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Table S1. The substance use history and medication information of the subjects 

Measure  HC SZ pa 
Number 50 47 

 Age 36.7 ± 12.6 35.3 ± 12.6 0.6 
Gender 20 F / 30 M 6 F / 41 M 0.01 
Education 13.8 ± 1.6 12.7 ± 2.2 0.001 
Smokers (yes/no) 11/39 15/32 0.28 
Alcohol use history (yes/no) 10/40 14/33 0.24 
Cannabis use history (yes/no) 2/48 8/39 0.03 
Stimulant use history (yes/no) 0/50 5/42 0.02 
Opioid use history (yes/no) 0/50 2/45 0.14 
Cocaine use history(yes/no) 0/50 1/46 0.51 
History of heart disease, stroke, hypertension, 
diabetes and dyslipidemia (yes/no) 11/39 7/40 0.24 
Olanzapine equivalent NA 13.5 ± 9.4 

 Antipsychotic (yes/no) NA 42/5 
 Antipsychotic (1st /2nd  generation) NA 5/37 
 Clozapine (yes/no) NA 2/45 
 Mood stabilizer (yes/no) NA 1/46 
 Antidepressant (yes/no) NA 8/39 
 Benzodiazepine (yes/no) NA 9/38 
 Anticholinergic (yes/no) NA 3/44 
 Beta-blocker (yes/no) NA 3/44 
 aThe p values represent the statistical significance between controls (HC) and schizophrenia patients (SZ). 

All subjects were not active substance use disorder (6 month minimum before enrollment, except for 
nicotine). Though there are more patients having substance use history than controls, there is no 
significant correlation between the substance use history with either the MCCB composite or the loadings 
of the identified CV8. 
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MCCA Method  
 

 
Figure S1.  Optimization strategy of two-way CCA 

 

Multi-set canonical correlation analysis (MCCA) (1, 2)  is an extension of traditional two-way 

CCA. As shown in Figure S1, two-way multimodal CCA allows a different mixing matrix for 

each modality and is used to find the transformed coordinate system that maximizes the inter-

subject covariation across two data sets (3). Each dataset is decomposed into a set of components 

(such as spatial areas for fMRI/sMRI) and their corresponding mixing profiles, which are called 

canonical variants (CVs). The canonical variants have varying levels of weights for different 

subjects and are linked if they modulate similarly across subjects. After decomposition, the 

correlation between CVs is maximized, which correlate with each other only on the same indices.  

Likewise, MCCA aims to find linear transforms that simplify the correlation structure 

among N datasets. In MCCA, any pair-wise modality combination among N modalities is 

optimized similarly as in two-way CCA, but by multiple stages, please see more details in (2). In 

each stage, a linear combination is found such that correlations among the canonical variants are 

maximized. Finally, a group of corresponding components with heterogeneous correlation values 

are generated, which only correlate with each other on the same indices (same columns of 

mixing matrix of each dataset). Therefore, MCCA is primarily designed to find associations in 
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multiple datasets/modalities, which is suitable to identify linked relationships between measures 

of interest and co-varied patterns in multimodal brain imaging data. 

 

Choice of Multivariate Fusion Methods 

         Multimodal joint analysis has proven to be more informative and powerful in 

understanding brain activity and disorders. The existing multivariate fusion methods have 

different optimization priorities and limitations. Among them, joint independent component 

analysis (jICA) (4), MCCA (5), and MCCA+jICA (6) are three data-driven multivariate methods 

that need no priors and have been successfully used in several mental disorder applications (7, 

8). Each of them presents a different view in interpreting and connecting the multiple datasets 

based on their own hypotheses. In Table S2, we listed these 3 fusion methods with their feasible 

combinations, optimization assumptions and purpose of the analysis, please see more details in 

(9), which may serve as a guideline on method selection based on a given research and data. In 

conclusion, the use of data fusion is a powerful technique, which can help better elucidate the 

relationship among multiple modalities and facilitate new discoveries in brain disorders. 

Selecting which fusion model to use should be done carefully based on the research purpose. All 

these methods are available for use in Fusion ICA Toolbox 

(http://mialab.mrn.org/software/fit/index.html). 
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Table S2. Hypothesis of 3 data-driven fusion methods and how to choose among them 
Methods Combinations Optimization Assumptions Analyzing Purposes 

Joint ICA 
fMRI-sMRI 
fMRI-DTI 
fMRI-EEG 

Multiple datasets share the same mixing 
matrix, while the independence among 
joint components is maximized 

v To examine a common inter-subject co-
variation among N modalities and to find the 
linked source maps 

MCCA 
fMRI-EEG 
fMRI-sMRI-EEG 
fMRI-sMRI-DTI 

Pair-wise modality correlation between 
the corresponding mixing profiles are 
maximized 

v To detect flexible co-occurring associations 
among N modalities  

v To identify linked relationships between 
measures of interest and multimodal data 

 MCCA+jICA 
fMRI-DTI 
fMRI-sMRI-DTI 

Assume the decomposed components 
from each modality were correlated 
(highly or weakly) between subject-
mixing profiles, while the spatial 
independence is also maximized. 

v To achieve both flexible modality 
associations (high or low correlations) as well 
as accurate source separation.  

v To explore  multimodal co-occurring and 
modality-unique  alterations between groups 
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