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Abstract

The supplementary material contains: (1) Image classifi-

cation experimental results on the Caltech-101 dataset. (2)

Analysis and experimental evaluation of the efficient DCT-

based algorithm for epitomic patch matching with approxi-

mate nearest neighbor (ANN) techniques. (3) A discussion

about the whitening effect of gradient-domain processing

and its impact on classification performance. (4) More de-

tails about our epitomic footprint encoding.

1. Image Classification Experiments on

Caltech-101

Here we report additional image classification experi-

ments with the proposed epitomic dictionary method on the

Caltech-101 dataset. The PASCAL VOC-2007 dataset is

richer and more challenging and allows drawing safer con-

clusions when comparing alternative classification meth-

ods. However, performing experiments on the Caltech-101

allows us to directly compare the proposed method with

other published techniques which only report results on the

Caltech-101 dataset.

We used exactly the same encoding method as in the case

of the PASCAL VOS-2007 benchmark described in Sec-

tions 4.1 and 4.2 of the main paper, i.e., histograms with

hard assignments encoding the label, sign, and, optionally,

the position of the best match of each patch in the epitome.

In all cases we employ standard SPM histograms [7] into

4×4, 2×2, 1×1 bins. We use the shorthand “Epitome-

1024-16/8-Pos-2x2” for a dictionary with K = 1024 16×16
mini-epitomes containing 8×8 patches and match position

encoding in the epitome into 2×2=4 bins. To emphasize that

the proposed method learns generic dictionaries, we use the

same epitomic dictionaries learned on the PASCAL VOC-

2007 training set for our Caltech-101 experiments.

We follow the standard established protocol for our

Caltech-101 evaluation. Specifically, we train 102 1-vs-all

SVM classifiers (using χ2 kernels approximated by explicit

Epitome Position Dictionary Size K

/Patch Encod. 512 1024

16/8 1x1 71.67 72.25

2x2 72.58 71.95

12/8 1x1 72.09 72.88

2x2 72.93 71.91

10/8 1x1 72.07 72.95

8/8 1x1 71.41 71.57

Table 1. Image classification results (average accuracy) of our epit-

omic dictionary-based method on the Caltech-101 dataset.

feature maps [13]) for classifying each image into one out

of the 102 candidate classes (101 objects plus background).

We draw four random splits of the dataset into 30 train im-

ages and up to 30 test images. We use the first validation

split to set the SVM regularization parameter. We measure

the average classification accuracy across the 102 classes

and report its mean. The deviation (difference between max

and min performance) over the three test splits has been up

to 1% in all our experiments.

Our results are shown in Table 1. Since each SVM classi-

fier is trained with only 30 positive instances and the feature

length is larger due to the finer SPM sampling (21 bins in

the Caltech-101 vs. 8 bins in the VOC-2007 case), we only

tried dictionaries with K = 512 and 1024 mini-epitomes.

Our best result is 72.95% average accuracy.

For comparison, we show in Table 2 results reported by

other authors on the same task. Our results are better than

previously published techniques in the literature of feature

learning methods (first column of Table 2), including some

multi-layer systems trained by unsupervised [14] or super-

vised [6] criteria. SIFT coupled with VQ encoding (second

column of Table 2) does somewhat better when big dictio-

naries are used. State-of-the-art performance is achieved by

the very recent HMP method of [2] (third column of Ta-

ble 2), which learns features in a multilevel fashion. We be-

lieve that embedding epitomic patch models in similar deep

architectures is a very promising avenue which we plan to

follow in future work.
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Method Acc Method Acc Method Acc

SIFT-ST [5] 67.70 SIFT-VQ-600 72.65 SIFT-FV-256 77.78

AdDeconvNets [14] 71.00 SIFT-VQ-2K 73.93 HMP [1] 76.80

Jarrett et al. [6] 65.50 SIFT-VQ-4K 74.41 M-HMP [2] 82.50

Table 2. Image classification results (average accuracy) of recently

published methods on the Caltech-101 dataset. The SIFT re-

sults refer to the modern implementation of [3], not the original

SPM implementation of [7] which reported performance 64.6%

for SIFT-VQ-200.

2. Efficient Search with Approximate Nearest

Neighbor Techniques

We describe here in more detail the implementation of

the approximate nearest neighbor (ANN) method for ap-

proximate epitomic patch matching and compare its perfor-

mance with the exact matching algorithm. Epitomic patch

matching can be cast as nearest neighbor search between

each h×w image patch and all h×w patches contained in

all K H×W mini-epitomes in the dictionary. The patches

need to be first whitened by computing their gradient and

then contrast normalized, i.e., x̂i =
Dxi√

‖Dxi‖2

2
+λ

and ν̂j =

Dνj√
‖Dνj‖2

2
+λ

for the image and epitome patches, respec-

tively. Here D is the (h · (w − 1) + (h− 1) · w)×(h · w)
2-D gradient matrix, i.e., Dxi is the vector of x− and y−
derivatives of the h×w patch xi.

Instead of the Euclidean distance ‖x̂i − ν̂j‖ between

the normalized patch gradient vectors which have length

(h · (w − 1) + (h− 1) · w), we can equivalently use the

Euclidean distance between the whitened and normalized

2-D discrete cosine transforms (DCT) of the patches, ‖x̂∗
i −

ν̂
∗
j ‖, which only have length h ·w. Here x̂∗

i =
Λx

∗

i√
‖Λx∗

i
‖2

2
+λ

,

where x
∗
i , Cxi is the vector of 2-D DCT coefficients

and C is the 2-D DCT transform operator. This holds be-

cause the 2-D DCT transform diagonalizes the gradient op-

erator, i.e., DT
D = C

T
Λ

2
C, with Λ a diagonal matrix

with non-negative entries, and therefore ‖Dxi − Dνj‖ =
‖Λx

∗
i −Λν

∗
j ‖ [11].

We visualize in Figure 1 the entries of the diagonal

weighting matrix Λ corresponding to 2-D DCT implemen-

tation of gradient-domain processing of 16×16 patches. We

note that weighting with Λ enhances the higher frequencies

in the DCT spectrum.

The resulting epitomic matching algorithm consists of

the following steps: (1) Extract patches xi from the im-

age. (2) Compute the 2-D DCT transform of the patches

x
∗
i = Cxi. (3) Whiten by point-wise multiplication of

the 2-D DCT transform coefficients with the emphasis mask

Λ, followed by contrast normalization, x̂∗
i =

Λx
∗

i√
‖Λx∗

i
‖2

2
+λ

.

(4) Search for the nearest neighbor in the database of sim-

ilarly pre-processed epitome dictionary patches ν̂
∗
j . One
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Figure 1. The entries of the diagonal weighting matrix Λ corre-

sponding to 2-D DCT implementation of gradient-domain pro-

cessing of 16×16 patches.

can readily plug-in the proposed algorithm in an existing

SIFT-based image classification system by replacing SIFT

computation with the pre-processing steps (1)-(3).

Our simple Matlab-based implementation of the above

pre-processing steps (1)-(3) has runtime 0.1 sec for a typi-

cal PASCAL VOC-2007 image, which can be significantly

reduced by employing widely available optimized routines

for DCT computation. Interestingly, many image and video

coding standards use the DCT for image or video frame

compression. This presents the opportunity to deploy our

methods directly in the compressed domain [10], which

could be appealing for resource-limited devices.

We have experimented with ANN algorithms based on

both kd-tree and hierarchical K-means data structures, as

implemented in the VLFeat [12] and FLANN [8] libraries,

respectively. These algorithms allow finding approximate

nearest neighbors with a number of comparisons that grows

sub-linearly with the dictionary size. A key property of kd-

trees is that they split the search space with hyperplanes per-

pendicular to the coordinate system axes, making them very

fast. However, this also implies that the coordinate system

choice matters. In our case, we have found that epitomic

kd-tree search is much more efficient in the DCT domain

compared to the original gradient domain. Intuitively, the

low-pass part of the DCT spectrum allows much faster re-

jection of putative matches between patches which grossly

differ. The hierarchical K-means algorithm is invariant to

isometries (linear maps that preserve distance, as is the case

with the proposed DCT-based transformation) and hence

gives exactly the same results in both the original gradient

and the DCT domains. However, the DCT representation

is preferable here as well due to its smaller dimensionality,

which reduces the search runtime.

In Figure 2 we summarize experiments measuring

the performance loss (mAP) in PASCAL VOC-2007 im-

age classification experiments due to approximate nearest

neighbor search compared to exact epitomic search. We

have evaluated kd-tree search allowing at most 50 compar-

isons per search query (KDT-50) and hierarchical K-means
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Figure 2. Performance loss in PASCAL VOC-2007 image classi-

fication experiments due to approximate nearest neighbor search

compared to exact epitomic search (decrease in mAP, lower is bet-

ter). (a) Epitome-K-16/8-Pos-2x2 dictionary with 16×16 epito-

mes. (b) Epitome-K-12/8-Pos-2x2 dictionary with 12×12 epito-

mes.

search allowing at most either 25 or 50 comparisons per

search query (HKM-25, HKM-50). For kd-trees we have

experimented with both the original gradient and DCT rep-

resentations. We see that using DCT is crucial for kd-tree

ANN search to be effective. Both HKM and the DCT-based

algorithm can be used with small (about 1%) performance

loss over exact search with moderate search times compa-

rable to those of SIFT-based VQ encoding algorithms.

3. Whitening by Gradient-Domain Processing

and its Effect in Image Classification

Many authors have emphasized the importance of

whitening image patches, which involves (a) removing

second-order correlations and (b) enhancing the high-

frequency edge contrast. See, e.g., the discussion in [4] for

a setting similar to ours.

In all our experiments we perform whitening by

gradient-domain processing, i.e., we choose in Equation (1)

of the main paper the d× d covariance matrix Σ
−1

0 =
D

T
D+ ǫI, where D is the gradient operator computing the

x− and y− derivatives of the h×w patch and ǫ is a small

constant.

The analysis in the previous Section allows us to bet-

ter understand the whitening effect of gradient-domain pro-

cessing: It corresponds to approximately decorrelating the

patch xi via the 2-D discrete cosine transform (DCT) x∗
i =

Cxi, followed by high-frequency enhancement by element-

wise multiplication of DCT coefficients with the mask Λ

shown in Figure 1.

Similar to [4], we have found that gradient-domain pro-

cessing performs significantly better in terms of classifi-

cation accuracy than image-domain processing, i.e., using

Σ
−1

0 = I and finding matches in the dictionary by minimiz-

ing the image-domain reconstruction error R2(xi; k, p) =
1

c2
i

(

‖xi−αiTpµk‖2+λ(|αi|−1)2
)

in place of Equation (2)

in the main paper. For example, using the Epitome-1024-

16/8-Pos-2x2 and performing epitomic search in the image

domain yields classification performance 49.50% mAP on

the PASCAL VOC-2007 benchmark, which is significantly

lower than the 56.12% mAP we obtain with our proposed

gradient-domain processing.

4. Epitomic footprint encoding

We have performed preliminary experiments on an epito-

mic footprint encoding, which is inspired by the Fisher Vec-

tor encoding in [9]. The main idea is to encode the differ-

ence ∆µk between an image-specific and the generic epit-

ome, which captures how much the epitome needs to adapt

to best approximate a novel image. Specifically, we use the

formula (compare with Equation 4 of the main paper)

(

∑

i,p

γi(k, p)
α2
i

c2i
T

T
p Σ

−1

0 Tp

)

∆µk =

∑

i,p

γi(k, p)
αi

c2i
T

T
p Σ

−1

0 (xi − αiTpµk) , (1)

where i is an index running over all patches extracted from

a single image. In our current implementation we use

hard assignments (found by ANN search) to set the weights

γi(k, p).
We can use the set of {∆µk}Kk=1

directly as a feature

vector for image classification, similarly to the VLAD en-

coding method for SIFT features [9]. We have performed

preliminary experiments exploring this idea on the PAS-

CAL VOC-2007 dataset and obtained performance 51.61%

mAP with the Epitome-256-12/8 dictionary.

The epitomic footprint descriptor can be visualized, as

shown in Figure 6 of the main paper. An intriguing practical

benefit of this is that we can compress and store the footprint

descriptor as a JPEG image. For the Epitome-256-12/8 dic-

tionary the descriptor has length 256 · 12 · 12 · 2 = 73, 728
(the two factor is for the sign encoding) and thus occupies

288 KB of memory if stored as single precision array. Pre-

liminary experiments indicate that the epitomic descriptor

can be stored as JPEG image with file size less than 10

KB with negligible distortion for a 30× compression rate.

Thanks to the generative nature of our model we can thus

use optimized off-the-shelf tools from image processing and

coding. This is in sharp contrast to SIFT-based representa-

tions, where the feature compression has required the devel-

opment of specialized algorithms and software [9].
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