using Random Forest modeling and RFE. Features were 
kept that had a positive permutation importance using the permutation accuracy 
(for feature n, the average increase in error of the predictions when the values for 
features n were permutated). This procedure was run until the values stabilized. 
To ensure that the random forests converged, and to prevent a local minimum, 
the order of the data was randomized each iteration and the order of the features 
was randomized every 2 iterations. Within each loop, two external validation 
models were trained on different random subsets of the data using the same 
feature selection to get a realistic performance estimate using the subset. RFE 
was stopped when either of the following condition were met: 1) the difference 
between R0

2 and R0
2' increased and the RMSE increased (indicating significantly 

reduced model quality), or 2) the number of iterations exceeded 10. The reduced 
feature set obtained from RFE was used as input for our PCM method. 
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Imputating missing features:  For all cell lines, the properties selected using 
the Random Forest RFE were imputed using the impute R package and k-
nearest neighbors. Missing value imputation was done after RFE. 
 
Training Random Forest models: Several (RF) models were trained, including: 

1. Models on each individual dataset (6) 
2. Models on combinations of two or three datasets (3) 
3. Model trained on only cell lines for which each feature was available (1) 
4. Model trained on all features (1, imputed by the RF algorithm) 
5. Model trained on all features (1, imputed by ‘Impute’) 

 
Model performance was estimated using a two-fold cross-validation. Given the 
35 cell line drug response training set, a random 50% of cell lines were left out 
(fraction 2) and a model was trained on the remaining 50% (fraction 1). The cell 
lines were left out using stratified sampling. Performance measurements (R0

2, 
R0

2’, and RMSE) were calculated after grouping the predictions per drug. A 
second model was trained on fraction 2 and validated on fraction 1. The RMSE, 
R0

2, and R0
2’ of the 2 models were averaged to obtain a performance estimate.  

  
The model trained on all data (model type 5) performed the best according to the 
CV evaluation (and would hence be recommended to predict the activity of all 
drugs per cell line). Still significant differences occurred when predicting activity 
of individual drugs using different feature sets. For the prediction of the unknown 
cell lines, all features were imputed for each cell line using the impute R 
package. Based on the predicted activity values and measured values the cell 
lines were ordered per drug and subsequently ranked (Figure N11). 
 
Discussion 
The most interesting observation from our approach was that the bioactivity 
spectra, which constitute an extremely simplified drug feature, were informative 
and allowed the training of predictive models. This is likely caused by the much 
larger inter-drug differences in GI50 than intra-drug differences. We observed our 
models to be highly predictive with regard to unknown combinations of drugs and 
cell lines; however, they were less capable of ranking the cell lines (which we did 
on the basis of the predicted GI50 values). This is likely caused by very small 
and zero differences between individual cell lines in the training data and the 
prediction error for the GI50 of 0.5 units. Yet, from a clinical perspective, the 
accurate prediction of drug activity would be more interesting than the ranking of 
cell lines.  
 
We also observed that restricted datasets (not using all data) were sometimes 
more predictive for individual drugs than was the large combined set. This 
observation shows that our method might be an interesting approach to extract 
predictive information from a reduced set of data. Future research applications of 
this work should include a dedicated drug feature (e.g., cheminformatics type), 
should select the best training set per drug, and should also include an extensive 
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randomization validation, which we were unable to complete within the time 
frame.  

Sparse linear regression 1 

Summary 
Features were simultaneously selected and a ranking model built for each drug 
by lasso regression  
 
Introduction 
A genomics-based approach to prediction of drug response was originally 
considered by Staunton, et al.33 with some success. This approach accurately 
predicted the cell line chemosensitivity patterns of 88 drugs out of 232 
considered. Unlike the current competition for which the objective is to rank the 
sensitivity of cell lines against each compound considered, this earlier study was 
concerned with the binary decision of whether a cell line was sensitive to a drug 
or not, irrespective of the relative order of sensitivity across all cell lines. In 
addition to the gene-expression profiles used by Staunton, et al.,33 in accordance 
with more recent evidence presented,13, 15, 16 the current competition also 
considers DNA mutation and methylation data, RNA and exome sequencing 
data, and RPPA protein quantification data.  
 
As the challenge is to build a model capable of ranking the sensitivity of cell lines 
to 31 untested compounds, we followed an approach that can utilize raw GI50 
concentration values for each drug without binarizing growth inhibition data. 
Additionally, the sample size was quite small and there were literally thousands 
of different features with which the model could be built, and which offer 
excessive flexibility during model learning that may significantly increase the risk 
of over-fitting the data. We do not believe that a model with a high capacity, such 
as models that use kernel machines or basis functions, would necessarily 
perform well in this task. Thus, we follow an “Occam’s Razor” approach to model 
learning and adopt a strategy that uses a linear model, which is able to 
aggressively eliminate features during the learning process. The study by Bi, et 
al.34 demonstrates that when a 1-norm loss function replaces the standard 2-
norm loss function in support vector machines (SVMs), it can serve as a built-in 
feature-selection mechanism embedded into model learning. This type of model 
has been successfully applied in machine learning to a variety of problems. Our 
approach extends this idea to learning ranking functions from continuous-valued 
drug response data in an attempt to rank chemosensitivity of unknown cell lines 
relative to that of known cellular subtypes.  
 
Methods 
For each compound, we train a ranking function of the form xwxf T=)(  where x  
is the feature vector characterizing each cell line. If a cell line characterized by 𝑥! 
is more sensitive to a given compound than a cell line characterized by 𝑥!, then 
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ideally 𝑓 𝑥!  should be greater than 𝑓(𝑥!). The coefficient vector w  is optimized 
to satisfy as many such constraints imposed by the training data as possible via 
the following constrained optimization problem: 
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where d  is the size of the feature vector x , ijξ  are the slack variables, b  is some 

constant (we used b=1 in our experiments), w  indicates the 1-norm of the 
coefficient vector w , and C is the parameter that adjusts the trade-off between 
the two conflicting goals in the objective function: minimizing w  versus 
minimizing the total error committed by the ranking function. The constraint set 
Ω  includes all pairs of cell lines for which the pair-wise distance between GI50 
values was at least 0.1 greater for one cell line than for the other. The value 0.1 
is arbitrarily chosen to indicate that the difference in GI50 values of two 
compounds may not be biologically significant if it is less than this value.  
 
The learning goal is to minimize the sum of the ijξ  variables while making sure w  
is as sparse as possible, i.e., most of its elements are zero. The 1-norm of the 
coefficient vector w  plays a critical role in this optimization problem by 
generating sparse solutions for w . This makes our approach capable of jointly 
performing feature selection and learning model coefficients. We use the Matlab 
optimization toolbox to solve this constrained optimization problem. Since the 
training sample size is small, each run takes only between three to four minutes.  
 
The penalty parameter of error, C, was optimized using a held-out approach. For 
this purpose we have sequestered about twenty-five percent of the eligible cell 
lines in the training set for validation. We used the remaining cell lines to solve 
the above problem for each compound. The ranking performance of the model is 
measured according to how well the cell lines in the hold-out set are ranked 
relative to cell lines in the training set. The ranking between a pair of cell lines 𝑥!  
and 𝑥!  is considered correct if 𝑓 𝑥! > 𝑓(𝑥!)  when the  GI50 of 𝑥! is at least 0.1 
greater than that of 𝑥! or 𝑓 𝑥! < 𝑓(𝑥!) when the GI50 of 𝑥! is at least 0.1 less 
than that of 𝑥!. The ranking is considered incorrect if 𝑓 𝑥! > 𝑓(𝑥!)  when the 
GI50 of 𝑥! is at least 0.1 less than that of 𝑥! or 𝑓 𝑥! < 𝑓(𝑥!) when the GI50 of 𝑥! 
is at least 0.1 greater than that of 𝑥!. The ranking accuracy is computed by the 
ratio of the number of correct rankings divided by the total number of eligible 
pairs, i.e., the number of cell line pairs for which the GI50 for one compound is at 
least 0.1 greater or smaller than for the other compound. 
 
Our intention was to start with the gene expression profiles and then explore the 
impact of additional information on ranking accuracy. However, owing to time 
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limitations we could only test RNA sequence expression calls in combination with 
the gene expression profiles. In Table S1, we list the ranking accuracies within 
the hold-out set for a subset of the compounds using the combination of gene-
expression profiles and RNA sequence expression calls. Although our final 
ranking functions use both gene expression profiles and RNA sequence 
expression calls, almost all features selected were from the gene expression 
batch, which suggests that RNA sequence expression calls were not  particularly 
useful for ranking cell lines within the context of the proposed approach.  
 
Table S1: Ranking accuracy for a subset of the compounds within the hold-out 
set using only gene-expression profiles or a combination of gene-expression 
profiles with RNA sequence expression calls. 
Anonymized 
Drug IDs 

Gene expression only Combination of gene 
expression and RNA sequence 
calls 

 Accuracy (%) # of features 
(selected from 
18,631) 

Accuracy (%) # of features 
(selected 
from 55,585) 

1 92.4 27 91.8 27 
2 92.1 24 94.7 24 
3 93.6 29 93.6 29 
7 94.3 30 93.7 31 
8 91.0 26 90.3 26 
10 100.0 25 97.8 26 
16 94.5 30 94.5 30 
17 97.6 30 97.6 32 
19 96.7 29 97.4 30 
20 100.0 31 100.0 31 

 
Discussion 
For a majority of the drugs, the corresponding ranking functions achieved over 
90% accuracy within the held-out set. For the remaining drugs, for which the 
performance was relatively poor (around 60-70%) the integration of additional 
features from DNA mutation and methylation data, exome sequencing, and 
protein quantification data may further improve the predictive accuracy of the 
ranking functions. However, the main challenge in this case would be combining 
different types of data into a single feature vector. Future research will explore 
recent advances in probabilistic topic models involving hierarchical latent 
Dirichlet allocation35 and hierarchical Dirichlet processes,36 and it will investigate 
their extension for the analysis of genomic data within the scope of 
chemosensitivity prediction. Each gene can be considered as a word in a 
vocabulary, and the expression level of the gene in a specific cell line can be 
treated as the frequency of a word in a document. In this case, gene expression 
profiles can be modeled by multinomial distributions, and a topic can be 
considered as a distribution over a subset of genes. The topics and the existing 
hierarchy across topics can be automatically discovered from a set of cell lines. 
Once topic proportions for each cell line are obtained, this information can be 
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used to train ranking functions for each compound as described above. This 
offers a more compact representation of the data and can characterize cell lines 
at different abstraction levels that may effectively correlate with the actual 
pathways.  

Sparse linear regression 2 

Summary  
Features were initially filtered based on linear regression to drug response, 
training and prediction was done using elastic nets. 
 
Introduction 
We have built predictive drug response models for untreated breast cancer cell 
lines using the given omics data, including microarray gene expression, RNA 
seq, exome seq, methylation, copy number variation (CNV), and reverse protein 
lysate array (RPPA) of cell lines with known drug responses. We used a linear 
regression method based on the elastic net algorithm37 to select the significant 
and informative genomic features for ranking the drug responses of the 18 test 
breast cancer cell lines for 31 drugs.  
 
We chose the elastic net algorithm because this method works well in cases 
where the number of features (p) far exceeds the samples size (n) and it has the 
ability to perform feature selection. Previous studies have demonstrated that this 
algorithm is a promising method to use to analyze the genomic features of 
untreated cancer cell lines and the associated drug response to develop a 
predictive model and apply it in the preclinical setting.15, 16  
 
Methods 
The genomics profiling data provided for both the training and test cell lines had 
missing values, which presented a challenge for our analysis strategy. For 
instance, MX1 has only RNA seq and exome seq data. Only 8 out of 18 test cell 
lines had complete data. It is possible to impute the missing values for the 10 test 
cell lines but we felt this would not be practical since more than half of the data in 
test set would be artificial and may add noise to the dataset. We therefore 
ignored the missing values and built the prediction models based on each 
dataset separately, then later combined the predicted results.  
 
The first input we processed for the elastic net algorithm was an n × p matrix of 
genomic features (X) where n is the number of training cell lines and p is the 
number of features for each dataset (e.g., gene expression values from 
Affymetrix GeneChip Human Gene). The second input was the vector of drug 
responses (GI50, y) across the 35 training cell lines. We then applied these two 
input data (X and y) to the elastic net package in R to solve the following 
optimization problem: 

{ }2 2
2 1 1

ˆ argmin y X
β

β β λ β λ β= − + +  
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Since there were more than 10,000 genes in the gene expression data, we did 
pre-filtering to select the significant genes that had p-values less than 0.05 based 
on the univariate regression against the drug responses (GI50) of training cell 
lines. After filtering, only the significant genes were kept and the size of the data 
was more manageable. We discretized the methylation data into 0 
(unmethylated) and 1 (methylated) based on Illumina beta values with the cutoff 
beta=0.2. We also combined both RNA seq and exome seq calls into a new data 
matrix for representing the mutation status of cell lines. The missing values were 
ignored in our analysis. The compiled data matrices, having genomic features for 
each dataset, were then used for solving the optimization problem. In order to 
avoid over-fitting and get a robust model for predicting the drug response in the 
test cell lines, we did the cross-validation by splitting the training set into sub-
training and sub-test datasets. This process was iterated until the model was 
optimized. In this way, we were able to pick the optimal steps for the regression. 
  
The elastic net equation was solved for each dataset using the default 
parameters to generate a coefficient matrix b. The optimized model (the selected 
genomic features with associated non-zero b values) was used for predicting the 
drug responses (GI50) for each drug in the test cell lines. Finally, we analyzed 
the predicted drug responses from six different datasets for the test cell lines. We 
found usually one or two datasets give quite different values compared to the 
rest. In addition, we did not have further information about the quality of each 
dataset. Therefore, we took the median of the six drug response values as the 
final predicted drug response (GI50). The final ranking in 18 test cell lines and in 
all 53 cell lines were based on the order of these GI50 values.  
 
Discussion 
Our simple linear regression approach was among the top performers in this 
challenge. We felt that our way of handling missing values may be important. 
Although we used the elastic net algorithm in our study like others,15, 16 our 
approach is different; in contrast to studies where all data are combined into a 
huge data matrix, we treated each dataset separately and assumed each would 
provide an equal level of information. Indeed, it looks like such an approach 
worked well. In the future we would like to investigate the mechanisms of drug 
action on molecularly distinct breast cancer subtypes and we believe it would be 
very helpful for finding new therapeutic targets and speed the development of 
new anticancer therapies for individual patients. 

Sparse linear regression 3 

Summary 
Gene and pathway features were determined using a one dimension factor 
analysis, training and predictions were made with spike and slab multitask 
regression, drug dose response values were re-calcuated from raw growth 
curves 
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Introduction 
The search for genetic factors casual for a particular phenotype is plagued by 
small sample sizes and high dimensionality, and the NCI-DREAM drug sensitivity 
challenge is no exception. The 35 cell lines available in the training data is a tiny 
sample size when lined up against the tens of thousands of cell line 
characteristics available in the dataset. In addition, particular data modalities are 
typically not available across all cell lines. Our approach attempts to address 
these problems in three ways: biologically directed dimensionality reduction, 
multitask learning, and integrating multiple datasets.  
 
Methods 
An impressive array of data modalities is available for the NCI-DREAM cell lines, 
including copy number variation, methylation, gene expression microarrays, RNA 
seq, RPPA protein abundance measurements and oncogene mutations. 
However, this wealth of information makes it challenging to detect true casual 
signal since many features are expected to be correlated with drug sensitivity 
simply by chance. The high degree of missing data is also a challenge for 
standard prediction techniques. Dimensionality reduction can help alleviate this 
problem both by reducing the number of effective features, and providing a 
generative model that can be used to fill in missing measurement. Accordingly, 
we perform two stages of dimensionality reduction, both using biological 
knowledge. In the first stage, we use a one-dimensional factor analysis model for 
each gene, so that each dataset is considered an observed variable, explained 
by the "latent factor," which may be interpreted as an activation level of this gene. 
Note that this is distinct from simply averaging across the different modalities for 
each gene; for example, methylation might be negatively correlated with gene 
expression for a particular gene. Our model accounts for such cases. We use a 
probabilistic Bayesian approach that naturally copes with missing data. In the 
second stage, we use a hand-curated collection of 1,987 known pathways, 
collected from resources including GO, KEGG, and published GWAS hits, to 
construct a per pathway activation level (where the gene activation levels are 
explained by this second layer of pathway latent variables), again using a one-
dimensional factor analysis.  
 
The NCI-DREAM challenge differs from a standard regression task in that there 
are effectively 31 separate drug sensitivities that we wish to predict. While it is 
certainly valid to treat prediction for each drug independently, we can potentially 
view this as a "multitask" learning problem where we aim to share statistical 
power across the drugs. While there are many ways to achieve this goal, we 
choose to hypothesize a per-feature latent variable, β, representing the 
probability of a particular feature being useful. We use a "spike and slab" prior on 
our regression coefficients, where the probability of the coefficient being non-zero 
is β. Thus, if a feature appears to be predictive across multiple drugs this will be 
reinforced.  
 
Our combined model for predicting drug sensitivities can thus be written: 
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Y = XW +FB +ε , 
 
where Y is the full matrix of drug sensitivities (k cell lines by d drugs). The matrix 
X is a (k × p) matrix containing the learned latent pathway variables for p 
pathways in each cell line, with parameters W specifying the impact of each 
pathway on each drug. F and B represent latent factors capturing the residual 
similarity among drugs and cell lines, as described in the preceding paragraph. 
The pathway summary variables X are fixed ahead of time, and W, F, and B are 
learned jointly to maximize the likelihood of all observations in Y. These learned 
parameters are then also used to fill in the missing values of Y including the test 
set predictions for the NCI-DREAM challenge. 
 
We did not take the GI50 values in the drug sensitivity matrix, Y, as supplied in 
the NCI-DREAM challenge. We re-analyzed the raw growth curve data by fitting 
a linear model to regress out the effect on log OD of background OD, zero 
concentration OD (OD0.1, etc.), and the matched plate OD measurements. We 
then calculate "active area": the area above the growth curve of log(OD) vs. 
log(concentration), with the top of the area defined by the average log OD at the 
lowest drug concentration used. This measure has the advantage of combining 
how small a concentration of drug is effective with the effect size. Unlike GI50, 
active area can differentiate between the sensitivity of two cell lines even if the 
growth of neither cell line is ever inhibited by 50% by the drug. In the end, our 
predictions were based on our own quantification rather than GI50. 
 
Discussion 
In summary, we approached the high dimensionality, significant missing data and 
small sample of the NCI-DREAM data using a combination of biologically 
meaningful dimensionality reduction and multitask learning. Our experiments 
suggest that using the pathway level summaries significantly improved predictive 
performance compared to using the gene level summaries or individual features. 
Our multitask approach and incorporation of the existing Heiser, et al. dataset 
appeared to give only modest improvement; we anticipate that more benefit 
could be gained if the identity of the drugs (and their inhibition targets) were 
available.  

Sparse linear regression 4 

Summary 
Missing features were imputed, combinations of datasets were enumerated and 
used to train elastic net regression models, for each drug, final predictions were 
made using the best performing model. 
 
Introduction 
The development of new cancer drugs usually comprises multiple phases of 
clinical trials. Due to the expense and inefficiency of clinical trials, human cancer 

Nature Biotechnology: doi:10.1038/nbt.2877



	
   35	
  

cell lines become mainstream resources for drug sensitivity analysis. In line with 
this, several studies have made progresses in identifying multiple potential 
genomic markers of drug sensitivity by systemically generating genomic profiles 
of cell lines and determining their response to candidate therapeutic 
compounds.13, 15, 16 However, how to integrate multiple types of genomics data to 
maximize the predictive power is still an open problem. The data of NCI-DREAM 
drug sensitivity challenge has provided an unprecedented opportunity for 
researchers to develop powerful tools and assess the effect of each data type to 
drug response. 
 
To achieve this goal, we adopted the elastic net regression framework to predict 
sensitivity of 18 cell lines in the test dataset. We note that the number of features 
is far greater than the number of cell lines in this task. The elastic net regression 
framework is particularly well suited for this kind of applications.37, 38  It strikes a 
balance between obtaining a parsimonious model (through the L1 term) and 
retaining groups of correlated features (through the L2 term), such as genes co-
expressed or co-localized within the same copy number amplification regions. 
Another major challenge in the current task is that not all types of genomic 
features are obtained for every cell line in both training and testing data. Thus we 
need to adaptively train an optimal model for each cell line in the test data.  
 
Methods 
In total, we used five of the genomics profiling datasets, including mutation, CNV, 
gene expression, methylation, and RPPA. For the drug response data, we used 
the k-nearest neighbor approach to impute missing GI50 values, where k = 10.39  
 
In the training procedure, we enumerated all combinations of the five types of 
genomic data to train prediction models on cell lines. In total, there are 
1 2 3 4 5
5 5 5 5 5 31C C C C C+ + + + = combinations represented in 31 different feature 

matrices that can be used to train 31 different models. For each of the 31 drugs, 
the feature matrix and drug response vector are denoted as ,N pX P∈  and 

,1Ny P∈  respectively, where N is the number of cell lines, and P is the total 
number of genomic features. For each compound, we selected the best 
performing model (of the 31 total models) using cross-validation. The best 
performing model is then used for predicting the response of 18 cell lines in the 
testing data. In situations where some cell lines may not have the full set of five 
genomic datasets, we only adaptively selected the best performing model among 
those trained on the remaining data types (Figure S4). 
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Figure S4. Illustration of the workflow for the Sparse linear regression 4 method. 

 
Given the feature matrix X and response vector y , we employed the glmnet 1.8 
software package to solve the following optimization problem: 
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In the elastic net model, α controls the relative strength of the L1 and L2 penalty 
terms, and λ controls the overall strength of the regularized regression penalty. 
The optimal setting for α and λ was chosen to minimize the root mean squared 
error (RMSE) using leave-one-out cross-validations for each (α,λ), with 20 
different α uniformly sampled from [0.05, 1.0] and a default λ sequence 
calculated by the software package. After obtaining the best fit on the training 
dataset, we used the “predict.glmnet” function in the glmnet package to predict 
the response of the cell lines in the testing dataset. 
 
Discussion 
In this study, we adopted the elastic net regression framework to train the 
prediction models and adaptively select the most appropriate model based on 

Processed five types of genomic data:  
Mutation; CNV; Methylation; Gene Expression; RPPA 

Model 1: 
X=[Mutation] 

Model 2: 
X=[CNV] 

Model 31: 
X=[Mutation, … 

RPPA] 

Adaptively select optimal model for each cell line 

Sensitivity Prediction 

	
   

Different 
Combination 

Cross-validation error 

… 
… 

vs 
Drug 

response: 
y 
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existing data types of testing cell lines to predict their drug sensitivity. The 
results demonstrate that no genomic data type is consistently included in all the 
optimal models we selected. This partially implies the heterogeneity of the 
cancer cell lines and challenge of this prediction task. To capture this 
heterogeneity and improve the prediction ability, another key besides 
developing an efficient method is to expanding the cell-line panel. 
Acknowledgement 
This work was supported by the National Natural Science Foundation of China, 
No. 61379092. 

Sparse linear regression 5 

Summary 
Gene and pathway features were determined using a one dimension factor 
analysis, training and predictions were made with spike and slab multitask 
regression drug dose response values were re-calcuated from raw growth 
curves, Heiser, et al. data13 were used to train the model. 
 
Methods 
This method is a modification of the approach presented in Sparse linear 
regression 3. In the Sparse linear regression 3 method, the regression model 
was trained on the drug sensitivity data supplied in the NCI-DREAM challenge, 
though the drug sensitivity values were re-calculated based on the raw dose 
response curves. This implementation used additional outside information to 
expand the training set of drugs. 
 
The experimental design of the challenge is the same as the original Heiser, et 
al. study13 of which this challenge is an extension. While the drugs were not 
identified, the cell lines were. If we can find drugs in another dataset that have a 
similar sensitivity pattern across the common cell lines to those in the NCI-
DREAM challenge, we should be able to say something about the expected 
sensitivity of the test cell lines. The original Heiser, et al. dataset included 12 of 
the test cell lines. We use matrix factorisation to transfer information between 
datasets: one way of viewing this method is that we embed each drug, and each 
cell line, in some low dimensional latent space. Nearby drugs show similar 
patterns of sensitivity, as do nearby cell lines. Using a probabilistic approach, we 
are able to cope with the fact that not all cell lines in the challenge were available 
in the Heiser, et al. dataset.  
 
The combined model (as presented in Sparse linear regression 3) for predicting 
drug sensitivities can thus be written: 
 

€ 

Y = XW +FB +ε , 
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All matrices remain the same as described in Sparse linear regression 3, with the 
exception of Y. Here, Y is the matrix of drug sensitivities for k cell lines and d 
drugs that additionally includes drugs from the Heiser, et al. dataset for which 
NCI-DREAM cell lines were assayed.  

Sparse linear regression 6 

 
Summary 
Features were removed with low dynamic range, missing feature values were 
imputed, training was done using lasso regression on individual datasets, final 
predictions were made using the weighted sum of regression models. 
 
Introduction 
The NCI-DREAM drug sensitivity challenge can be seen as a regression 
problem: we have N cell lines (N = 35 for the training set, M = 18 for the test set), 
each of which is described by a profile existing of P -omics features. For each 
compound l = 1,...,L and each cell line i = 1, . . . , N , we have one measurement 
yi,l, corresponding to the GI50 concentration. These concentrations naturally 
define a rank, and thus the challenge to predict rank order can be seen as a 
regression problem. Here, we predict the results for each drug independently 
with a linear model. There are two main problems with this approach: first, not all 
variables are measured for all cell lines and  all drugs and we have to define how 
to deal with these missing values, second, the number of features greatly 
outnumber the number of samples and therefore, we cannot use the classical 
regression. These problems are addressed in the proposed method. 
 
Methods 
Preprocessing: For all genomics profiling datasets, we first removed all features 
with a dynamic range of 0, i.e., ∆ 𝑗 = max!∈ !,…,! 𝑥!,! ,max!∈ !,…,! 𝑥!,! = 0. In 
addition, we apply the following preprocessing scheme: 

• RNA seq:  We apply a filter, such that only above background expression 
values are kept. 

• RPPA: We only keep fully validated data. 
• Methylation:  Values are filtered out as suggested, i.e., rows are removed 

if CpGs < 3 or if Cct1 < 3. 
• Exome seq:  We summarized the given data as a binary data matrix that 

indicates whether a gene was mutated. We discard mutations if they were 
silent or in non-coding or intron regions and we apply filters on the 
confidence (> 120), the number of reads suggesting an alternative 
sequence (< 10) and the distance to the 3’ end (> 0.1). 

• After applying these filters, the values were normalized to have zero mean 
and a standard deviation of 1. 
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Missing values:  There are three types of missing values, each type requiring a 
different treatment. First, all datasets have not been acquired for all cell lines: the 
number of available datasets for a cell line varies between 1 and 6. For this 
reason, we cannot assemble every available feature into one matrix X. Instead 
we build one model for each dataset whose prediction results are then combined 
in the last step. 
 
Second, there are missing GI50 values, i.e., there are (drug, cell line) pairs for 
which no effect has been reported. As we work on drugs individually, we propose 
to remove the corresponding row (cell line) for the parameter estimation. 
 
Third, there are missing values in the genomics datasets themselves. The 
missing values are distributed throughout the datasets, and we propose to 
impute missing values using the nearest neighbors, i.e. if a missing value occurs 
for a cell line, we take the value of the cell line which is closest in terms of profile 
features. 
 
Estimation of the drug response:  As mentioned above, we want to predict the 
GI50 values for each drug and each cell. In order to deal with missing data, we 
first predict the concentrations for each data source s separately and then 
combine the results in a second step. For simplicity, we only show the approach 
for one drug. 
 
Let x be the feature vector from data source s. We can write the estimation of the 
GI50 concentration 𝑦! as: 
 

𝑦! = 𝑓 𝑥 =   𝛽!,! + 𝛽!,!𝑥!

!!

!!!

= 𝑥!𝛽! 

 
where 𝑥 = (1, 𝑥!, 𝑥!,… , 𝑥!!)

! is the feature vector and 𝛽! = (𝛽!,!,𝛽!,!,… ,𝛽!,!!)
!. As 

N >> P, we propose to use Lasso to determine the parameters of the model: 
 

𝛽! = argmin[ 𝑦! − 𝑥!𝛽! ! + 𝜆! 𝛽!,!

!!

!!!

] 

 
The parameter 𝜆! is obtained by leave-one-out cross-validation, and we write the 
minimal error (as obtained by leave-one-out) as 𝑅𝑆𝑆!∗ = 𝑦! − 𝑥!𝛽!

!
. From the 

minimal error, we can calculate the score 𝛼! = 1− !""!∗

!
, where 𝑣 = (𝑦! − 𝑦!,!)!! . 

The score 𝛼! therefore indicates how well the linear model fit the data compared 
to the intercept alone. 
 
We know that the different data sources are unequally informative about the 
target variable, and we therefore weight the predictions coming from the different 
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data sources with the fitting score: 𝑦 = 𝛼!𝑦!! . With 𝑦 we can now establish the 
rank order of each cell line 

Sparse linear regression 7 

Summary  
Statistically significant features were selected using Spearman correlation, 
training and prediction was done using an elastic net 
 
Background 
When predicting treatment response of untested compounds with new test cell 
lines, feature or gene selection is an important step for extracting the features 
that are associated with the treatment outcome. Until now, various models for 
predicting drug sensitivity were based on using all features or a few differentially 
expressed genes between the sensitive and resistant group.15, 16 Methods based 
on using all features require much more computational time and may not be 
easily adapted to bigger datasets; whereas, methods based on differentially 
expressed genes suffer from the notion of setting cut-offs. In our approach, we 
extract a set of informative genes based on Spearman’s rank correlation. Next, 
we apply the elastic net regression model to the training set of 35 breast cancer 
cell lines and finally we predict the response in the test set of 18 breast cancer 
cell lines. 
 
Methods 
Our methodology only uses gene expression data. A schematic representation of 
our algorithm is shown in in Figure S7. 
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Figure S7. Schematic chart showing the work flow for the Sparse linear regression 7 method.  

 
Elastic net38 is a convex combination of the well-established methods of ridge40 
and lasso regressions.41  This convex combination offers good predictive power 
and to be interpretable.42 Elastic net is particularly useful when the number of 
features (P) is bigger than the number of observations (N). By contrast, lasso is 
not a very good predictor selection method in the P > N case. Since the drug 
sensitivity data on the 31 drugs contains missing values for some drugs we made 
an implementation of both methods. Lasso performs effectively in a subset of the 
drugs with few informative genes, though it is greedy in the case of correlated 
predictors since it only picks the most correlated features. On the other hand, 
ridge regression keeps all predictors as non-zero with probability of one, and 
includes several highly correlated predictors. 
 
The elastic net model parameters were chosen with cross-validation using the 
glmnet R package.38 We also used the caret R Package43 via resampling over a 
set of λ and α values. The values of α chosen vary between zero and one and it 
is assumed that an α close to one is “lasso-like”. 
 
Discussion 
In this work we restricted the number of informative genes used in the prediction 
to k=40. However, the computation can be parallelized by dividing the number of 
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informative genes k into several groups. To further improve the elastic net model 
we should identify the accurate amount of informative genes needed for optimal 
prediction. To this end, it would be necessary to carry out  statistical tests on the 
appropriate (k).  

Sparse linear regression 8  

Summary  
Features were constructed by grouping genes according to GO terms, training 
and prediction was done using relaxed lasso regression 
 
Introduction 
Given the genomics profiling input data and the continuous output variable of 
drug response, the problem can be posed as a simple regression problem. 
However, the number of input dimensions greatly exceeds the number of 
examples (just the gene expression data has over twenty-thousand dimensions, 
while only roughly 30 training points are available per drug—the number is 
variable as many features are missing). Therefore, we focused on reducing the 
number of dimensions in order to apply simple regularized regression to the 
problem. 
 
We worked only with the gene expression data (microarray and RNA seq). The 
fact that two different data sources were available for the same underlying 
phenomenon also led us to prefer this data. We grouped genes by their GO 
terms in order to obtain a smaller number of dimensions. After mapping 
expression values to GO terms, we used relaxed lasso.44 Standard L₁ 
penalization achieves two goals: (1) sparsity in that many (even most) 
coefficients are exactly zero; and (2) regularization in that non-zero values are 
smaller (in absolute value) than in un-regularized regression. Due to the very 
large number of variables, a large penalization was needed to achieve sufficient 
sparsity, which leads to over-fitting. Relaxed lasso uses a strong penalization to 
choose coefficients and then a smaller penalty to find their final values. 
 
Methods 
We first combined the microarray and RNA seq data into a single measure per 
gene as follows: 

1. Use the calls provided from the RNA seq data to determine which genes 
are changing. Only “active” genes were used. 

2. Preprocess the RNA seq data with a log-transform, 𝑟′ = 𝑙𝑜𝑔 𝑟 + 1 ,where 
𝑟′ is the new value, followed by normalization to z-scores. Similarly, the 
microarray data was z-score transformed. 

3. Combine the RNA seq and the microarray data into a single prediction by 
averaging the z-scored values. 
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4. Any gene without both an RNA seq and microarray measurement was 
discarded. 

 
We did not use this matrix directly. Instead we looked up GO terms for all genes 
(ignoring the Cellular Component vocabulary). All genes that map to the same 
GO term were combined by keeping only the largest value (in absolute terms), 
𝑚𝑎𝑥𝑎𝑏𝑠 𝑣! = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑣! . For learning, we further processed the data using a 
threshold; we set the feature to 1 whenever the feature at that point is two 
standard deviations away from the mean (in either direction). We then select only 
features that are significantly correlated with at least twenty different drug outputs 
(p-value < 0.01, estimated by a permutation test). This allows for a modicum of 
information transfer between different drugs, which are otherwise treated 
separately; features that are informative about many drugs are less likely to be 
statistical artifacts than if this measurement was applied independently for each 
drug. 
 
Finally, we used relaxed lasso for the optimization. A first lasso pass with 
λ=2⁸¹²·¹² was used for feature selection, and a second pass with λ' = λ/10 was 
used for the final learning. An initial attempt to use cross-validation to learn λ led 
to massive over-fitting, thus a value in the middle of the range was chosen.  
 
On the output side, we normalize data by subtracting the per drug average from 
each entry, so that we regress on a centered value. Finally, coordinate descent 
was used for optimization, which ignores the regression error in the missing 
entries, i.e., we solve the following problem: 

𝐵∗ = 𝑎𝑟𝑔𝑚𝑎𝑥!
1
2𝑛 𝑊!" 𝑌!"– 𝐵𝑋 !" ² – 𝜆 𝐵 ! 

Where  𝑊!"represents the weight of example 𝑖, 𝑗. In our case, we set it to 1 if the 
example had data and to 0 if it is not (and we set 𝑌!" to an arbitrary value). 
Therefore, missing entries are ignored. For optimisation, we used coordinate 
descent as proposed by Friedman, et al.38 for this class of problems. 
 
Discussion 
The main driving force in the choices we made, was the pressure for feature 
selection and dimensionality reduction. For example, in the case of genes where 
one of the microarray or RNA seq measurements was missing, we decided to 
discard them instead of relying on lower-quality measurements. 
 
One major problem with this approach is the need for setting parameters (the 
penalization factors λ). Cross-validation was a possible solution, but due to the 
small size of the training data, the variation between different folds was 
enormous and the final result was very unstable, a value for the regularizer was 
then hard-coded. A more robust solution would have been desirable. Similarly, 
other choices in the methodology (for example, the function to aggregate genes 
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by GO term) were evaluated by cross-validation, but it would have been 
preferable to be able to rely on internal metrics. 

Sparse linear regression 9 

Summary 
Gene and pathway features were determined using a one dimension factor 
analysis, training and predictions were made with spike and slab multitask 
regression, CCLE and NCI60 data were used to train the model, GI50 values 
were used.  
 
Methods 
This method is a modification of the approach presented in Sparse linear 
regression 3. In the Sparse linear regression 3 method, the regression model 
was trained on drug sensitivity values that were recalculated from the raw dose 
response curves. In this implementation of the method, the GI50 values supplied 
in the NCI-DREAM challenge were used as the drug sensitivity values.  

Sparse linear regression 10 

Summary  
Features were selected using a regression with log penalty, which bridges the L0 
and L1 penalty, missing values were imputed, penalized regression models were 
trained on indiviual datasets, final predictions were made using a weighted 
average 
 
Introduction 
The NCI-DREAM drug sensitivity prediction challenge is a typical high-
dimensional problem where sample size N is much smaller than the number of 
features P. Recently, many penalization methods have been developed to 
address the challenging tasks of prediction and classification in such high 
dimensional settings.45  It has been recognized that folded concave penalties 
such as SCAD46 often deliver better performance than convex penalties such as 
the Lasso.47  In addition, appropriate tuning parameter selection is crucial for the 
application of such penalization methods, and particularly, extended BIC has 
been developed to choose tuning parameters in high dimensional settings.48  
Guided by these recent methodology developments, we applied a penalized 
regression approach using a folded-concave penalty to select multiple genomic 
features that were associated with drug response. The tuning parameters of the 
penalty were selected by extended BIC.  
 
Methods 
Modification of existing penalization method:  We employed the log penalty 
for our penalized regression, which is an example of the folded-concave 
penalties. Previous works has shown that the coordinate ascent algorithm for 
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penalized Maximum Likelihood Estimation (pMLE) with the log penalty can be 
interpreted as iterative adaptive Lasso.49 The numerical algorithm published 
before Sun, et al.49 may encounter the problem of over-fitting when dimension is 
high and there are strong associations between covariates and response 
variable. We modified this algorithm by solving a least squares problem using a 
combination of coordinate descent and Local Linear Approximation (LLA).50 
Specifically, we updated the estimate of each regression coefficient sequentially 
(which is the coordinate decent part), and the solution of each coefficient is 
obtained after applying a local linear approximation. 
 
Prediction model:  We predicted drug sensitivities using 5 genomic datasets, 
including two DNA datasets (copy number variation and whole exome 
sequencing), two RNA datasets (gene expression and RNA sequencing) and one 
RPPA protein dataset (fully validated). 
 
The missing values in the 35x31 drug response matrix were imputed by rank k 
SVD using the “Imputation” R package. The missing values were initialized with 
the corresponding column means then replaced by the values determined by the 
rank k SVD. This replacement was repeated until convergence. The optimal rank 
k was determined by cross-validation. 
 
For each genomic dataset and each drug response, we selected features in two 
steps. First, we performed simple linear regression to select the top 1,000 
features that were marginally correlated with drug sensitivities. Second, we 
further selected a subset of these 1,000 features by penalized regression using 
log penalty. The tuning parameters of the log penalty were selected by extended 
BIC. For the RPPA dataset, we used all 66 fully validated features for the 
penalized regression. 
 
From previous steps, we had 5 predictions for each drug’s sensitivities based on 
the five genomic data sets. We combined the 5 predictions using weighted 
average. The weights were selected either by PCA or by all possible weights of 
0.5 or 1 (2^5-1 combinations). For each drug, we chose the weighting method 
that provided the most accurate estimation of ranks across all (training) cell lines; 
if two weights provided the same set of ranks, we chose the weight that provided 
the most accurate estimation of the drug’s sensitivities across all (training) cell 
lines.  
 
Discussion 
In our penalized regression approach, we assumed an additive linear model, 
which is usually robust, but may be less sensitive when there are non-linear 
relationships between drug sensitivities and genomic features, or there are 
interactions among the genomic features; therefore, our method may be 
improved by model-free regression in the high-dimensional setting.51 
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Sparse linear regression 12 

Summary  
Features were filtered on dataset specific criteria, missing values were set to 
random numbers, training and prediction was made using the interior point 
method for L1-regularization. 
 
Introduction 
We identified three major issues associated with the NCI-DREAM drug sensitivity 
challenge, which include:  
 

1. The different molecular profile data from distinct measurement platforms 
were diverse, and it was difficult to integrate them. 

2. There were a large number of genes/features within each of the above six 
datasets. 

3. There were a large number of missing data for many cell lines that were 
randomly spread in all genomic and drug response datasets. 

 
This motivated us to choose L1-regularized least squares regression for this 
challenge. 

  
Methods 
To overcome the above issue 1, statistical regression analysis was used and it 
combines all the genomic datasets irrespective of the molecular and platform 
differences and without preprocessing/normalizing individual datasets. Regarding 
issue 2, relevant genes were selected across samples from different datasets 
using various screening methodologies. Firstly, only those genes with standard 
deviation greater than 0.8 across samples in gene expression (both microarray 
and RNAseq) profiles were selected. Later, genomic identification of significant 
targets in cancer (GISTIC)52 analysis was performed to select those genes with 
significant DNA copy number changes in 44 breast cancer cell lines. Finally, 
those genes that had correlation co-efficient greater than 0.75 across samples 
were selected from methylation dataset. The selected genes from the above 
datasets were combined and integrated with reverse phase protein array (RPPA) 
dataset for further analysis. We avoided exome seq data in this analysis.  
Finally, a random value (-100) that was not present in any of the datasets was 
used in place for missing values, wherever applicable. In addition, this random 
value was chosen such that it did not compromise the drug prediction values to a 
greater level. This optimal approach dealt with the missing data. In cases where 
the GI50 values were missing in the training set of cell lines, those were 
considered as test cell lines. 
The datasets were reduced as described above and combined into a single set 
“combined-dataset” (CDS, no preprocessing involved). Later, L1-regularized 
least squares regression was applied as described in Beroukhim, et al.53 This 
form of training, in addition to providing “weights” for each feature in the CDS, 
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also helped “sparsify” the parameters. The cost function reduced in this form of 
training is: 

min
x

y− Ax 2
+λ x

1
, 

where y is the list of drug responses (GI50 values) provided for a particular drug 
in the training, A is the matrix of the CDS (where rows represent cell lines and 
columns represents all the genes/parameters), x is the final weights of each 
parameter to be determined, and λ is a penalizing coefficient. In other words, in 
addition to minimizing the distance between y and Ax, the algorithm also 
penalizes the 1-norm of x, thus, eliminating all but the most significant 
parameters needed to predict y. If the value of the coefficient λ is higher, a large 
number of x values (weights of genes that predict drug responses) will become 
insignificant, and vice versa. We used the implementation provided in Beroukhim, 
et al.,53 where relative tolerance can be provided to solve the L1-regularized least 
squares problem within a given residual. During each iteration of the 
regularization process, the least squares problem was solved using the 
preconditioned conjugate gradient (PCG) method.  
 
Discussion 
Initially, we used 18 training cell lines and their data to identify molecular markers 
of drug response and later, we predicted drug responses for 35 test cell lines. 
Finally, we combined the drug responses from the 53 training and test cell lines 
and ranked them. There was a compromise on the prediction results due to the 
assignment of random number for missing data as discussed in issue 3. A better 
solution instead of assigning a random number for missing data in issue 3 
discussed above could improve the results. In general, we observed gene 
expression profiles were better in predicting the drug responses compared to that 
of the other genomic datasets. This is probably true as gene and protein 
expression are final determinants of drug responses. Overall, in the post genomic 
era that generates high-throughput molecular and drug data, our algorithm 
performs drug response prediction analysis by integrating diverse data sources 
irrespective of different platforms being used.  

Sparse linear regression 13 

Summary Sentence: Features were selected using lasso regression in 
Gompertz growth model, and predictions were then made with the selected 
model. 
 
Introduction 
In post-genomics era, the widely used ‘omic’ technologies, including RNA-seq, 
genetics (SNPs), epigenetics (DNA methylation and histone modifications) and 
proteomics, are producing terabyte data related to human health. The multi-
dimensional overwhelmed information requires being deciphered in order to 
identify associations between molecular subtypes, pathways, and drug response. 
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We used Gompertz growth model to compress the dimensions generating 
genomic profiles of the 53 breast cancer cell lines, which will help us to 
determine their response to panels of candidate therapeutic compounds and 
make predictions from either of these data profiles in identifying single drug 
response in patients. 
 
Methods 
We first set up a statistical framework for inference and prediction. Let 𝑦!"   be the 
drug response in the 𝑖th cell line (𝑖 = 1,2,… ,35) for a given drug 𝑗.  Here the drug 
response is defined as the coefficient 𝑏 in the Gompertz growth model for each 
cell line such that 𝑓 𝑥 =   𝑎𝑒!!!!", where 𝑥 is the dose level of the drug.  The 
coefficient 𝑏 captures the speed of decline in growth, hence the sensitivity of a 
cell line to that drug. Linear regression models are fitted to model the drug 
response of each cell line to different genomic markers (e.g., gene expression, 
RNA sequence, methylation, and RPPA). Since there are far more genomic 
features than the number of cells, we regularize the linear regression models with 
a LASSO (Least Absolute Shrinkage and Selection Operator) penalty and solve it 
with the coordinate descent algorithm. Three-fold cross-validation is used to find 
the best tuning parameters for each of the regression models. The selected 
biomarkers are combined in the final model for building the relationship between 
drug response and genomic markers. This final model is robust as it eliminates 
the irrelevant biomarkers to the response and has good predictive performance. 
The drug responses for the 18 testing cell lines are predicted from the final 
model. 
 
Discussion 
For a specific type of genomic characterization provided in the drug sensitivity 
predction data, a statistical learning model is utilized to identify the genomics 
features most predictive of the dose response in the 35 training cell lines. We 
have limited the number of genomic features to about 10. We examined for 35 
training breast cancer cell lines (1) the segmented genome copy number calls 
from the DNA copy number variation platform; (2) gene-level summaries from the 
transcript expression values platform; (3) mutation status from whole exome 
sequencing; (4) RNA sequencing data from whole transcriptome shotgun 
sequencing (RNA-seq); (5) DNA methylation data; (6) protein quantification data 
from Reverse phase protein array (RPPA); and (7) the drug response data. We 
found some interested results, for example the methylation level of ATP2A1, 
protein expression EIF4EBP1, SNP in C9f152 and TSPAN6 expression, they 
responded to all drugs, implicating they could be possibilities of biomarkers in 
predict response of other unknown drugs. We utilized the whole dose response 
data in addition to the GI50 concentration for the 31 anonymous compounds on 
35 of the 53 cell lines.  
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PLS or PC regression 1 

Summary  
Removed lowly expressed and/or low variance features, features were 
selected based on correlation to drug response, multiple partial least 
squares regression models were trained and consensus determined for 
final prediction 
 
Introduction 
Whole genome gene expression information is often selected as input data for 
building predictive models on drug response.15, 16, 54-56  A recent FDA-led project 
57 was conducted to evaluate methods using gene expression data to build 
models to predict clinical endpoints (MAQCII: MicroArray Quality Contol II). In the 
project, 36 independent teams analyzed six microarray data sets (including three 
human datasets on breast cancer, multiple myeloma, and neuroblastoma patient 
samples), to generate predictive models for classifying a sample with one of 13 
endpoints. Using independent testing data, the study found that most teams’ 
gene expression based predictive models perform very well on several 
endpoints, including estrogen receptor status and liver overall necrosis scores; 
on the other hand, all the teams’ models poorly predicted overall survival in 
multiple myeloma 57.  
 
We postulated that the poor prediction of overall survival in multiple myeoloma in 
the MAQC II study was due to that the pre-selection of an arbitrary 24 month 
cutoff for classifying patients 57. Since both gene expression and overall survival 
data in the multiple myeloma case are continuous variables, one can also build a 
regression based model that may have greater ability to predict outcome of a 
continuous variable. In fact, the research group that generated the multiple 
myeloma dataset originally adopted a uni-variance Cox regression approach to 
analyze the data, and was able to identify a signature gene set as well as to 
observe a “high-risk” subgroup of ~14% patients 58. This signature was later 
validated on several independent studies and on different regression-based 
approaches 59-62, highlighting the advantage of using a regression approach 
without predefining class memberships.  
 
The original regression approach on the multiple myeloma study is not suitable 
for cell line panel situations, since the Cox regression was designed for handling 
survival data while drug response on cell line screens is characterized by GI50 
values. Partial Least Squares Regression (PLSR) can be applied on different 
genomic profiling datasets, and it is well known to effectively handle high 
numbers of independent variables with minimal demands on sample size 63-65. 
Therefore, we chose the PLSR approach as the basis for building our predictive 
modeling framework using the NCI-DREAM Challenge datasets. A specially 
designed splitting strategy was implemented in our PLSR framework to capture 
consensus features in the training dataset. 
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Methods 
Among the six genomic profiling datasets provided by the NCI-DREAM 
challenge, we focused on using gene expression data alone to build predictive 
models. The reason to choose a single type of data was mainly based on 
practical considerations – in real clinical trials, patient samples are hard to collect 
and very unlikely to be used to generate multiple types of profiling data. 
Choosing gene expression as the input data type for building a predictive model 
was because most of the publicly available profiling data was generated using 
gene expression platforms. 
 
There are four cell lines in the test set that didn’t have microarray gene 
expression data. To address this issue, the following evaluation was conducted: 
First, we downloaded Cancer Cell Line Encyclopedia (CCLE)15 and compared 
microarray gene expression between NCI-DREAM and CCLE on the overlapping 
cell lines; second, we compared microarray and RNA seq data within the NCI-
DREAM challenge on the same cell lines. We found that the correlation of 
microarray vs RNA seq data within the NCI-DREAM challenge was slightly better 
than the correlation of microarray data between NCI-DREAM and CCLE 
datasets. Therefore, we normalized the RNA seq data against the training set of 
microarray data for the cell lines with missing microarray data in the test set. This 
provided “educated guesses” for these cell lines and was used in our predictions. 
 
There were nine out of the 31 drugs where the majority of the training cell lines 
have the same GI50 values, complicating predictive model construction. To 
address this limitation, we assigned the same GI50 values for all the test cell 
lines. In addition, several drugs’ microarray based predictive models might not 
perform as well as others. In these cases, we also built RNA seq-based 
predictive models and compared the performance between microarray-based 
and RNA seq-based models, to identify the better performance for these drugs.  
 
We developed a Partial Least Squares Regression (PLSR) 63-65 modeling 
framework that contains multiple steps on data preprocessing and normalization, 
data reduction, feature selection, a special splitting strategy to capture consistent 
features across the dataset, identification of independent models, determination 
of consensus gene weights, selection of a predictive model for each drug, and 
finally the predictions for the test set in the challenge.  
 
The PLSR modeling framework 
Data preprocess and normalization: In order to use RNA seq information for 
the four cell lines that lack microarray gene expression data, we first identified 
genes that overlap between microarray and RNA seq datasets, then performed a 
quantile based normalization on RNA seq data using microarray data as a 
reference. The merged data was used for subsequent model building and drug 
sensitivity predictions. 
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Data reduction: Data reduction was done in two steps: First, we applied an 
intensity cutoff of 40% of the whole genome to remove genes that may not be 
present in the system. Secondly, we applied a variance cutoff of 0.3 to only keep 
genes whose intensities vary the most in the cancer cell line panel.  
 
Feature selection:  We performed feature selection by checking the correlation 
between each gene’s expression profile and drug responses (GI50 values). 
Permutation was done on each gene by randomly assigning drug responses to 
the panel of cell lines. A raw p-value was calculated based on the permutation 
testing. Feature genes were selected using p-value < 0.05.  
 
A specially designed cross-validation strategy: In model training/testing, a 
common cross-validation approach is to randomly divide the data into training 
and testing subsets, then evaluate model performance by checking the test set 
performance (e.g., mean or median of a performance distribution). Here, we 
developed a special approach to first do a “balanced split” that divides the data 
into training (70%) and test (30%) sets. The training set was further divided into 
sub-training (60% of training) and sub-test (40% of the training) sets by a 
“random split.” Therefore, the whole training set is eventually divided into sub-
training (42%), sub-test (28%) and test (30%) sets. We typically created 200,000 
splits (models) per drug. In each split, we ran a 5-fold or 3-fold cross-validation 
(depending on how many cell lines have response data for an individual drug), to 
generate a PLSR model on the sub-training set. Then, we evaluated the model 
performance on this split for both sub-test and test sets. On each “balanced 
split”, we evaluated performance using correlation and area under the curve 
(AUC), then selected top performing models. 
 
Identifying top independent models:  Top models were selected from the 
following: 1) models should have top performance on the sub-test set for both 
AUC and correlation measures (correlation is weighted higher than AUC), 2) the 
test set should have much narrower performance distribution compared to sub-
test set on both AUC and correlation measures, 3) top model performance in the 
test set should be better than, or at least similar to, the sub-test set, and 4) 
collectively, top models should have relatively high performance among all splits 
on the test set. After we identified top models using the above criteria, we 
checked the degree of overlap in the training sets of the top performing models. 
The rationale is that we aimed to identify high performing and independent 
models, which are expected to also capture the consistent relative importance of 
genes in the prediction. 
 
Finding consensus genes weights and selecting a predictive model for 
each drug: After identifying top models from our cross-validation strategy above, 
we took the following steps to find a top predictive model for each drug: 1) 
removed top models that overlap with each other (sharing significantly common 
cell lines in training sets), 2) obtained consensus gene weights on the remaining 
top models using Singular Value Decomposition (SVD),66 and 3) selected an 
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individual model that had the highest similarity to the consensus model – this is 
our final model for an individual drug. We made predictions on the whole NCI-
DREAM drug response dataset using the final model for each drug separately, 
then replaced training cell lines’ response using the experimental data, and finally 
rank ordered the cell lines for each drug. 
 
Discussion 
When evaluating microarray vs RNA seq-based predictive models on the training 
dataset, we observed that microarray-based models tend to outperform the RNA 
seq models on the same drugs. This indicates that more work needs to be done 
on RNA seq data analysis to fully utilize its potential. 

PLS or PC regression 2 

Summary 
Features were selected by using lasso regression and groups of genes 
predefined by core signaling pathways, predictions were made by linear 
regression of the reduced feature set to drugs response, predictor datasets were 
merged in advance of drug response prediction, and responses were predicted 
simultaneously sharing information among drugs. 
 
Introduction  
We entertained a number of models to rank cell lines by response to various 
drug treatments. Initially our effort was exploratory, in that we focused on 
preliminary processing of different genomic types and in finding features within 
these types that exhibited strong correlation with the response. The high 
covariate dimensionality, the low training set size, the low signal--‐to--‐noise ratio, 
and the extensive imbalance caused by missing data sources compelled us to 
reduce dimension and balance information sources as much as possible prior to 
constructing response predictions. The result of this effort was a covariate matrix 
(called Zflat) of dimension 53 lines by 22,227 genes holding line/gene summary 
scores of genomic variation. Importantly, this covariate matrix summarized all six 
genomic datasets in a maximally informative way, using whatever data happened 
to be measured on the given line and gene combination (the calculation was 
insulated from drug response data.)  Subsequent prediction models used the 
genomic information in Zflat in a variety of ways. To make an informed judgment 
about which prediction model ought to be used for final rank prediction, we 
established a cross-validation (CV) system specifically designed to measure rank 
correlations on left-out samples. The prediction models that consistently showed 
strong test-sample performance were based on pathway-index calculations,67 
which first used lasso regression to select predictive genes within known 
pathways, then used these selections to create a response-dependent, pathway-
specific covariate for each line. We reasoned that any dimension-reductions 
justifiable from good out-of-sample information would be beneficial, and so we 
focused attention on genomic information from a set of 15 core signaling 
pathways. Considering the limited response data per drug, we further reasoned 
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that some benefits might be possible by combining information over drugs. We 
investigated methods that clustered drugs as well as methods that invoked 
shrinkage estimation via empirical Bayesian analysis. Ultimately a simple 
regression-stacking approach showed the best CV performance and was used to 
generate predictions.  
  
Methods  
Constructing covariate matrix Zflat: Preprocessing computations proceeded 
separately within each of the six genomic datasets. For instance, Affymetrix 
expression data were log--‐transformed; exome sequence data were reduced to 
binary gene--‐level indicators of some polymorphism. Data at each feature and 
within each genomic type were then standardized by removing feature--‐specific 
means across available data over all cell lines, and by dividing by the associated 
feature--‐ specific standard deviations. Next, these `z-scores’ were aligned into a 
large, 3- dimensional covariate array, Z, of dimensions 53 cell lines by 6 datasets 
by 22,227 genes. The alignment involved mapping feature ids to a common set 
of gene ids. We used gene symbol as coded in the R/Bioconductor library 
org.Hs.eg.db to enable this mapping. For protein data we parsed the feature 
names and matched where possible to the best-matching gene symbol. The final 
gene count of 22,227 represents those genes for which every cell line has at 
least some data for this gene (i.e., in at least one of the six genomic datasets). 
Owing to idiosyncrasies of data generation and deficiencies of alignment, the 
large covariate array Z was still littered with missing data. However, at every cell 
line and every gene there were some data, and this enabled the final 
construction of the matrix, dimensioned 53 cell lines by 22,227 genes holding a 
summary gene/line variation score. Rather than simply average across Z to get 
Zflat, we processed the six genomic datasets using gene--‐specific principal 
components. We took the 53 by 6 matrix of z-scores at each gene and replaced 
this with a 53 by 1 vector holding the first principal component; the purpose was 
to find some linear combination of sources that retained maximal variation (over 
lines) at each gene. The construction thus allowed key variation at different 
genes to come from different sources. 
 
Cross-validation system: Each prediction method was assessed within the 35 
supplied training cell lines using a CV calculation tailored to the NCI-DREAM 
drug sensitivity challenge. Knowing that teams would be judged on rank 
correlation, and knowing the relative size of the supplied training set to the whole 
(35/53), we considered CV based on (test/training) splits of (10/25). We used 
(usually) 100 random test/training splits to assess a given prediction method. We 
trained the prediction method on the 25 training cell lines and predicted response 
on the 10 test cell lines. We then computed Spearman correlations between 
predicted test and actual test responses, separately for each drug. Using a 
smaller test size (e.g., leave--‐ one--‐out), we reasoned that the performance quality 
measure (Spearman) would be inadequate. In addition to plotting all Spearman 
correlations from such a calculation, we computed a method score as a weighted 
average over drugs of average (over test/training splits) Spearman correlation, 
with weights equal to the observed response sample variances for the drugs, 
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e.g., we always predicted drug 26 responses perfectly, but this high quality was 
eliminated from the method score since drug 26 was given zero weight. By using 
random leave--‐outs from the 35 training lines, we avoided a problem seen initially 
in the separate analysis of genomic datasets caused by lines with no data in that 
class of data. 
 
Pathway index models: reducing dimension and combining across drugs: 
We found good predictions in methods that dramatically reduced dimensions 
using known pathway information in 15 core signaling pathways.67 Aberrations in 
these signaling pathways are associated with cancer growth, and we reasoned 
that they might harbor key variation in the cell’s response to drug. About 5% of 
genes are represented among these core pathways (1,093 of the 20,007). A 
response-guided covariate matrix (cell lines by pathways) was constructed by 
first applying lasso regression separately within pathways to identify genes that 
either (1) have a positive coefficient in the regression or (2) have a negative 
coefficient. (We used the R package glmnet for lasso regression.) Rather than 
use the coefficients (these can display inconsistency properties), we constructed 
a pathway index by taking the difference (for each line) between the average 
Zflat values at positive--‐ coefficient genes minus the average Zflat values for 
negative--‐coefficient genes. The response--‐guided covariate matrix was then 
used to develop predictions; a key advantage is that we reduced from genome 
scale to 15 columns (pathways) and also we suppressed noise by eliminating 
data on genes that were not predictive (by lasso within pathway). Importantly, the 
response-guidance was done within training data, and thus was properly 
calibrated in the CV system. 
 
To combine information among drugs, we stacked the matrix of response values 
(drugs by cell lines) into a long response vector. Similarly we stacked the drug-
specific response-guided pathway index covariate matrices (cell lines by 15 
pathways) into one big matrix ([lines x drugs] x 15). This large design matrix was 
further reduced by principal components analysis to a single first principal 
component, representing the linear combination of pathway-specific vectors that 
had maximal variation. We then used this single genomic predictor, in addition to 
an incidence matrix enabling drug--‐specific intercept terms, into a multiple 
regression against the stacked response vector. Predictions were generated 
from this fitted regression model. 
 
Discussion 
After playing with various prediction methods one line and one genomic type at a 
time, we sought a simple approach to integrate predictive information among 
lines and genomic sources. Additionally, we sought a CV system to compare the 
various prediction schemes under consideration. By an alignment of all the 
sources and a principal components (PC)-based combination, we produced a 
(gene/line) covariate with potential predictive power because of high variation 
over cell lines given by the first PC. Having reduced over sources we still had a 
huge number of genes and a seemingly low signal-to-noise ratio, so we 
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reasoned that restriction to core signaling pathways might provide a useful 
structuring of prior knowledge. Our numerical experiments also showed that the 
pathway-index calculations had substantially better predictive performance than 
standard regression methods (e.g., lasso within drug or within data source). We 
did not extensively test approaches to combine across drugs, but the regression-
stacking method had the potential to contain the relevant effects and it was much 
easier to deploy than model-based shrinkage methods. 

PLS or PC regression 3 

Summary  
Training and prediction was done using principal component regression for 
individual drugs. 
 
Introduction 
This is a textbook "leave some out"-style prediction task. Our strategy was to use 
as many data types as possible (in separate models) and to merge predictions 
from multiple data types and multiple models into an overall prediction. We chose 
principal component regression to handle the dimensionality mismatch between 
the input matrix (one column per gene) and the output vector (drug response 
across cell lines). 
 
Methods 
No data processing was performed other than organizing the various genomic 
data sources into tables with cell lines as rows and genes as columns. For each 
drug, we fitted the linear regression: 

yij = Xj bij + eij 
where yij is the response of drug i modeled by genomic data type j, Xj is the 
matrix of genomic data type j, bij are the coefficients to be fitted, and eij is the 
residual. To handle the dimensionality mismatch we used principal components 
regression up to dimension d of Xj. The parameter d was chosen by leave-one-
out cross-validation (CV). Predictions were generated using the fitted coefficients 
bij. After fitting and predicting using each genomic dataset separately, we merged 
the set of responses for drug i into an overall prediction for drug i. The predicted 
responses were converted to ranks and merged into an overall prediction using 
the rank-mean to produce the submitted prediction for drug i. 
 
Discussion 
Using leave-one-out CV to determine parameter d in each regression led to 
gross over-fitting and little to no predictive accuracy on the blind test set. In 
retrospect, n-fold CV might have produced better generalization though we did 
not investigate possible improvements after the fact. Having extremely poor 
generalization despite encouraging accuracy using CV is a sobering reminder of 
the “self assessment” trap.68 We were surprised to find how poorly this method 
performed. 
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PLS or PC regression 4 

Summary Sentence 
Statistically significant features were selected using correlation, models were fit 
using principal componenet regression, final predictions were made using a 
weighted average of models.  
 
Introduction 
One of the most difficult challenges in clinical oncology is the selection of the 
most effective therapeutic agents for an individual cancer patient. The use of 
ineffective therapy in a certain proportion of patients confounds overall clinical 
trial interpretation. Ineffective therapies can also lead to diminished overall 
therapeutic outcomes in routine clinical practice while decreasing the quality of 
life in patients who do not benefit from therapy. In order to improve the selection 
of the best drugs for specific patients, we developed an in vitro cell line-based 
drug response prediction strategy, COXEN (CO-eXpression ExtrapolatioN)69-73. 
Recently, next generation sequencing techniques have been widely used to 
obtain accurate gene expression patterns in the whole genome. In this study, we 
introduce a strategy for predicting drug sensitivity of cancer cell lines based on 
gene expression data captured by either or both RNA seq and microarray 
profiling.  
 
Methods 
Quality control and gene annotation analysis: For microarray and RNA seq 
data, we first took a log-transformation to reduce their distributional skewness for 
our subsequent statistical analysis. Prior to the log-transformation, expression 
values of RNA seq originally truncated at zero were replaced by the minimum 
value among all non-zero expression values. Then, the distribution and 
correlations of gene expression across all cell lines were examined statistically 
and graphically to identify outlying cell lines or genes. In addition, we examined 
whether expression values of the same genes were consistent between RNA seq 
and microarray data; No significantly outlying cell lines were discovered but some 
genes were excluded from this analysis. We then matched gene annotations 
between RNA seq and Affymetrix microarray data using Hugo gene 
nomenclature definitions.  For multiple matched genes between the two 
platforms, the pair with the highest expression correlation was selected.  
Compounds that showed no differential growth inhibition activities across most of 
training cell lines were excluded in our prediction analysis since statistical 
prediction models for such drugs could not be generated and/or were not 
meaningful. 
 
Feature selection: We defined three different sets of genes: RNA seq-based 
biomarkers, microarray-based biomarkers, and concordant biomarkers (between 
the two). First, training cell lines with all required data-RNA seq, microarray, and 
drug response were split into three subsets for each drug. Two subsets with the 
same sizes were used for biomarker discovery and evaluation (i.e. training), and 
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the last subset was held-out for cross-validation. For each RNA seq and 
microarray biomarker, we tested significance of correlation between gene 
expression and drug sensitivity in the first and second subsets sequentially in 
order to avoid a multiple comparisons pitfall in a large-screening analysis. Genes 
that were significantly correlated with drug activities in both subsets were ranked 
by their average correlation coefficients derived from the two subsets for our 
multivariate prediction modeling of drug sensitivity.  
 
Modeling and evaluation: We adopted a multivariate dimension-reduction 
technique of principal component regression to avoid model over-fitting on each 
of RNA seq and microarray data. The two cell line subsets used in the gene 
selection were combined for prediction model training and evaluation. For each 
candidate biomarker set, the top 3 principal components were extracted from 
each RNA seq and microarray data, and used to build regression models of drug 
sensitivity against the principal components in a cross-validation manner. 
Multiple competing prediction models were built by adding candidate genes in the 
biomarker set sequentially. Each RNA seq and microarray data-specific 
prediction model was evaluated based on their prediction performance on the 
test set with rank correlation. We also examined the consistency of the prediction 
scores between the RNA seq and microarray data in the test set.  Finally, we 
selected a final model that maximized the sum of the performance and 
consistency indices. The final prediction model for each drug was tested with the 
external training subset and applied to the test cell lines.  
 
Statistical imputation of prediction score of cell lines with missing data: In 
the 18 test cell lines, there are three cell lines (16.6%) with missing RNA seq and 
four cell lines (22.2%) with missing microarray data. Since cross-platform 
prediction models cannot be made for these cell lines, we used a statistical 
imputation technique to impute one type of missing data, i.e. RANA-seq or 
microarray data. That is, for the cell lines with missing RNA seq data, a linear 
regression model was built from the training and test cell lines from microarray 
data. Then missing RNA seq data of the cell lines were imputed by predicted 
values of the microarray-based prediction scores. Likewise, we performed 
imputation for the cell lines with missing microarray data. 
 
 
Imputation and Integration of RNA seq and microarray based predictions: 
Our final prediction for each test cell line was based on a weighted average 
between the RNA seq and microarray-based models as below.  Let rA,i and rS,i 
denote prediction scores of microarray and RNA seq-based models of the i-th 
cell line, respectively, then weighted average score is defined as: 

ri = wArA,i + (1−wA )rS,i,    where 0 ≤ wA ≤1  
In particular, when a weight on microarray-based model, wA, is 0 or 1, the final 
prediction depends only on the RNA seq-based model or the microarray-based 
model, respectively. For the weighted average, the optimal weight was obtained 
with a cross-validation analysis by gradually changing weights from 0 to 1 in the 
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training cell lines with randomly generated 20% missing data. We then made our 
prospective prediction of the test cell lines by the weighted average for each drug 
and ranked them against the entire cell line panel accordingly.  
 
Discussion 
In the study, we proposed a strategy for predicting drug sensitivity with both RNA 
seq and microarray gene expression data. In particular, we used the weighted 
average prediction strategy to enhance prediction performance of single data 
type-based prediction. For cell lines with only one type of data, we used a 
statistical imputation method based on a linear regression. This imputation 
enabled us to generate cross-platform prediction scores for test cell lines with 
missing data.  However, non-linear or non-parametric regression strategies may 
provide better imputation by capturing complex relationships between different 
molecular profiling techniques, which needs to be further investigated in a future 
study. Despite these challenges, we believe that a successful development of 
cross-platform prediction techniques will greatly improve prediction accuracy of 
drug activities, avoiding bias from one type of molecular profiling technique.  
 

Ensemble/Model selection 1 

Summary  
Features were selected using correlation, dimensionality reduced using PCA, 
Lasso and Ridge method, several regression models were trained for individual 
drugs and the top cross-validated model was selected to make final predictions 
for each drug. 
 
Introduction 
The continuous nature of the response variable in the NCI-DREAM drug 
sensitivity challenge naturally falls in the regression formulation as a basic setup, 
where variable selection plays a critical role.74 Although regression appears to be 
a natural setup, which aspect of the distribution to be regressed is a research 
topic by itself for the challenge data. In order to do so, a compromise was 
reached to keep the implementation computationally feasible without 
compromising quality significantly. In our earlier work, we have noted that the 
supervised principal component (SPCA75) method, combined with various types 
of regressions, enables efficient implementation of the variable search in a 
biological meaningful and statistically optimal manner. We adopted SPCA-based 
variable selection and population based data augmentation while we explore a 
wide range of regression models and input for this challenge. 
 
Methods 
All supplied genomic datasets were explored using basic data exploration 
techniques to study their inherent natures. In most cases the basic calibrations 
carried out on respective datasets appeared satisfactory. Further processing was 
carried out for the exome seq dataset.  
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Feature Selection: For each drug and dataset, we used correlation between cell 
line level drug response and measurements on genomic features as a measure 
of association. From some datasets, all available data were used if the number of 
features were no too high; otherwise, features were initially truncated using the 
above correlation measure.  
 
From this truncated list  of features, we applied some of the well known model 
reduction methods like supervised principal component analysis (SPCA), L1-
penalised regression (i.e., Lasso), L2-penalised regression (i.e., ridge regression) 
and (traditional) stepwise regression. 
 
Predictive models: We have explored a range of regression models for mean 
and hazard for this problem, including multiple regression models, generalized 
linear models (GLM), Cox-proportional hazard models, etc. Different 
transformations of the basic data were also attempted. For GLM, different link 
functions for Gamma distribution were used. It is not known from the domain of 
this problem whether the predictor variable are effective on predicting mean (of 
the activity) or whether underlying hazard function can also be predicted by these 
regressors. Thus a Cox-proportional hazard model was used to elicit that aspect 
of the given data. 
 
Three fold cross validation: To assess predictive ability of the proposed 
models, a cross validation (CV) technique was adopted.76 A total of 35 cell lines 
were provided in the training set of drug responses; however, the actual training 
set sizes varied from drug to drug and also across data types. In each case, the 
cell lines were split into 3 disjoint sets of approximately equal sizes, with one set 
being designated the test set and the remaining cell lines in the training set.  
 
Discussion 
It appeared different drugs were best predicted by very different combinations of 
data types, amount of data and modeling choice. The overall results presented 
here are a picked from thousands of such models for each drug based on CV.  
 
It was in general observed that the dissimilarity between the learning set and test 
set response had affected the prediction quality. However the predictors need to 
be checked before it can be ascertained firmly whether extrapolation has taken 
place or the underlying distribution has been violated in some of the test 
samples.  

Ensemble/Model selection 3 

Summary  
Features were selected using Spearman's rank correlation, missing values were 
imputed, predictions were made using the best performing method (determined 
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by cross validation on the training set) among an ensemble of methods (random 
forest, support vector machine and linear regression) 
 
Introduction 
Previous studies have indicated that the molecular mechanisms responding to 
different drug treatments are different. For example, mutations in cancer genes 
could be key biomarkers for targeted agents, while they are less informative for 
responses to cytotoxic chemotherapy16. Therefore, we addressed the drug 
sensitivity prediction challenge in a drug-centric manner: for each drug, we pre-
selected the candidate genomic features according to their correlations with the 
drug response across cell lines. Given the fact that the effectiveness of machine-
learning approaches varies in predicting drug sensitivity from genomic data,15, 16 
we applied three well-established machine learning methods: random forest, 
support vector machine (SVM) and linear regression to the training set and chose 
the one with the best performance based on cross-validation (CV) for the final 
prediction on the test set. 

Methods 
Figure E3 shows the overall scheme of our analysis, and the predictive models 
were built for each drug, respectively. 
 
Feature Selection: For continuous features like DNA copy number variations 
(CNV), DNA methylation, gene expression, and RNA seq, we chose the top 100 
features from each category based on their Spearman’s rank correlation with the 
drug response across the training cell lines. If significant features (p-value < 0.05) 
were fewer than 100 for a category (e.g., RPPA), we only included significant 
features. 
 
To select the informative features from the exome seq dataset, we chose two 
different strategies:  (i) we counted the mutation number for each gene in each 
cell line and chose the top 100 genes ranked by the mutual information between 
their mutation number and drug response across the training cell lines; (ii) we 
used binary indicator (1 and 0) to represent the presence or absence of the 
mutation in the gene. We then chose the top 100 genes as ranked by the p-value 
from the t-test between the drug response of the “0” group and the “1” group 
across the training cell lines. 
 
We then combined the top 100 informative features of each category into our 
final candidate feature list. The genomic data for all cell lines (including training 
and test sets) were formatted accordingly. 
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Figure E3. Schematic representation of the Ensemble/Model selection 3 method. 
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Prediction Model: Before applying the machine learning methods, we first 
normalized the training and test data together and imputed missing values either 
directly or by principal component analysis (PCA) algorithm. 
 
We applied three well-established machine learning algorithms (random forest, 
linear regression with PCA for feature selection, and SVM) to our training data to 
build the predictive models.  
 
Based on leave-one-out CV, we assessed the model performance by calculating 
Spearman’s rank correlation, as well as the mean square error (MSE) between 
the model prediction and the observed experimental data. The model with the 
highest correlation and the smallest MSE was applied to the test data for 
prediction, from which we ranked the sensitivity of the test cell lines to this 
specific drug. 
 
Discussion 
In this study, we used random forest, SVM and linear regression for drug 
sensitivity prediction using the top 100 genomic features correlated with drug 
response from diverse genomic profiling datasets. Among the genomic features 
across all datasets, gene expression from microarray provided the highest 
predictive power. However, when we restricted the analysis to the genes with 
both microarray and RPPA measurements, the latter usually provided better 
predictive power, suggesting that protein-level measurement is more informative 
about the drug sensitivity prediction when it is available. Noteworthy, the top 100 
correlated genes from different platforms hardly overlapped, so they may 
complement each other and collectively contribute to the overall predictive power 
we observed. Among the three machine learning methods we used, SVM 
outperformed the other two in most of the cases according to our assessment 
method. In the future, we may (pre)select features in a more objective way, e.g., 
using false discovery rate (FDR) or the least absolute shrinkage and selection 
operator (LASSO), since the top 100 features might not be optimized.  

Ensemble/Model selection 4 

Summary  
Gene and pathway features were compiled using outside data, an ensemble of 
prediction models were trained, final predictions were based on a rank-
aggregation of combined prediction models. 
 
Introduction 
Our approach to solve this challenge was to use an ensemble method to 
aggregate the results of diverse prediction methods. We used methods that 
encompassed both a priori knowledge of cancer biology and modern predictive 
techniques. To incorporate a priori knowledge, we used Gene Set Enrichment 
Analysis to relate our feature sets to biologically relevant processes. As 
described in more detail below, we developed two new prediction methods: 
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Difference Prediction and Cluster Similarity, both took advantage of the unique 
nature of the provided datasets. 
 
Methods 
Our models attempt to combine the results of multiple prediction methods in 
achieving an optimal prediction. We have implemented a set of feature selection 
methods available in the sklearn python package consisting of multiple types of a 
priori gene lists and computationally derived gene lists.77,78 We applied these 
feature selection methods to all six genomics datasets provided in the challenge. 
We then used a collection of models to produce a final prediction by ordering the 
test cell lines according to drug sensitivity. 
 
Feature Selection:  Features consisted of the supplied measurements from the 
genomics datasets unless otherwise stated. Our computational feature selection 
methods fell into two main categories: correlation with GI50 values and pathway 
enrichment. For the correlation approach, we used step-wise regression77,78 to 
determine the collection of N genes that have the lowest RMSE with the GI50 
values. We collected gene lists for N = 5, 10, 20 for each drug and data type.  
 
Pathway enrichment was done by grouping cell lines into ‘susceptible’ and 
‘resistant’ classifications by fitting a two component Gaussian Mixture Model 
(GMM)73  to the GI50 values for each drug. We then used RankProduct79 to find 
significantly differentially expressed genes between the two groups. We used the 
DAVID web-tool80 to determine gene-level annotations, where were grouped into 
31 functional categories significantly enriched in the gene list. This produced two 
feature lists: a Boolean array of significant annotations and a list of the genes 
present in the significant annotations. 
 
A priori gene lists were constructed using two methods. The first method was 
from our previous research with microarrays in deducing disease signatures for 
various subtypes of cancer and picking genes related to drug response.81,82 The 
second method was to use computational approaches to cull lists from the 
Genetic Association of Disease database.83 We used the ChEMBL database84 to 
find the 20 most common genes targeted by chemotherapy drugs. We also 
identified the 20 most commonly mentioned gene names in the text of articles 
returned from the PubMed query “cancer drug targets”. 
 
Prediction:  To process the nearly three thousand feature lists thus generated, 
we developed a pipeline, implemented in the IPython Notebook,85 which fit the 
selected model, predicted the unknown data points and then used leave-one-out 
cross-validation (LOC) to predict the known data points. The sklearn python 
package provides many prediction methods, which we enhanced with two novel 
methods. 
  
From the sklearn package we used the K-Nearest Neighbor Regression (KNR), 
Linear Least-Squares Regression (LR), Support Vector Regression (SVR), and 
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Gradient Boosting Regression (GBR). We used the sklearn Grid Search 
technique to determine the optimal parameter sets for each of the feature lists 
using LOC. We used Kendall’s Tau as the objective function. 
 
Difference Prediction 
This method we developed attempts to transform a regression problem into a 
binary prediction problem. The method consists of the following steps: 

1. Calculate the difference between each pair of corresponding features. 
These differences become the new feature set. 

2. From the GI50 values, determine the ‘susceptible’ and ‘resistant’ 
classification, which becomes the new response variable. 

3. Train a simple classifier to predict the response variable based on the 
feature set from step 1. 

4. Use the classifier to classify new cell lines into this context. 
5. Determine the best rankings based on the response variables. 
6. Extract GI50 value for these new cell lines. 
7. This method has the advantage of reducing the regression problem into a 

binary classification problem at the same time that one increases the 
number of ‘observations’. For this method we used either a logistic 
regression or a gradient-boosting classifier. 

 
Cluster Similarity 
This method uses a multi-step clustering approach to find a collection of features 
that preserve clusters created using GI50 values. The method is consists of the 
following steps: 

1. Cluster cell lines by their GI50 values. 
2. Find the features that preserve this clustering. 
3. Use KNN regression with the features found in step 2. 

 
Aggregation: The final predictions were based on combining the predictions of 
multiple prediction sets we generated. We assume that each of our predictions is 
correlated with the correct answer, yet independent of each other. Data 
aggregation attempts to find the results that are consistently near the top and 
adjusts the ranks accordingly. We excluded non-significant predictions (Kendall’s 
Tau,  τ > 1.0-5). 
 
We implemented two aggregation methods: a linear-regression prediction and a 
weighted rank aggregation. For linear regression we use the following steps: 

1. Use the predicted GI50 values from each method as a feature and the 
known GI50 as the response variable. 

2. Train a linear regression model. 
3. Predict unknown GI50 values. 
4. Rank the predicted GI50 values. 

The weighted rank aggregation method86 has the following steps: 
1. Convert all GI50 predictions to ranks. 
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2. Use the LOC score as a ‘weight’ and calculate the weighted-mean of the 
ranks for each GI50 value. 

3. Re-rank the weighted-means. 
To evaluate these two methods we also use LOC. In practice the weighted-rank 
aggregate outperforms the linear regression method, τ = 1.0-15 vs. τ = 1.0-6. Our 
final predictions for submission used the weighed rank aggregate method. 
 
Discussion 
Our proposed method had a strong tendency to over-fit the training data. With a 
larger dataset of known GI50 values we would have possibly been able to avoid 
this pitfall. Incorporation of a Gaussian model to predict rankings could have 
potentially improved our final results.  

Ensemble/Model selection 5 

Summary  
Features were selected using outside pathway and interaction data, missing 
values were imputed, individual drug predictions were made using the best 
model selected from an ensemble of methods 
 
Background 
Our model to rank order the drug response of 18 test breast cancer cell line in 
relation to 35 training breast cancer cell lines (N) was centered around two 
approaches. The first lies in variable selection. The genomic datasets provided 
would result in over 60,000 features (P). This results in a classic small N, large 
P problem in which a model’s efficacy may be compromised as too many 
variables are left to explain a model,87 which leads to over-fitting. In order to 
address this problem, we used a variable selection method that only selected 
features that had a high pathway-level impact on the cancer molecular 
interaction networks. Network or pathway-level impact has been used many 
times to prioritize genes for a variety of studies from detecting driver 
mutations88 to identifying patient-specific pathways.5 We also limited our 
approach to the gene expression dataset. We ranked all genes in the network 
using a method we recently developed called DawnRank (unpublished), 
selected the genetic variables that exhibited the highest network-level impact, 
and built our prediction model based on the 500 highest-ranking variables. 
 
The model we used to rank breast cancer drug response was to select the 
best performing drug-specific classifier from multiple types of regression 
models. We decided to use this approach due to the fact that there is no 
“best” classifier for all types of data, and that the optimal classifier may 
change from drug to drug as they are independent samples. Using cross-
validation, we identified the top performing model from SVM (Radial and 
Polynomial Kernel), RandomForest, Boosting, and Ridge Regression.87 We 
opted for these particular classifiers due to their ability to handle large 
numbers of variables with only a relatively small number of observations. 
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Methods 
Feature Selection:  We selected the features with the highest-ranking score 
using our DawnRank approach. We first started with a network from Ciriello, et 
al.89, which represents an aggregated pathway drawn from large-scale curated 
databases such as KEGG90, PID91, and Reactome92 as well as non-curated 
sources such as derived protein–protein interactions, gene co- expression, 
protein domain interaction, GO annotations, and text-mined protein interactions. 
For each drug, the NCI-DREAM gene expression profiles were used as input in 
our method; the top 500 genes were selected. 
 
Imputing missing values:  In addition to the variable and model selection, we 
also addressed other issues in data cleaning for our model regarding missing 
values. We observed that some of our models did not perform when using a 
small number of observations; therefore, we used a mean imputation to estimate 
missing values. Also, of the 53 cell lines, 3 did not have gene expression data. 
We used K-nearest neighbors impute these values. Regarding drug response 
values, we found that certain drugs were virtually identical across all cell lines, 
which caused models to fail. To correct for this, we added a small epsilon, a 
random fourth digit in which we generated from a uniform distribution (-0.0005, 
0.0005) to provide a small amount of variance in those drug responses. We 
refrained from using drugs with many N/A values and little variation. All in all, 7 
drugs (drugs 4, 6, 12, 13, 20, 26, and 27) were not used. 
 
Model Selection:  For each drug, we fitted five different potential models (SVM 
with a radial kernel, SVM with a polynomial kernel, Random Forest, Ridge 
Regression and Boosting) and used root mean square error (RMSE) loss to 
determine the top-performing model. Because the test response was hidden, we 
applied a 4-fold cross validation among the training dataset with each model for 
each of the 31 drugs. The model that exhibited the lowest RMSE for a given drug 
was selected to predict the test data for that drug. For the SVM models, we used 
both the radial and polynomial kernel in our analysis, and tuned our parameters 
for gamma from 2-7 to 2-2 and cost from 2-3 to 2-2. Our random forest 
implementation was based on the normalized votes of 500 trees. Our ridge 
regression took on all lambda parameters from 1 to 1000 with increments of 1. 
The Generalized Boosted Regression models were the most restrictive in terms 
of our parameters even after imputing all missing values, and consequently, we 
relaxed the parameters to include 8 trees, a shrinkage of 0.1, and a bag-fraction 
of 0.9. 
 
The most robust method for calculating drug sensitivity was Ridge Regression, 
the best-fit model for 18 of the 24 predicted drugs. Most of the remaining drugs 
were best fit using the SVM method with a polynomial kernel. SVM-Radial, 
Random Forest, and Boosting made only minimal impact on our model fitting. 
It is important to note that SVM radial and Boosting were selected as the 
optimal model for 3 of the 7 flagged datasets which may be indicative of their 
success in noisy data. 
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Discussion 
Our multi-model regression approach shows effectiveness for predictions drug 
response for a large number of drugs across many test cell lines. Nonetheless, 
the model can be improved upon as several drugs performed poorly on our 
model. Some suggestions for future work would be to address the model 
limitations by selecting other models and honing in on the variable selection. 
Additionally, an imputation for missing values could be an improvement as 
well. Overall, although our model in analyzing the NCI-DREAM dataset can be 
improved upon, the results using a statistical approach provide us with a 
crucial step to predict drug response reliably from genomic profiling datasets. 

Other 1 

Summary 
Features were weighted based on Pearson's correlation to drug response, 
predictions were made using the correlation of the weighted features. 
 
Introduction 
This method could be considered somewhat distinct, in that it is rather simple 
and straightforward, while making no extraordinary effort to filter for the top 
predictive features. Instead, all features in each expression dataset examined 
were used, but each feature was weighted according to its correlation with 
sensitivity; features with no correlation would have essentially zero weight, but 
would not be explicitly excluded.  
 
The following datasets were used in this model, gene expression, RNA seq, and 
RPPA. The decision was made to not use copy or mutation data, as these can be 
considered sparse and not conducive to examining global correlations. 
 
Methods 
For each expression dataset, features were log-transformed (if not already log-
transformed) and centered across samples on the median. 
 
The analysis described below was carried out for each of the three datasets 
individually. Results from the three datasets were then averaged in order to 
derive the final scores. For each dataset, all features profiled were used in the 
scoring (i.e., there was no filtering or pre-selection of “best” correlates for the 
purposes of classifying). 
 
With the given dataset and the known GI values, a matrix of correlations (by 
Pearson’s) was constructed (across the cell lines) between GI50 values and 
expression values. Within the matrix, each feature (e.g., gene or protein) had a 
correlation value for each of the 31 drug compounds; a strong positive correlation 
between feature and drug would suggest that the feature might be a marker of 
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sensitivity (e.g. ERBB2/GRB7 for lapatinib GI50), and a strong negative 
correlation, a marker of resistance.  
 
Using the above (gene X drug sensitivity) matrix (from which we get genomic 
profiles of “drug sensitivity”), the Pearson’s correlation was computed between 
each drug sensitivity profile (derived from the training cell lines) and each 
genomic profile of the test cell lines. A high correlation between a drug sensitivity 
training profile and a test sample genomic profile would suggest that the test 
sample would be more sensitive to the drug (at least relative to the other cell 
lines). 
 
Using the three datasets analyzed in the above manner (gene expression, RNA 
seq, and RPPA), the predicted sensitivity correlations for each drug X cell line 
were averaged across the three genomics datasets (the values being first z-
normalized within each platform), in order to get a final predicted sensitivity 
correlation.  
 
For the final results submission, the predicted sensitivity values for each drug 
were ranked across the cell lines. For the test samples, the ranking was assigned 
relative to the predicted values (across both training and test samples). 
 
Discussion 
For all its simplicity, the method ranked third overall. This could suggest that 
simpler approaches might be comparable in performance to more complicated 
approaches. Overall, the individual result sets using RPPA, gene array, and RNA 
seq datasets were largely correlated with each other, though averaging the three 
may have helped in reducing noise from outliers. Also, as the entire expression 
profile was used, the genomic information encoding drug sensitivity could involve 
hundreds if not thousands of genes; each profiling platform may provide 
information as well. 
 
In the future, an examination of top correlated features for each drug, using a 
biological perspective, may be informative in terms of better understanding the 
biology of drug sensitivity in the cancer cells. 

Other 2 

Summary 
Select gene features showing strong survival from the METABRIC dataset then 
hierachically cluster, build linear model to fit gene clusters to drug response, 
predict using regression model 
 
Introduction 
Cell lines are regularly used as models to understand tumor cells in human 
patients. Usually it is reasoned that if a compound is capable of reducing the 
viability of model cell lines, then the same compound should also have potential 
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to increase patient survival. This motivates the question: Can this link also be 
reversed and utilized for the prediction of effects of combined compounds or for 
the effects of the same compound when applied to other cell lines? When 
exploring gene expression data of patients, one can usually identify many genes 
that are significantly correlated with patient survival, for example in a “higher 
expression is worse” pattern. In this example the assumption of the reversed 
reasoning would be: Any compound that is capable of decreasing the expression 
of these “bad genes” will also have potential to reduce viability of the tumor cell 
lines. In this report a prototype algorithm is presented that uses assumptions like 
these to transfer the information known about compounds for some cell lines to 
new cell lines and to make predictions about the compound effects on them. 
 
Methods 
Information on the patient side was learned from the METABRIC study94; more 
precisely, from the normalized log! ratios , 𝑀!,!, for all available genes 𝐼 and for 
all available patients 𝐽 in both the discovery and validation set (downloaded from 
European Bioinformatics Institute; accession: EGAS00000000083). Based on the 
follow-up information of disease-specific overall survival, genes were identified 
whose expression was significantly correlated with survival of breast cancer 
patients. These genes were partitioned into correlated genes 𝐼! ⊂ 𝐼   (showing a 
“higher is better” pattern) and anti-correlated genes 𝐼! ⊂ 𝐼 (“lower is better”). 
Genes without significant correlation (𝛼 > 0.05) were excluded. 
 
As information based on a single gene is rather uncertain, hierarchical clustering 
of the gene expression profiles was used, separately for both identified gene 
partitions and based on the correlation metric with Ward linkage. Several 
signatures of co-regulated genes 𝐺!! ⊂ 𝐼! and 𝐺!! ⊂ 𝐼! were defined manually by 
visual inspection and selecting clusters in the resulting hierarchical cluster 
dendrograms. Only well-separated clusters were selected for further analysis.  
For each identified gene signature, a survival analysis for the average signature 
expression was conducted and survival slopes 𝑠!

± were calculated for every 
signature, defined as the expected linear increase (or decrease) in survival per 
difference in the signature’s average gene expression. This encodes the 
information about how much a higher expression of a particular set of co-
regulated genes 𝐺!! is better (or worse for 𝐺!!) for patient survival. 
 
For drug sensitivity prediction, two sets of information are required: By how much 
does a higher average expression of the same gene signatures 𝐺!

± influence the 
decrease in viability of a cell line following the administration of a specific 
compound?  Ideally, one would have measurement data before and after 
treatment for many cell lines and compounds to estimate the compound effects 
on gene expression and viability robustly. In this challenge normalized gene 
expression profile (GEP) data, 𝑀!,!, for genes 𝐼 and cell lines 𝐿 were available 
before compound administration, but not after compound administration. 
Therefore instead of trying to find the viability slope over the average signature 
expression separately for every single cell line, this was done for all cell lines 
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simultaneously as follows: 
 
Let 𝑀 𝐺!

±, 𝑙  be the average expression of signature 𝐺!
± for cell line 𝑙 and let 

𝑐GI50,!,! be the concentration of compound 𝑛 necessary to inhibit proliferation of 
cell line 𝑙 by 50% (after 72h). In order to calculate the GI50 concentration of a 
compound 𝑛, predictors had to be defined based on the average gene 
expression of every signature 𝐺!

±: Linear models and least squares fits were 
used on the points   𝑀 𝐺!

±, 𝑙 , 𝑐GI50,!,!
!
 for all available cell lines and resulted in 

linear functions 𝑐!,!
± . The combination of the predictions for all signatures 𝐺!

± was 
defined as 𝑐! ≔ 𝑤!,!! 𝑐!,!!! + 𝑤!,!! 𝑐!,!!! , where the weights were normalized to 
1 for each sum and were defined to be proportional to the influence 𝑠!

± of cluster 
𝐺!
± on the patient survival and to the goodness of fit for 𝑐!,!

±  (measured via 
correlation of the underlying data points). Now predictions of the expected GI50 
concentration for a compound 𝑛 administered to a new cell line 𝑙 ∉ 𝐿 were 
possible based on its average expressions for the gene clusters: 

𝑐! 𝑙 = 𝑤!,!! 𝑐!,!! 𝑀 𝐺!!, 𝑙
!

+ 𝑤!,!! 𝑐!,!! 𝑀 𝐺!!, 𝑙
!

 

Finally, the cell lines were ranked for each compound from the most sensitive 
(having the lowest predicted GI50 concentration) to the least sensitive. 
 
Discussion 
By developing a method to address the NCI-DREAM challenge, it was possible 
to test the conjecture that it is possible to quantitatively infer the decrease in cell 
line viability from the effects of the same compound on many other cell lines via 
gene expression patterns that are associated with patient survival. 
 
Although more data was provided, only the gene expression and GI50 
concentration data were used in order to specifically test this conjecture. (Note 
that the cell lines 184A1, 21MT1, 21NT, HCC1569, MX1, SUM229PE, 
T47DKBLUC did not have valid GEP data and thus could not be ranked.)  
Despite this restricted information the ranking predictions were significant (p=9e-
4). However, a similar model used for the sister sub-challenge about DLBCL in 
order to predict effects of pairs of compounds on a single cell line and this model 
did not produce significant predictions. Taking both results together, it is probable 
that we can learn something new about the tested conjecture: 
Gene clusters 𝐺!

± that are relevant for patient survival can indeed be used to 
transfer the information about compound effects to a new cell line, but only if 
these gene clusters were stratified by weights based on the consistency of the 
compound effects on many cell lines of the disease. If their weights were only 
determined by experiments with different compounds, but the identical cell line, 
then predictions of the effects of combinations of compounds on the same cell 
line was not possible. Maybe this can be explained as follows: For a single cell 
line, several of the 𝐺!

± signatures that were identified based on patient survival 
are not applicable, since the cell line is only representative for a specific subtype 
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of the disease. This is especially true for diseases like DLBCL that are known to 
be genetically heterogeneous. Additionally, a single compound only affects the 
expression of a specific subset of genes and the overlap with the 𝐺!

± might be 
small for most of the tested compounds. Taking together, there might simply not 
be enough information to robustly define the weights for the 𝐺!

± in the “single cell 
line, multiple compounds” scenario. 
 
Clearly, from an analysis point of view it would be ideal if one had GEP 
measurements before and after compound administration like in the DLBCL sub-
challenge, but for many cell lines of the disease like in this breast cancer sub-
challenge. Then it would be possible to combine both weighting schemes which 
should result in a self-stabilizing effect and might also allow predicting the effects 
of pairs of compounds based on patient survival (not just for a single cell line but 
for all used in the training phase plus new ones). 

Other 3 

Summary  
Missing features were imputed, signatures were extracted for each dataset, 
predictions were made using 1-nearest-neighbor to training cell lines via 
Pearson's correlation between signatures for each data type, final predictions are 
the weighted sum of the individual datasets 
 
Introduction 
A cell response to an external stimulus such as a small molecule or drug is 
mediated via a cascade of interacting proteins and expressed genes. The 
temporal state of these genes (e.g., their expression values or methylation state) 
and genomically encoded information (e.g., single nucleotide variation) affect a 
cell’s response to a drug. We thus suggest a plausible assumption that similar 
states of the drug-induced genes across different cell lines would result in similar 
phenotypic drug response. While knowledge about the complete set of genes 
participating in each drug response remains incomplete, we may approximate 
this set by looking for genes whose similar state across cell lines corresponds to 
similar drug response of those cells.  
 
Building on these assumptions and leveraging the plethora of genomic 
measurements for each cell line supplied in the NCI-DREAM drug sensitivity 
challenge, we exploited nearest neighbor similarities between cell lines to infer 
the drug response on unknown cell lines. Thus, the final scheme obtained a 
unique signature for each dataset comprised of genes whose similar state across 
cell lines matched similar GI50 values. The main novelty in this work is the 
integration of the different genomic datasets into a unified prediction scheme. 
 
Methods 
We used the following six data types: (i) gene expression; (ii) RNA seq; (iii) 
Reverse protein lysate array (RPPA); (iv) methylation; (v) gene level copy 
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number variation; and (vi) exome seq. For the first five datasets, we used the raw 
measurements, but for the exome seq dataset, we assigned each gene a 
Boolean value denoting whether it had mutations or not in the corresponding cell 
line. 
 
We began by computing the pairwise cell line similarity between the 35 cell lines 
in the training set using Euclidean distance over the GI50 drug response 
measurements. Missing GI50 values were imputed using k-nearest neighbors. 
We validated that pairs of cell lines with the most similar GI50 measures across 
all drugs were typically closest also on a single drug level. 
 
Performing our algorithm per dataset (i.e. gene expression, methylation, CNV, 
etc.), we selected a signature set of genes by selecting the top 5% genes whose 
induced cell line pairwise had minimal pairwise similarities according to the GI50 
drug response (with the exception of the exome seq, where all genes were used 
due to sparseness of the data). Specifically, we (i) converted the values of each 
cell line across the genes to z-scores, (ii) computed the minimal absolute 
difference in the expression, methylation or copy number values between each 
pair of cell lines on each gene individually, and (iii) assigned each gene a score 
reflecting the total difference in drug response GI50 values for the closest pairs of 
cell lines according to that gene.  
 
Next, based on the selected gene signatures for each datset, we computed 
Pearson’s correlation between test (unknown drug response) and train (known 
drug response) cell lines to determine the closest test set cell line to each training 
set cell line. Each of the 18 test cell lines were assigned the GI50 values of the 
closest cell line appearing in the training set.  
 
In order to combine the different datasets, we tested their performance in 
inferring the correct GI50 values by cross-validation, where we randomly split the 
35 training cell lines into training and test sets. The accuracy of each dataset 
relative to a random selection of the closest pairs was assessed in a minimal 
square error scheme and this accuracy was further used for weighting the results 
obtained from each dataset. The final values for each test cell line were 
calculated as the weighted sum of the GI50 scores obtained from individual data 
types that contained measurements for that cell line. Our methodology was 
implemented in Matlab. 
 
Discussion 
Analyzing the weights assigned for individual datasets, we observed that gene 
expression provided the best accuracy, while gene copy number variation 
provided the worst. We believe that additional data like enrichment of selected 
signatures in pathways could enhance the performance. Furthermore, knowledge 
of the anonymized drugs tested in this challenge could help by including their 
targets or possible gene expression response signatures from outside, available 
datasets (e.g., the Connectivity Map95). 
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Other 4 

Summary  
Features were selected using dataset specific criteria, missing values were 
imputed, predictions were made using KNN. 
 
Introduction 
Integrating diverse sources of data for the prediction of drug response of cell 
lines is a difficult problem. In this challenge, the aim was to integrate various 
genomic datasets, including copy number variation, expression profiles, 
methylation, RNA seq, RPPA and Exome sequencing, from 53 cell lines to 
predict their response to a variety of drugs. Given that most of the datasets had 
many missing values, a key challenge was to impute the data for feature 
extraction and prediction. Our main idea was to organize genomic features and 
drug sensitivities in a matrix and use the matrix completion algorithm to predict 
the missing values in the matrix. The hope is that similar genomic features would 
be associated with drug sensitivities. In this work, we use the K-nearest neighbor 
(KNN) method to impute the missing values across all datasets. Finally we use 
these features to predict drug sensitivities by KNN. 
 
Methods 
Feature Extraction: Since the datasets have high dimensions, we first extracted 
features by performing dimensionality reduction.  
1. For each of the gene expression, methylation and RNAseq datasets, we 

selected ~1500 of the most variable genes according to their expression 
levels and then performed a fuzzy k-means clustering algorithm  and obtained 
three clusters on all available samples. The clustering results were highly 
concordant with the subtypes of breast cancer. Here we got 3*3=9 features 
for each sample. 

2. We performed a similar clustering on the RPPA dataset with all observed 
protein abundances.  

3. For the CNV dataset, we selected ~1500 of the most variable genes and 
calculated a genomic instability index over these genes for each cell line. The 
genomic instability index is calculated as the percentage of highly unstable 
genes (absolute values greater than 1).  

4. We calculated a mutation index as the number of SNPs from the Exome 
sequence dataset. We also calculated a cancer-related mutation index as the 
number of cancer-related SNPs.  
 

Feature Imputation:  We created a feature matrix (53 cell lines by 15 features) 
to organize the features calculated in the previous steps for all cell lines. Many 
features are missing in this matrix. To predict the genomic features, we then ran 
a KNN algorithm with k=5 to complete the feature matrix.  
 
Prediction:  Given the imputed features, there are many possible ways to predict 
drug sensitivity. By stacking the drug sensitivity matrix (53 cell lines by 31 drugs, 
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missing values) with the imputed feature matrix, we used KNN with k=5 to predict 
the missing values in the drug sensitivity matrix.  
 
Discussion 
After we finished the imputation, we found that the sensitivity of each drug is 
highly correlated with specific genomic features or cancer subtypes. Thus, our 
future work will be to select the important features for each drug and build drug-
specific predictors with linear regression. Furthermore, we could use other 
available information, such as the structure and chemical similarity of the drugs, 
to improve prediction. 

Other 5 

Summary 
Features were filtered using dataset specific criteria, an ensemble of Cox 
regression models were constructed using random sampling from top performing 
features, final predictions is the average of all models 
 
Introduction 
Drug sensitivity in the NCI-DREAM challenge is measured by GI50, which is 
derived from a nonlinear curve that describes the relationship between drug 
concentration and survival of cells tested. The GI50 measure is probably 
inherently nonlinear, with respect to genomic and proteomic features in the data. 
In the first sub-challenge of NCI-DREAM, participants are requests to predict the 
order of drug sensitivity, rather than specific GI50 values. Regression methods 
that aim to predict specific values are likely over-fit the training data. Methods 
that explicitly model the ordering may work better. Therefore, we chose to use 
Cox regression in survival analysis, because GI50 is conceptually related to 
survival, and Cox regression is more suitable for prediction of rank order.  
  
Methods 
The method we used contains several steps and is described as follows: 
Feature filtering and selection: Exclude features that appear to not contain 
predictive power. 
• RNA seq: RNA seq calls were used to identify genes that are never 

expressed in the training samples. RNA seq data was used to identify genes 
whose RPKM exceeds 10 in less than 10 samples. The RNA seq data for 
those genes were excluded. The RPKM data for the remaining genes were 
then transformed to log-scale, and normalized to 0-mean-1-var for each gene. 

• Methylation: Methylation features were excluded if they always indicated 
unmethylated (<0.4) or always indicated methylated (>0.5). Beta values were 
then normalized to 0-mean-1-var for each methylation feature. 

• Copy number: For copy number data at the gene level, we excluded genes 
whose copy numbers have many NaN entries (>10). Features for copy 
numbers at cbs segments level were all excluded. Gene-level copy number 
data were then normalized to 0-mean-1-var.  
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• Mutation: Mutation data were collapsed to gene level, counting how many 
mutations existed in each gene for each cell line. 

• Others: No features in other platforms were excluded at this stage. 
 
Next, we identified predictive features within the genomics datasets. For each 
drug, we performed univariate Cox regression using its GI50 and each of the 
remaining features from the filtering step, p-values were assigned to each feature, 
and features were rank ordered. Next, we computed the mutual information 
between GI50 and each feature, then rank ordered all features according to the 
mutual information values. We selected the top 100 overlapping features 
between the two lists.  
 
Build an ensemble of predictors: From the top 100 overlapping features, 
randomly select a subset, and use multivariate Cox regression to build prediction 
models. The models are used to predict the “risk” of each cell line to respond to 
the drug. The order of the risks should be consistent to the order of GI50 values.  

 
The reason for using multiple predictors is because of the missing data. If we 
have a Cox regression model that uses many features and some of the features 
are NaN’s for one testing cell line, the Cox model will not produce a risk value 
that is comparable to the risks for other testing cell lines. For all possible 
arrangement of NaNs, we need at least one regression model.  
 
Final rank order:  Each model in the above ensemble provides a partial ranking 
order of a subset of the cell lines (due to NaN entries). We summarize those into 
a square matrix, where the (i,j) element is the proportion of models that indicate 
riski > riskj minus the proportion of models that indicate riski < riskj. Ideally, if all 
models in the ensemble perfectly agree with each other, this square matrix 
should be composed of ones and negative ones. In practice, elements of this 
square matrix are between -1 and 1. If we reshuffle the rows and columns to the 
correct order, we should see that the upper right triangle contains mostly positive 
values, and the lower left triangle contains mostly negative values. Therefore, we 
solve an optimization problem: maximizing (the sum of upper right triangle minus 
the sum of lower left triangle) by reshuffling the order of the cell lines. The 
ordering from this optimization problem is the final ordering we report.  

 
Note: the GI50 values for some of the training samples can also be NaN. Instead 
of placing the GI50-NaN training samples at the end of the final list, we placed 
them with respect to the training samples with known GI50 values. In other words, 
in addition to ordering the testing samples, we also order the training samples 
with unknown GI50. 
 
Discussion 
The novelty of our approach is to view drug response data as survival time 
without censoring, so that we can apply survival analysis to predict “risk” of drug 
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sensitivity. From our analysis, gene expression (microarray and RNAseq), copy 
number and methylation are the most informative platforms.  

Other 6 

Summary 
Features were selected using the concordance index, predictions were made 
using an integrated voting strategy based on each feature's ability to predict the 
order of pairs of cell lines. 
 
Introduction 
Given a set of six genomics profiling datasets, our task was to learn the patterns 
or rules from 35 training cell lines to predict the drug response for 18 test cell 
lines. More formally, we would like to learn a ranking function f from a suitable 
function class F, such that f(xi) > f(xj) implies that the drug response of cell line i 
is larger than the sample j.  
 
Methods 
We developed a two-step procedure to rank cell lines according to their predicted 
drug response. This method is a rank correlation based data integration method 
and the procedure is described as follows. 
 
Feature Selection:  We note that the genomics datasets are heterogeneous and 
in high dimension; therefore, we propose a simple and efficient method to choose 
predictive features for drug response. If a genomic feature is predictive to drug 
response, it should correlate well with the drug response profile across all cell 
lines. To simplify the problem, we focused on the rank of genomic feature and 
drug responses instead of their measured values. Secondly, we considered the 
pairwise rank of cell lines by genomic feature and drug response. We then 
defined a concordance index to determine if a genomic feature is predictive of 
drug response. Suppose there are N cell lines, thus N(N-1)/2 pairwise 
relationships. For each pair of cell lines (A, B), we first compared the drug 
response GI50 values for A and B to derive an order. Next, we compared the 
values of a genomic feature for A and B to derive a second order. If the two 
orders were concordant, the comparison was assigned the value 1, otherwise 
zero. The sum of all possible pairs is denoted as S. The concordance index is 
defined as: CI=S/(N(N-1)/2). Features were selected according to a genomic 
dataset specific threshold and each predictive feature was weighted by the 
concordant index. 
 
Voting methodology: We adopt a simple majority voting and integrative strategy 
as shown in Figure O6. For each feature, its concordance with drug response 
allows to predict a ranking between two cell lines. A set of rankings is compiled 
for all predictive features within a genomics dataset. The ranking procedure was 
done for all pairwise cell line comparisons. The final step is to assembly the 
overall ranking of cell lines from the pairwise cell line rankings. We design a 
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majority voting algorithm to achieve this object. To break the possible ties during 
ranking, we adopt some heuristic algorithms.  
 

 
Figure O6. Schematic representation of the Other 6 method. 
 
Discussion 
We developed a rank correlation based data integration method to predict the 
sensitivity of cancer cell lines to drugs. We considered the rank of genomic 
features, which was more reliable than their measured values. Both voting and 
ranking approaches are simple and can be easily interpreted, thus increasing the 
biological interpretability of features underlying final predictions. 

Supplementary Note 2: Supplemental Scoring Analysis 
	
   	
  
The NCI-DREAM challenge was to rank order cell lines from most to least 
sensitive for each of the 28 tested drugs.  In a post-challenge analysis, we 
explored the possibility of scoring teams based on their ability to predict the 
classes of sensitive and resistant cell lines.  In developing this new scoring 
scheme, we first clustered the cell lines associated with each drug into 3 classes: 
sensitive, resistant, and intermediate.  The intermediate class captures cell lines 
that do not reliably cluster into the sensitive and resistant classes, but fall in 
between.  The results of this mapping can be found for each team in 
Supplemental Fig. 6.  Next, we mapped the sensitive, resistant, and 
intermediate labels onto a team’s predictions and scored them based on 
balanced accuracy.  Finally, we compared this measure to the wpc-index 
described in the main text.  The measures were highly correlated, ρ = 0.78, and 
the results comparing all 44 teams can be found in Supplementary Table 4. 
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We used the following approach to identify sensitive and resistant sub-
populations of cell lines for each compound tested.  For each vector of  
-log10(GI50) values, we used Partitioning Around Medoids (PAM) clustering to 
identify three groups, which we interpret to be sensitive, intermediate, and 
resistant cell lines.  In the case of compounds where cell lines did not reach 
GI50, we ensured that these clusters were not artificially influenced by the 
maximum concentration tested. PAM was implemented in R with the cluster 
package (version 1.14.2).  Results of the sensitive, intermediate, and resistant 
classification for all cell lines and drugs can be found in Supplementary Table 
10. 
 
For scoring, we first mapped the sensitive and resistant calls to a team’s ranked 
list of predictions. Next, we counted true positive (TP) and true negatives (TN), 
where sensitive cell lines were considered the positives and resistant cell lines 
were considered negatives.  Within the test dataset, there are 105 cases of cell 
lines being sensitive to the 28 drugs (Total Positives) and 137 cases of cell lines 
being resistant to the 28 drugs  (Total Negatives).  For each drug, 𝑑, we have 𝑃! 
positives defined by the gold standard. For each team, we counted the number of 
true positives TP! that were in the top 𝑃! positions of the team’s submitted ranked 
list for 𝑑. Next, the overall number of  TPs was computed as: TP = TP!!

!!! , 
where 𝑛 = 28 drugs.  The same approach was used to calculate the number of 
TNs. The balanced accuracy is then the average between the TP rate and the 
TN rate: balanced accuracy = (!

!
!"

!"#$%  !"#$%$&'#
+    !"

!"#$%  !"#$%&'"(
).  

Supplementary Note 3: Weighted probabilistic c-index 
(wpc-index) 

	
   	
  
For a given drug, 𝑑, the c-index between a predicted ranked list of cell lines (𝑛 
=18 for the set of test cell lines), 𝑅! =    𝑟!, 𝑟!,… , 𝑟! , where 𝑟𝑖  is the rank order of 
cell line 𝑖,  and the gold standard list of dose response values for the same 𝑛 cell 
lines, 𝐺𝑑 =    𝑔!, 𝑔!,… , 𝑔𝑛 , where 𝑔𝑖 is the mean across replicate measurements of 
-log10(GI50) values for cell line 𝑖. This is a non-standard formulation of the c-index; 
for example, in this implementation, 𝑟𝑖  = 1, 𝑟𝑗  = 2, 𝑔𝑖  = 5, and 𝑔𝑗  =4.5, represents a 
concordant comparison. The c-index is calculated as: 
 
c-index = 𝑐 𝐺𝑑,𝑅𝑑 =    !

𝑛(𝑛!!)
ℎ 𝑔𝑖, 𝑔𝑗, 𝑟𝑖, 𝑟𝑗𝑖!𝑗 , 

where 

ℎ 𝑔𝑖, 𝑔𝑗, 𝑟𝑖, 𝑟𝑗 =

1, if   𝑔𝑖 > 𝑔𝑗  &  𝑟𝑖 < 𝑟𝑗 ∨ 𝑔𝑖 < 𝑔𝑗  &  𝑟𝑖 > 𝑟𝑗

0.5, if   𝑔𝑖 = 𝑔𝑗

0, if   𝑔𝑖 > 𝑔𝑗  &  𝑟𝑖 > 𝑟𝑗 ∨ 𝑔𝑖 < 𝑔𝑗  &  𝑟𝑖 < 𝑟𝑗
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The c-index does not account for variance within the gold standard dataset; 
therefore, we modified the c-index to account for this variance. The probabilistic 
c-index (pc-index) is calculated as: 
  
pc-index= 𝑝𝑐 𝐺𝑑,𝑅𝑑, 𝑠𝑑

! =    !
𝑛(𝑛!!)

   ℎ𝑝 𝑔𝑖, 𝑔𝑗, 𝑟𝑖, 𝑟𝑗, 𝑠𝑑
!

𝑖!𝑗 ,   
where 

ℎ𝑝 𝑔𝑖, 𝑔𝑗, 𝑟𝑖, 𝑟𝑗, 𝑠𝑑 =

1
2 1+ erf

𝑔𝑖 − 𝑔𝑗

2𝑠𝑑
, if   𝑟𝑖 < 𝑟𝑗

0.5, if   𝑟𝑖 = 𝑟𝑗
1
2 1+ erf

𝑔𝑗 − 𝑔𝑖

2𝑠𝑑
, if   𝑟𝑖 > 𝑟𝑗

 

and  

erf 𝑎 =   
2
𝜋

𝑒!𝑡!
𝑎

!
d𝑡. 

In this formulation of the pc-index, if the predicted rank of two cell lines, 𝑟𝑖, 𝑟𝑗 , is 
concordant with the gold standard, 𝑔𝑖, 𝑔𝑗  (in our case 𝑔𝑖 > 𝑔𝑗  &  𝑟𝑖 < 𝑟𝑗 ∨

𝑔𝑖 < 𝑔𝑗  &  𝑟𝑖 > 𝑟𝑗 , the function ℎ𝑝(… ) returns a value in the range (0.5,1] based 
on the error function. Keep in mind that 𝑅𝑑 represents rank order and 𝐺𝑑 are -
log10(GI50) values. We assume the variance measured in dose response follows 
a Gaussian distribution. Conversely, if a predicted rank of two cell lines, 𝑟𝑖, 𝑟𝑗 , is 
disconcordant with the gold standard, 𝑔𝑖, 𝑔𝑗  (in our case    𝑔𝑖 > 𝑔𝑗  &  𝑟𝑖 > 𝑟𝑗 ∨

𝑔𝑖 < 𝑔𝑗  &  𝑟𝑖 < 𝑟𝑗 ), the function ℎ𝑝(… )   returns a value in the range [0,.5).  
 
For a given team, the pc-index was calculated separately for each drug, 𝑑. The 
final team score was calculated as the weighted average of the pc-index scores 
across the evaluated drugs (wpc-index). 
 
wpc-index= 𝑆 =    𝑤𝑑∙𝑝𝑐𝑑𝑑

𝑤𝑑𝑑
 

Each drug, 𝑑, has a different measured variance of dose responses, 𝑠𝑑
!, across 

the 𝑛 cell lines, and a different number of missing values, thus our ability to 
calculate a reliable pc-index varied between drugs. To account for this, weights 
for each drug, 𝑤𝑑, were calculated. For each drug 𝑑 a random ranking of 𝑛 items 
was made, 𝑅𝑑

𝑟 , and the pc-index was calculated,  𝑝𝑐 𝐺𝑑,𝑅𝑑
𝑟 , 𝑠𝑑

! . This procedure 
was repeated 10,000 times to create an empirical null distribution which followed 
a Gaussian distribution with median and standard deviation (μd, σd). The gold 
standard dataset was converted to a ranked list of cell lines, 𝑅𝑑

∗, based on the 
mean across replicate measurements of the –log10(GI50) values of those cell 
lines, and the pc-index was calculated, 𝑝𝑐! = 𝑝𝑐 𝐺𝑑,𝑅𝑑

∗ , 𝑠𝑑
! . The drug weight, 𝑤𝑑, 

was calculated as the z-score of the gold standard ranking, 𝑅𝑑
∗, compared to the 

null distribution (μd, σd), 𝑤𝑑 =   
!!!!𝜇𝑑

𝜎𝑑
. The maximum of the wpc-index will not be 1 
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due to experimental variation in the dose response measurements. In order to 
make some results interpretable in the range [0,1] we also calculated a scaled 
version of the wpc-index which maps the wpc values to the range [0,1], using the 
transformation 
scaled wpc-index = !"#!!  !"#!"#

!"#!"#!!"#!"#
 

where the wpc-index score for team 𝑖 is scaled to the 𝑚𝑎𝑥 wpc-index wpcmax, 
which  is computed using the gold standard ranking for each drug, and the 𝑚𝑖𝑛 
wpc-index, which is computed using the inverse of the gold standard ranking for 
each drug. 

Supplementary Note 4: NCI-DREAM Challenge Criteria 

Drug inclusion/exclusion criteria 

The NCI-DREAM drug response datasets were selected based on data 
availability and novelty.  Regarding data availability, on average, drugs were 
tested on 80% of the 53 cell lines. Regarding novelty, to provide an unbiased 
assessment of team predictions, we required that a drug’s response data be 
unpublished, not distributed throughout the community of participants, and not 
available from other sources (e.g., the CCLE). Most of the drugs included in this 
data set are experimental compounds that have not been tested clinically in 
breast cancer, and therefore have the potential to serve as novel therapeutics.   
 
The NCI-DREAM data as presented to participants contained 31 drugs; however, 
3 of these drugs had completely flat profiles (i.e., the GI50 for all cell lines were 
the same) and were thus unscorable.  Since the wpc-index uses a weighting 
scheme to summarize team performance over all 31 drugs, the weights of these 
drugs were 0, thus having no influence on a team’s score. The intention of 
keeping these drugs was to explore team predictions and determine if any 
insights could be gained on the response of these 3 drugs; however, we were not 
able to glean any additional information from team predictions.  Therefore, to 
avoid confusion, we have excluded these 3 drugs from all analyses presented in 
the manuscript.  The original challenge data can be found at: http://www.the-
dream-project.org/challenges/nci-dream-drug-sensitivity-prediction-challenge 

NCI-DREAM community participation 

All participating teams were contacted directly with the criteria necessary to be a 
member of the NCI-DREAM community and listed as contributors on this 
manuscript.  To be listed as a community member, teams were required to 
submit a detailed write-up of their submitted methodology, which the DREAM 
organizers reviewed, edited, and compiled.  This set of method write-ups 
comprises the supplementary methods.  Teams were given the option to opt out 
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of being an NCI-DREAM community member, and as such, these individuals 
were not included in the authors list and their full method descriptions were not 
included in these supplementary methods.  In an effort to report the most 
comprehensive analysis possible, we have included the full set of teams for all 
analyses included in the main text.  In total, there were 44 teams that submitted 
predictions with short descriptions as listed in Table 1.  Of these teams, 38 
provided method write-ups and comprise the NCI-DREAM community. 
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Supplementary Figure 1. Comparison of independent team scoring 
methods  
Two scoring methods, the weighted, probabilistic concordance index (wpc-index) 
and the resampled Spearman correlation, were calculated for each of the 44 
submissions.  Both scoring methods showed highly correlated results, with the 
top 2 teams being ranked first and second by both approaches.  Scoring methods 
are described in the Online Methods. 
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Sparse linear regression 2 (rank 7)
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Nonlinear regression 4 (rank 8)
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Sparse linear regression 3 (rank 9)
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PC or PLS regression 1 (rank 10)
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Ensemble/Model selection 1 (rank 11)
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Nonlinear regression 5 (rank 13)
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Ensemble/Model selection 2 (rank 14)
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Ensemble/Model selection 3 (rank 15)
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Kernel 3 (rank 17)
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Sparse linear regression 4 (rank 19)
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Nonlinear regression 6 (rank 20)
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Kernel 4 (rank 21)
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Nonlinear regression 7 (rank 22)
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Nonlinear regression 8 (rank 23)
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Nonlinear regression 9 (rank 24)
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PC or PLS regression 2 (rank 25)
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Sparse linear regression 5 (rank 26)
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Sparse linear regression 6 (rank 27)
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Nonlinear regression 10 (rank 28)
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PC or PLS regression 3 (rank 29)
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Sparse linear regression 7 (rank 30)

Ra
nk

ed
 c

el
l l

in
e 

pe
r d

ru
g

M
eb

en
da

zo
le

 (T
ub

ul
in

)
D

ox
or

ub
ic

in
 (T

O
P2

A)
4-

H
C+

D
ox

 (C
om

bi
na

tio
n)

4-
H

C 
(D

N
A 

al
ky

la
to

r)
O

lo
m

ou
ci

ne
 II

 (C
D

K1
)

Br
om

op
yr

uv
at

e 
(G

ly
co

ly
sis

)
M

et
hy

lg
ly

ox
ol

 (P
yr

uv
at

e)
Ba

ic
al

ei
n 

(C
YP

2C
9)

D
isu

lfi
ra

m
 (A

LD
H

2)
M

G
-1

32
 (P

ro
te

as
om

e)
M

G
-1

15
 (P

ro
te

as
om

e)
M

G
-1

32
b 

(P
ro

te
as

om
e)

N
el

fin
av

ir 
(P

ro
te

as
e)

B5
81

 (F
TP

as
e)

Va
lp

ro
at

e 
(H

D
AC

)
PD

18
43

52
 (M

EK
)

Ev
er

ol
im

us
 (m

TO
R)

FR
18

03
04

 (E
RK

)
TC

S 
PI

M
-1

1 
(P

IM
1)

G
W

50
74

 (R
AF

1)
IK

K 
16

 (I
KK

2)
Q

N
Z 

(N
Fk

B)
PS

-1
14

5 
(IK

K)
Tr

as
tu

zu
m

ab
 (E

RB
B2

)
Ce

tu
xi

m
ab

 (E
G

FR
)

Im
at

in
ib

 (B
CR

-A
BL

)
N

ilo
nt

in
ib

 (B
CR

-A
BL

)
Ch

lo
ro

qu
in

e 
(A

ut
op

ha
gy

)

Nature Biotechnology: doi:10.1038/nbt.2877



	
   93	
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Sparse linear regression 8 (rank 32)
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Sparse linear regression 9 (rank 33)
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Sparse linear regression 10 (rank 34)
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Other 5 (rank 35)

Ra
nk

ed
 c

el
l l

in
e 

pe
r d

ru
g

M
eb

en
da

zo
le

 (T
ub

ul
in

)
D

ox
or

ub
ic

in
 (T

O
P2

A)
4-

H
C+

D
ox

 (C
om

bi
na

tio
n)

4-
H

C 
(D

N
A 

al
ky

la
to

r)
O

lo
m

ou
ci

ne
 II

 (C
D

K1
)

Br
om

op
yr

uv
at

e 
(G

ly
co

ly
sis

)
M

et
hy

lg
ly

ox
ol

 (P
yr

uv
at

e)
Ba

ic
al

ei
n 

(C
YP

2C
9)

D
isu

lfi
ra

m
 (A

LD
H

2)
M

G
-1

32
 (P

ro
te

as
om

e)
M

G
-1

15
 (P

ro
te

as
om

e)
M

G
-1

32
b 

(P
ro

te
as

om
e)

N
el

fin
av

ir 
(P

ro
te

as
e)

B5
81

 (F
TP

as
e)

Va
lp

ro
at

e 
(H

D
AC

)
PD

18
43

52
 (M

EK
)

Ev
er

ol
im

us
 (m

TO
R)

FR
18

03
04

 (E
RK

)
TC

S 
PI

M
-1

1 
(P

IM
1)

G
W

50
74

 (R
AF

1)
IK

K 
16

 (I
KK

2)
Q

N
Z 

(N
Fk

B)
PS

-1
14

5 
(IK

K)
Tr

as
tu

zu
m

ab
 (E

RB
B2

)
Ce

tu
xi

m
ab

 (E
G

FR
)

Im
at

in
ib

 (B
CR

-A
BL

)
N

ilo
nt

in
ib

 (B
CR

-A
BL

)
Ch

lo
ro

qu
in

e 
(A

ut
op

ha
gy

)

Sparse linear regression 11 (rank 36)
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Nonlinear regression 11 (rank 37)
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PC or PLS regression 4 (rank 38)
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Supplementary Figure 2. Team-by-team predictions for sensitive and 
resistant cell lines 
For each drug, cell lines were clustered into 3 classes: sensitive, ambiguous, and 
resistant. The ambiguous class captures cell lines that did not reliably cluster in 
the sensitive or resistant classes.  For each team and each drug, cell lines were 
ordered according to the predicted rank.  Cell lines were then color coded 
according to the sensitive (red), ambiguous (white), or resistant (blue) classes.  
Details of the cell line clustering can be found in the Supplemental Methods.  
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Supplementary Figure 3. Comparison of the wpc-index and balanced 
accuracy scoring strategies   
Two scoring schemes were compared, namely the weighted, probabilistic 
concordance index (wpc-index) and the balanced accuracy.  The wpc-index 
scores a team based on the predicted rank order compared to the gold standard 
rank order.  For the balanced accuracy, cell line responses in the gold standard 
were clustered and scored on two categories, sensitive and resistant.  All 44 
teams are presented and the color-coding corresponds to Table 1. Details of the 
wpc-index can be found in the Online Methods and balanced accuracy can be 
found in the Supplemental Methods. 
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Supplementary Figure 4. Team rank comparisons over resampled dose 
response 
Team names correspond to those listed in Table 1. Teams are ordered 
according to their wpc-index scores that are also listed in Table 1. The gold 
standard set of test cell lines was subsampled to test the robustness of team 
ranks.  10% of the gold standard dataset was randomly masked, then teams 
were rescored and ranked according to the wpc-index.  A total of 10,000 
iterations were run and the colors reflect the percentage of times team i (row) 
outranked team j (column).    

Kernel method 1
Nonlinear reg. 1

Other 1
Nonlinear reg. 2
Nonlinear reg. 3

Sparse linear reg. 1
Sparse linear reg. 2

Nonlinear reg. 4
Sparse linear reg. 3

PC or PLS reg. 1
Ensemble/Model sel. 1

Kernel method 2
Nonlinear reg. 5

Ensemble/Model sel. 2
Ensemble/Model sel. 3

Other 2
Kernel method 3

Other 3
Sparse linear reg. 4

Nonlinear reg. 6
Kernel method 4
Nonlinear reg. 7
Nonlinear reg. 8
Nonlinear reg. 9
PC or PLS reg. 2

Sparse linear reg. 5
Sparse linear reg. 6

Nonlinear reg. 10
PC or PLS reg. 3

Sparse linear reg. 7
Other 4

Sparse linear reg. 8
Sparse linear reg. 9

Sparse linear reg. 10
Other 5

Sparse linear reg. 11
Nonlinear reg. 11

PC or PLS reg. 4
Other 6

Sparse linear reg. 12
Ensemble/Model sel. 4

Sparse linear reg. 13
Ensemble/Model sel. 5

Sparse linear reg. 14

Ke
rn

el
 m

et
ho

d 
1

N
on

lin
ea

r r
eg

. 1
O

th
er

 1
N

on
lin

ea
r r

eg
. 2

N
on

lin
ea

r r
eg

. 3
Sp

ar
se

 li
ne

ar
 re

g.
 1

Sp
ar

se
 li

ne
ar

 re
g.

 2
N

on
lin

ea
r r

eg
. 4

Sp
ar

se
 li

ne
ar

 re
g.

 3
PC

 o
r P

LS
 re

g.
 1

En
se

m
bl

e/
M

od
el

 se
l. 

1
Ke

rn
el

 m
et

ho
d 

2
N

on
lin

ea
r r

eg
. 5

En
se

m
bl

e/
M

od
el

 se
l. 

2
En

se
m

bl
e/

M
od

el
 se

l. 
3

O
th

er
 2

Ke
rn

el
 m

et
ho

d 
3

O
th

er
 3

Sp
ar

se
 li

ne
ar

 re
g.

 4
N

on
lin

ea
r r

eg
. 6

Ke
rn

el
 m

et
ho

d 
4

N
on

lin
ea

r r
eg

. 7
N

on
lin

ea
r r

eg
. 8

N
on

lin
ea

r r
eg

. 9
PC

 o
r P

LS
 re

g.
 2

Sp
ar

se
 li

ne
ar

 re
g.

 5
Sp

ar
se

 li
ne

ar
 re

g.
 6

N
on

lin
ea

r r
eg

. 1
0

PC
 o

r P
LS

 re
g.

 3
Sp

ar
se

 li
ne

ar
 re

g.
 7

O
th

er
 4

Sp
ar

se
 li

ne
ar

 re
g.

 8
Sp

ar
se

 li
ne

ar
 re

g.
 9

Sp
ar

se
 li

ne
ar

 re
g.

 1
0

O
th

er
 5

Sp
ar

se
 li

ne
ar

 re
g.

 1
1

N
on

lin
ea

r r
eg

. 1
1

PC
 o

r P
LS

 re
g.

 4
O

th
er

 6
Sp

ar
se

 li
ne

ar
 re

g.
 1

2
En

se
m

bl
e/

M
od

el
 se

l. 
4

Sp
ar

se
 li

ne
ar

 re
g.

 1
3

En
se

m
bl

e/
M

od
el

 se
l. 

5
Sp

ar
se

 li
ne

ar
 re

g.
 1

4
1 50 100

Percentage

Nature Biotechnology: doi:10.1038/nbt.2877



	
   97	
  

 
 
Supplementary Figure 5. Wisdom of the crowd analysis: Integrated team 
submissions provide robust predictions 
(a) Teams were ranked according to their weighted, probabilistic concordance 
index (wpc-index; black line).  Integrated predictions were calculated by taking 
the average rank prediction of groups of predictions.  The performance of the top 
two teams integrated is shown as the second ordered red point, the top three 
teams integrated as the third ordered red point, etc.  (b) Random groups of n = 5, 
10, 20, and 30 teams were integrated and scored.  The boxplots represent the 
distribution of 1,000 random groupings. (c) As in (b), random team groupings 
were scored, and then the integrated group prediction was compared to the 
performance of the constituent members of the same group.  Over 1,000 
iterations, the points represent the probability of the integrated prediction being 
ranked first (left most point), second (next point), etc. 
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Supplementary Figure 6. Variation in predictive performance across 
datasets and drugs   
Two methods, Bayesian multitask MKL (Kernel 1) and an elastic net, were 
trained and predictions made using the 6 individual profiling datasets (rows). 
Each cell is the average scaled pc-index over 50 independent trials (color-coding 
in the bottom).  (a) Performance for each of the 28 drugs (columns; grouped 
according to drug classes).  (b) The performance of a drug class was calculated 
as the average performance of all compounds that constitute the drug class itself.  
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Supplementary Figure 7. Exploration of data complementarity and 
redundancy 
For two methods, Bayesian multitask MKL (Kernel 1) and an elastic net, two 
types of comparisons were made.  First, and displayed as the colored box plots, 
both models were trained and predictions were made using individual profiling 
datasets (Exp = gene expression, CNV = Copy Number Variation, Exo = exome 
sequencing, Met = methylation, RNA = RNA sequencing, and RPPA = Reverse 
Phase Protein Array) and pairwise combinations of profiling datasets, revealing 
added value. Predictions were scored over 50 independent, random splits of the 
data and the distribution of performances are plotted.  Second, and displayed as 
the grey box plots, the models were trained and predictions were made by 
leaving one of the 6 profiling datasets out in turn, indicating the dataset’s 
nonredundant value when compared to the performance using all 6 datasets. 
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Supplementary Figure 8. Identification of informative dataset combinations 
Predictive performance of all combinations of profiling datasets across 50 
independent, random data splits was investigated for two methods, Bayesian 
multitask MKL and elastic net, extending the dataset comparison in Fig. 4. The 
combinations are ordered according to their median performance (exp = gene 
expression, cnv = Copy Number Variation, exo = exome sequencing, met = 
methylation, rna = RNA sequencing, and pro = Reverse Phase Protein Array). 
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Supplementary Figure 9. Identification of the most informative data view(s) 
within a profiling dataset for an elastic net 
An elastic net was trained and predictions were made using various data views 
and combinations of data views within each of the 6 profiling datasets. By 
comparing each of these box plots to the original data view, the gain or reduction 
in performance contributed by different data views (or combinations of views) can 
be seen. The data views and combinations are ordered according to their median 
performance across 50 random data splits.  
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Supplementary Figure 10. Identification of the most informative data 
view(s) within a profiling dataset for Bayesian multitask MKL 
Bayesian multitask MKL (Kernel 1) was trained and predictions were made using 
various data views and combinations of data views within each of the 6 profiling 
datasets. By comparing each of these box plots to the original data view, the gain 
or reduction in performance contributed by different data views (or combinations 
of views) can be seen. The data views and combinations are ordered according 
to their median performance across 50 random data splits. 
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Supplementary Figure 11. Comparison of the training and test cell line 
features 
(a) The dynamic range (minimum to maximum –log10(GI50)) and (b) the number 
of missing values in the training cell lines were compared to the test cell lines. In 
both instances, there is a highly statistically significant relationship, which shows 
the test data are representative of the training data. 
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