Supplemental Material: Expectation modulates neural representations of valence throughout the human brain

Anatomical distribution of choice-direction selective electrodes To assess whether the broad and heterogeneous anatomical distribution of valence-encoding electrodes was a general feature of HFA signals, we performed a control analysis where we studied the anatomical distribution of electrodes that encoded left/right choice direction. We repeated our analysis used to identify valence encoding electodes (*Resuts*, pages 14-15, Figure 2), however, we identified electrodes that demonstrated significant differences in HFA when the subject selected the left button, compared to when they selected the right button ("direction-encoding"). In contrast to the broad and heterogeneous anatomical distribution of valence-encoding electrodes (Figure 2), we found that the anatomical distribution of direction-encoding electrodes was localized and homogeneous (Suppl. Table 1). Right-encoding electrodes (greater activity during right choice, compared to left choice) were more frequently observed than chance in only two regions-the left sensori-motor and parietal ROIs (t's> 4.02, FDR-corrected p's< 0.005). Similarly, a significant frequency of left-encoding electrodes were only found in the right sensorimotor and parietal ROIs (t's> 4.74, FDR-corrected p's< 0.003). These results suggest that the broad and heterogeneous anatomical distribution associated with valence-encoding electrodes is not a general feature of HFA.

[Table 1 about here.]

Region of Interest	number of electrodes	number of subjects	frequency of left- selective contacts; counts <i>t</i> -test results	selective contacts; counts <i>t</i> -test results
L. OFC	48	15	0.02; <i>p</i> > 0.2	0.04; <i>p</i> > 0.15
R. OFC	67	16	0.05; <i>p</i> > 0.2	0.06; <i>p</i> > 0.5
L. dlPFC	223	21	0.06; <i>p</i> > 0.5	0.08; <i>p</i> > 0.2
R. dlPFC	246	19	0.06; <i>p</i> > 0.5	0.09; <i>p</i> > 0.2
L. vlPFC	92	18	0.16; <i>p</i> > 0.15	0.04; <i>p</i> > 0.3
R. vlPFC	65	16	0; t(15) = -10.6, p < 0.001	0.03; <i>p</i> > 0.5
L. anterior medial frontal	138	16	0.06; <i>p</i> > 0.5	0.08; <i>p</i> > 0.4
R. anterior medial frontal	149	18	0.05; <i>p</i> > 0.2	0.06; <i>p</i> > 0.5
L. posterior medial frontal	28	7	0.11; <i>p</i> > 0.5	$\begin{array}{l} 0.39; \ t(6) \ = \ 2.25, p \ = \\ 0.065 \end{array}$
L. sensorimotor	277	23	0.04; <i>p</i> > 0.5	0.27 ; <i>t</i> (22) = 4.29, <i>p</i> < 0.001
R. sensorimotor	262	20	0.39 ; <i>t</i> (19) = 5.98, <i>p</i> < 0.001	$\begin{array}{rcl} 0.04; & t(19) & = \\ -2.47, p = 0.023 & \end{array}$
L. parietal	373	26	0.10; <i>p</i> > 0.1	0.17 ; <i>t</i> (25) = 4.01, <i>p</i> < 0.001
R. parietal	267	19	0.19 ; <i>t</i> (18) = 4.74, <i>p</i> < 0.001	0.05; <i>p</i> > 0.5
L. temporal	677	28	0.06; <i>p</i> > .2	0.07; p = 0.06
R. temporal	457	27	0.05; <i>p</i> > 0.5	0.06; <i>p</i> > 0.4
L. fusiform	98	23	0.02; <i>p</i> > 0.2	0.06; <i>p</i> > 0.5
R. fusiform	97	17	0.11; <i>p</i> = 0.09	0.10; <i>p</i> > 0.15
L. occipital	162	20	$\begin{array}{c} 0.10; t(19) = 2.52, p = \\ 0.020 \end{array}$	$\begin{array}{c} 0.19; t(19) = 2.46, p = \\ 0.02 \end{array}$
R. occipital	84	19	$\begin{array}{l} 0.20; t(18) = 2.36, p = \\ 0.29 \end{array}$	0.19; <i>p</i> = 0.072
L. MTL	100	19	0.09; <i>p</i> > 0.2	0.09; <i>p</i> > 0.2
R. MTL	52	12	0.08; <i>p</i> > 0.4	0.06; <i>p</i> > 0.5

Table 1: **Frequency of choice-direction encoding electrodes** For each region, we list the number of electrodes (column 1), number of subjects (column 2), frequency of left-selective electrodes (column 3), and frequency of right-selective electrodes (column 4). Positive *t*-statistics indicate frequencies that are greater than expected, whereas negative *t*-statistics indicate a frequencies that are lower than expected. Bold text in columns 3 and 4 indicates regions that showed choice-direction encoding electrodes more frequently than expected by chance (FDR-corrected p < 0.05).