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1 Model

1.1 Model description

To model the growth of a single strain, we used the following system of equations.
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1.1 Model description 1 MODEL



daout(t)
dt

= −Cn(t)(aout(t)− ain(t))− y(t) Vmaxaout(t)
aout(t)+KM

dn(t)
dt

=

{
γgn(t)(1− n(t)

nmax
), ain < scMICDh5α

γdn(t), ain ≥ scMICDh5α
,

dy(t)
dt

=

{
0, ain < scMICDh5α

−dn(t)
dt
, ain ≥ scMICDh5α

,

C(aout(t)− ain(t)) = Vmaxain(t)
ain(t)+KM

, (1)

Where
aout(t)− antibiotic concentration in the well (outside the cell);
ain(t)− antibiotic concentration inside the cell;
n(t)−cell density (OD);
y(t)− cell density of dead (lysed) cells (OD);
C-di�usion parameter;
Vmax, KM -Michaelis-Menten parameters for beta-lactamase;
γg-growth rate;
γd-death rate;
scMICDh5α-scMIC of Dh5a;
nmax-saturation OD.
The �rst equation describes two mechanisms by which the antibiotic concentration aout(t) in

the well decreases: antibiotic can di�use inside a cell or can be degraded by the beta-lactamase
in the media released by the dead lysed cells. The second equation describes the dynamics of
cell density n(t) as a function of the antibiotic concentration inside the cell (in the periplasmic
space): the cells grow logistically when the concentration in the periplasm is lower some value
and die and lyse exponentially when the antibiotic concentration exceeds this value. The third
equation describes the time evolution of the density of the dead and lysed cells y(t): whenever
antibiotic concentration exceeds the scMIC of DH5a, any change in a cell density n(t) is due to the
cell death, therefore the density of lysed cells y(t) increases by the same amount as by which the
cell density n(t) decreases; there is no change in the density of lysed cells y(t) when periplasmic
concentration of antibiotic ain(t) is low enough for cells to divide. The last equation describes
the balance between the in�ux of antibiotic from the environment to periplasm of the cell and
enzymatic inactivation of antibiotic in the periplasm [6].

The OD units for cell density correspond to OD600 - absorbance or optical density at 600 nm
wave length light of 1 cm-wide sample of the cell culture. The OD of 1 corresponds to 4 · 108 CFU
per ml.
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1.2 Solutions in various limits 1 MODEL

For competition experiments, we use the following system of equations:

daout(t)
dt

= −Cn(1)(t)(aout(t)− a(1)in (t))− y(1)(t)
V

(1)
maxaout(t)

aout(t)+K
(1)
M

− Cn(2)(t)(aout(t)− a(2)in (t))− y(2)(t)
V

(2)
maxaout(t)

aout(t)+K
(2)
M

dn(1)(t)
dt

=

{
γgn

(1)(t)(1− n(1)(t)+n(2)(t)
nmax

), a
(1)
in < scMICDh5α

−γdn(1)(t), a
(1)
in ≥ scMICDh5α

,

dn(2)(t)
dt

=

{
γgn

(2)(t)(1− n(1)(t)+n(2)(t)
nmax

), a
(2)
in < scMICDh5α

−γdn(2)(t), a
(2)
in ≥ scMICDh5α

,

dy(1)(t)
dt

=

{
0, a

(1)
in < scMICDh5α

−dn(1)(t)
dt

, a
(1)
in ≥ scMICDh5α

,

dy(2)(t)
dt

=

{
0, a

(2)
in < scMICDh5α

−dn(2)(t)
dt

, a
(2)
in ≥ scMICDh5α

,

C(aout(t)− a(1)in (t)) =
V

(1)
maxa

(1)
in (t)

a
(1)
in (t)+K

(1)
M

C(aout(t)− a(2)in (t)) =
V

(2)
maxa

(2)
in (t)

a
(2)
in (t)+K

(2)
M

(2)
The system of equations 2 is essentially 1 for two di�erent cell types with densities n(1)(t)

and n(2)(t), periplasmic antibiotic concentrations a
(1)
in (t) and a

(2)
in (t), densities of lysed cells y(1)(t)

and y(2)(t). These two cell types share external environment which can be seen in the system of
equations in two ways: aout(t) is the same for both cell types and logistic growth part ensures that

the carrying capacity of nutrients is shared by two types evenly (γgn
(1)(t)(1 − n(1)(t)+n(2)(t)

nmax
) and

γgn
(2)(t)(1− n(1)(t)+n(2)(t)

nmax
) terms).

1.2 Solutions in various limits

In order to get some intuition about model prediction for the inoculum e�ect curve of a single
strain, we will consider the limits of small and large initial antibiotic concentration relative to the
KM of the enzyme. In section 1.2.1, we will derive the expression for the duration of the death
phase of the bacterial growth for which aout(t = 0) = MIC. In sections 1.2.2 and 1.2.3, we will
derive the expression for the inoculum e�ect curve in the limits of low and high initial antibiotic
concentrations aout(t = 0) respectively.

1.2.1 Death and growth time

In our model, the cells either grow exponentially or die exponentially. Assuming that initial cell
density is n0 and �nal cell density at t20 = 20hours is nf (which is �xed in the MIC experiment),
we can write the following system of linear equations on the time intervals when the culture dies
tdeath and the time interval when the culture grows tgrowth:{

tdeath + tgrowth = t20
γtgrowth − γdtdeath = ln(nf/n0)

, (3)

with the solution for tdeath

tdeath = (γt20 − ln(
nf
n0

))/(γd + γ). (4)
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1.2 Solutions in various limits 1 MODEL

1.2.2 aout(t = 0)� KM

Then aout � KM andain � KM for all t, and

aout = ain(
Vmax
CKM

+ 1). (5)

Next, while aout > scMIC (the same as ain > scMICDh5α),

n(t) = n0 exp(−γdt), (6)

y(t) = n0(1− exp(−γdt)). (7)

Therefore,

daout
dt

= −n0(1− exp(−γdt))
Vmax
KM

aout − n0 exp(−γdt)(
Vmax

KM

1 + Vmax

CKM

)aout (8)

with the solution

aout = a0 exp(−
n0Vmax(CKM t+

exp(−γdt)Vmax

γd
+ Vmaxt)

KM(CKM + Vmax)
). (9)

Plugging in a0 =MIC, a(t = tdeath) = scMIC,

ln(
MIC

scMIC
) =

n0Vmax((CKM + Vmax)(γt20 − ln(nf

n0
))/(γd + γ) +

exp(−γd(γt20−ln(
nf
n0

))/(γd+γ))Vmax

γd
)

KM(CKM + Vmax)
.

(10)
For the parameter values that we have, we can ignore the exponent at the right-hand side and

logarithmic dependence on n0:

MIC ∝ scMIC exp(
n0Vmax
KM

γt20
γd + γ

). (11)

Thus, at low initial antibiotic concentrations (MIC � KM), MIC increases exponentially with
the increase of n0.

1.2.3 aout(t = 0)� KM

Typical scMIC ≤ KM , so the initial antibiotic concentration is much higher than scMIC and
the cells initially die. In order for initial antibiotic concentration to be an MIC, the death phase
should be signi�cantly long (otherwise, the regrowth will happen faster than in 20 hours). This
fact together with an observation that ain ≤ aout allows us to disregard the antibiotic hydrolysis
inside the cell and only consider hydrolysis outside:

daout
dt

= −n0(1− exp(−γdt))Vmax (12)

note that we assume aout � KM for all t, which is not the case when antibiotic is almost
completely hydrolyzed.

aout = a0 − n0Vmax(t+
exp(−γdt)

γd
) (13)
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1.3 Generality of scMIC: growth rate as a function of internal antibiotic concentration1 MODEL

Whenever aout becomes comparable to KM , aout starts to be broken exponentially in time.
However, in the limit of high enough aout, this time of exponential hydrolysis will be much smaller
than the time of linear hydrolysis 13.

Plugging in 13 a0 =MIC, a(t = tdeath) = scMIC,

scMIC =MIC − n0Vmax(γt20 − ln(
nf
n0

))/(γd + γ). (14)

Ignoring the logarithmic term,

MIC ∝ scMIC + n0Vmax
γt20
γd + γ

. (15)

Thus, at high initial antibiotic concentrations (MIC � KM), MIC increases linearly with the
initial cell density n0.

1.3 Generality of scMIC: growth rate as a function of internal antibiotic

concentration

In the derivations above, we assume that the growth rate is a step function of antibiotic concen-
tration: γ(aout) = γg for aout < scMIC and γ(aout) = −γd for aout > scMIC. However, γ(aout)
can be any weakly decreasing function. The concept of scMIC is general and useful for various
functions γ(aout). The following statements hold as long as resistance mechanism is cooperative:

a. The general scaling of MIC∗ as a function of initial cell density are independent of the exact
functional form of γ(aout):

1. MIC∗ scales exponentially with the initial cell density when smaller than KM ;

2. MIC∗ scales linearly with the initial cell density when larger than KM .

b. scMIC is well-de�ned because the inoculum e�ect curve asymptotically approaches a limit
at small initial cell densities.

1.4 Small cell densities

The term �small (initial) cell densities� that we are using corresponds to the dilute conditions,
when the cooperative part of the resistance is very weak. From equation11, the dilution condition
is as follows:

n0Vmax
KM

γt20
γd + γ

� 1 (16)

which leads to

n0 �
KM

Vmaxt20
(17)

which under conservative assumptions (see 1.5) of KM = 10µg/ml, Vmax = 104µg/ml per hour
per OD results in the following condition:

n0 � 2 · 104cells/ml (18)
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1.5 Parameter values 2 THE MODEL WITH THE ENZYME DEGRADATION

1.5 Parameter values

Strain independent:

Parameter Value Justi�cation

C 23.4 per hour per OD Inoculum curve �t
γ 1.4 per hour Experimentally measured
γd 2 per hour Experimentally measured

MKCDh5α 0.03 µg/ml Experimentally measured
nmax 3 OD Experimentally measured

Supplementary Table S1: Parameter values for �ts in the main text.

Strain dependent:

Parameter Value Justi�cation

TEM-20 Vmax 8400 µg/ml per hour per OD Inoculum curve �t
TEM-52 Vmax 78000 µg/ml per hour per OD Inoculum curve �t
TEM-20 KM 17.28 µg/ml Inoculum curve �t
TEM-52 KM 16.56 µg/ml Inoculum curve �t

Supplementary Table S2: Parameter values for �ts in the main text.

While C may seem to be another parameter to the inoculum curves �t, it has a constraint that
it should be the same for several inoculum e�ect curves. Thus, every inoculum e�ect curve except
for one has two free parameters in their model �ts.

2 The model with the enzyme degradation

While the simple model presented in 1.1 explains qualitatively the behavior of the system at
low antibiotic concentrations, it fails to explain some properties of the system at high antibiotic
concentrations. There are two major discrepancies:

a. Inoculum e�ect curve, high cell densities and high MIC∗s. The data points are not only
always lower than the model prediction, but also suggest di�erent scaling of MIC∗ as a
function of initial cell density than the model.

b. Competition data, high antibiotic concentrations. The data suggests that there is a second
peak of selection for the more resistant strain at high antibiotic concentration, while the
simple model suggests that above the scMIC of the more resistance strain, selection level
relaxes to some level with no dips or peaks.

The discrepancies above happen in di�erent experiments under similar conditions - at high initial
antibiotic concentrations. This is why it might be the case that they happen for the same reason.
We have considered several ways in which our model can be modi�ed, out of which introducing
beta-lactamase degradation turned out to be the most promising one.

The enzyme degradation may happen on its own and because of the reversible substrate-induced
inactivation[1]. In the model below, we make two assumptions:
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4 SEQUENCING SUMMARY

a. Di�erent enzymes have di�erent degradation rate in the absence of antibiotic.

b. The degradation rate of an enzyme is a linear function of antibiotic concentration - the higher
antibiotic concentration, the higher the degradation rate.

Generally, as long as inhibition changes Vmax as a function of antibiotic concentration, the scal-
ing of the inoculum e�ect curve at high antibiotic concentrations should become sublinear. That
means that if the inhibition is accounted for it takes longer to inactivate the antibiotic to the level
of scMIC than without inhibition and the e�ect of inhibition is larger at high antibiotic concen-
trations, which makes the selection increase the second time at high antibiotic concentrations.

Given two observations above, we constructed a model, which incorporates the degradation
rate of beta-lactamase, linearly proportional to the cefotaxime concentration.

daout(t)
dt

= −Cn(t)(aout(t)− ain(t))− y(t) Vmaxaout(t)
aout(t)+KM

dn(t)
dt

=

{
γgn(t)(1− n(t)

nmax
), ain < scMICDh5α

γdn(t), ain ≥ scMICDh5α
,

dy(t)
dt

=

{
−αy(t)aout(t), ain < scMICDh5α

−dn(t)
dt
− αy(t)aout(t), ain ≥ scMICDh5α

,

C(aout(t)− ain(t)) = Vmaxain(t)
ain(t)+KM

,

where α the enzyme degradation rate per unit of antibiotic concentration. Figure S7 shows
the �ts of the inoculum e�ect curves and the model prediction for competition experiments for
αTEM−20 = 0.003 (hour µg

mL
)−1 and αTEM−52 = 0.001 (hour µg

mL
)−1. The other parameters stay the

same as in the main text �ts.

3 Summary of all strains used in the study

All the strains used in the study are identical except for the beta-lactamase gene and absent/present
�uorescent protein producing plasmids. These plasmids may or may not be present in the strains
depending on whether the experiment requires �uorescent labeling. The table below summarizes
various strain types based on their beta-lactamase gene and relate the version of the gene to
TEM-1.

Name(s) used in text Mutations from TEM-1 scMIC in cefotaxime

reference strain, TEM-20 M182T,G238S 0.65
mutant strain, TEM-52 E104K,M182T,G238S 8
A42G mutant of TEM-20 A42G,M182T,G238S 1.78

TEM-15 E104K,G238S 1.59
TEM-19 G238S 0.22

A42G mutant of TEM-17 A42G,E104K 0.11

Supplementary Table S3: scMIC's of the strains mentioned.

4 Sequencing summary

Below is the summary of the mutations observed in the end of the evolution experiment (Fig 1c
and S4).
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4 SEQUENCING SUMMARY

Starting
strain

Evolving
antibiotic

concentration,
µg/mL

Final
scMIC,
µg/mL

Mutation
observed

Comments

TEM-19 0.06 0.25 Promoter
AACCCTGAT-
>AAACCTGAT,

L12F

Cannot �nd any information

TEM-19 0.25 0.5 observed
synonymous
mutation at
position 20
GCC->GCT

TEM-19 0.5 1 A184V A known mutation which is
present in TEM-116,
TEM-157, TEM-162,

TEM-181, TEM-187 and
TEM-119 [2].

TEM-20 0.7 0.7 Promoter
AACCCTGAT-
>AAACCTGAT

TEM-20 0.17 0.7 AACCCTGAT-
>AAACCTGAT

50-50
A42G

mutant of
TEM-17

0.25 5.7 G238A; L12F G238A has been constructed
before, demonstrated increase
in kcat and decrease in KM [3].

Some mutations at 12th
position have been observed,

but not to F [4].
A42G

mutant of
TEM-17

0.25 0.5 G238S This is a well-established
mutation known to increase
resistance to cefotaxime. [5]

A42G
mutant of
TEM-17

0.45 4 G238S This is a well-established
mutation known to increase
resistance to cefotaxime.[5]

Supplementary Table S4: Evolved strains beta-lactamase sequencing summary
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5 SUPPLEMENTARY FIGURES

5 Supplementary �gures

Supplementary Figure S1: Growth rate can be modeled as a step function of external antibiotic
concentration. The transition between exponential growth with the highest growth rate and ex-
ponential death with the highest death rate is relatively sharp. Di�erent colors correspond to
di�erent antibiotic concentration. A42G mutant of TEM-20 is used, the measured scMIC of this
strain is 1.6 µg/mL, the measured MIC is 64 µg/mL. For this �gure, the bacterial were cultured
in 50 mL �asks and at the measurement time point some dilution of bacteria were plated. The
error bars correspond to the square root of the CFU.
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5 SUPPLEMENTARY FIGURES

Supplementary Figure S2: Flow cytometry fraction measurements (a) YFP (x-axis) and CFP (y-
axis) signals on one plot and histograms of the YFP and CFP counts. (b) TEM-20 and TEM-52
strains of di�erent colors competing. The fraction of CFP variant of the strain stays �at as a
function of antibiotic concentration. This �gure proves that selection patterns observed in the
main text are not due to the in�uences of cefotaxime presence on kanamycin plasmids.
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5 SUPPLEMENTARY FIGURES

Supplementary Figure S3: In competition of TEM-20 and A42G mutant of TEM-20, selection for
the mutant begins at the scMIC, not MIC*, of TEM-20. For most of the data points, the mean
values for 8 di�erent cultures with di�erent coloring of the strains are presented. The error bars
are the standard error of the mean. The gray bars correspond to the scMIC value of TEM-20.
The scMIC and MIC* of TEM-20 are 0.8 µg/mL and 14.3 µg/mL correspondingly, the MKC and
MIC* of A42G mutant of TEM-20 are 1.59 µg/mL and 64 µg/mL correspondingly.
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5 SUPPLEMENTARY FIGURES

Supplementary Figure S4: Laboratory evolution experiments of (a) TEM-19 and (b) A42G mutant
of TEM-17 con�rm that increase of resistance evolves in antibiotic concentrations equal to and
larger than the scMIC. Plotted is the scMIC measured after 13 days (~100 generations) versus the
concentration of cefotaxime the strains were evolved at. The error bars are the standard errors of
the mean of six independent evolved populations. The gray bars correspond to the initial scMIC
values.
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5 SUPPLEMENTARY FIGURES

Supplementary Figure S5: Growth curves of TEM-20 in di�erent antibiotic concentrations. With
the increase of antibiotic concentration, the slope of the growth curves does not change, while the
time to reach some optical density increases. This is a result of the cooperative growth: the cells
�rst cooperatively hydrolyze cefotaxime and then grow with maximal division rate.
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5 SUPPLEMENTARY FIGURES

Supplementary Figure S6: The experimental data for competition experiments, with a 1% initial
fraction of the mutant strain. At the scMIC of the reference strain, the �nal fraction of the mutant
starts to increase, indicating that selection for the more resistant mutant starts near the scMIC.
Di�erent colors correspond to di�erent initial cell densities (labeled in CFU/ml). The error bars
are the standard error of the mean (n = 9 � 10 for most data points). The gray bar corresponds
to the scMIC of the reference strain. For the model, parameter values are provided in section 1.5.
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5 SUPPLEMENTARY FIGURES

Supplementary Figure S7: The model with the enzyme-cefotaxime irreversible binding explains
the inoculum e�ect and also the selection patterns at high antibiotic concentrations. (a) The �ts
of the inoculum e�ect curves of TEM-20 and TEM-52. The error bars are the maximum of a
discretization error and the standard error of the mean of three measurements. (b) The model
prediction for competition experiments, with a 1% initial fraction of TEM-52. At high antibiotic
concentrations, the second selection peak appears. The parameter values used can be found in
sections 1.5 and 2. Di�erent colors correspond to di�erent initial cell densities (labeled in CFU/ml).
The gray bar corresponds to the scMIC of TEM-20.
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5 SUPPLEMENTARY FIGURES

Supplementary Figure S8: Selection favors an increase of scMIC not MIC*. The competition
experiment of TEM-15 and the A42G mutant of TEM-19 (initial fraction plotted as horizontal line,
initial cell density 5x10^5 cells/ml). TEM-15 has a higher scMIC (1.78 µg/mL vs 1.26 µg/mL),
while both strains have similar MIC* values (18 µg/mL vs 20 µg/mL, which are statistically
indistinguishable, because the antibiotic dilution factor is

√
2). For cefotaxime concentrations

above the scMIC of the A42G mutant of TEM-19, the TEM-15 strain is selected for, indicating
that selection maximizes the scMIC rather than the MIC*. Error bars are the standard errors of
the mean of 4 independent populations.
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5 SUPPLEMENTARY FIGURES

Supplementary Figure S9: Sometimes an increase in scMIC is accompanied by the decrease in
MIC*. The scMIC vs MIC* values of the evolved cultures as a fraction of the initial scMIC
or MIC* values are presented. Only data for the cultures evolved at concentrations equal to or
greater than the scMIC of the initial strain is shown. Di�erent colors correspond to di�erent strains
evolved. The data presented is the same as in Fig. 1c and S4.
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