SUPPORTING INFORMATION

Discovery of γ-Mangostin as an Amyloidogenesis Inhibitor

Takeshi Yokoyama^a, Mitsuharu Ueda^b, Yukio Ando^b, Mineyuki Mizuguchi^a*

^a Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0914, Japan

^b Department of Neurology, Graduate School of Medical Sciences, Kumamoto

University, 1-1-1 Honjo, Kumamoto 860-8556, Japan

Corresponding Author

* M. Mizuguchi e-mail: mineyuki@pha.u-toyama.ac.jp;

Supplementary Table S1 and S2 and Supplementary Figures S1, S2, S3, S4 and S5

	γ - Μ	α-Μ	2	γ-M - Br	α-M - Br
Crystal data					
Wavelength (Å)	1.0	1.0	1.0	0.91714	0.91714
Resolution range ^a (Å)	33.2-1.5	27.6-1.4	30.2-1.9	28.6-1.5	28.5-1.5
	(1.53–1.5)	(1.42–1.40)	(1.93–1.90)	(1.53–1.5)	(1.53–1.5)
Space group	$P2_{1}2_{1}2$	P21212	P21212	$P2_{1}2_{1}2$	P21212
Unit cell (Å)	a=43.4,	a=43.6,	a=43.0,	a=43.4,	a=43.1,
	b=85.8,	b=85.4,	b=85.2,	b=85.7,	b=85.6,
	c=64.1	c=64.7	c=64.5	c=63.4	c=63.6
Observed reflections	230,024	279,805	114,965	333,433	274,834
Unique reflections ^a	38,590 (1,835)	48,115 (2,339)	17,994 (823)	38,151 (1,854)	38,146 (1,812)
$R_{ m merge}$ (%) ^{ab}	4.5 (27.4)	6.0 (73.5)	9.0 (61.1)	8.2 (40.3)	7.2 (3.8)
Completeness (%) ^a	97.7 (95.6)	99.3 (98.2)	91.7 (88.2)	99.5 (99.0)	98.3 (95.2)
<i>I</i> /sigma(<i>I</i>) ^a	49.6 (4.3)	26.7 (1.8)	21.0 (1.9)	37.9 (3.6)	24.7 (2.3)
Redundancy ^a	6 (3.8)	5.8 (4.7)	6.3 (3.9)	8.7 (5.8)	7.2 (3.8)
Refinement data					
R_{factor}^{c} (%)	18.4	19.2	19.6	19.3	20.4
$R_{\rm free}^{\rm d}$ (%)	21.9	23.5	24.8	22.1	24.0
R.M.S.D. bonds (Å)	0.014	0.015	0.007	0.016	0.019
R.M.S.D. angles (°)	1.9	1.8	1.1	1.9	2.1
No. of water and halide	181, 4	239, 2	91, -	176, 8	173, 6
Average B factor (Å ²)					
protein, ligand,	19.1, 22.6,	18.1, 15.9,	19.5, 25.8,	19.1, 16.6,	20.0, 20.2
halide ion, water	31.5, 32.8	31.5, 32.7	-, 23.2	36.7, 30.6	39.4, 32.7
Ramachandran plot (%)					
Favored, allowed	98, 2	98, 2	96, 4	98, 2	99, 1

Supplementary Table S1. Statistics on X-ray data collection and structure refinement

^a Numbers in parentheses refer to the highest resolution shell.

^b $R_{\text{merge}} = \sum_{hkl} \sum_i |I_i(hkl) - I_i(\overline{hk}\overline{l})| / \sum_{hkl} \sum_i |I_i(hkl)|$

^c $R_{\text{factor}} = \Sigma |F_o| - |F_c|/|F_o|$, where F_o and F_c are the observed and calculated structure factor amplitudes, respectively.

^d The R_{free} was calculated with 5% of the data excluded from the refinement.

	γ - Μ	α-Μ	2	γ-M - Br	α-M - Br
X-ray source	PF-AR	PF-AR	PF-AR	PF-AR	PF-AR
beamline	NE-3A	NW12	NW12	NE-3A	NE-3A
Detector	ADSC Q270	ADSC Q210	ADSC Q210	ADSC Q270	ADSC Q270
Exposure time (s)	0.2	1.8	6.0	0.3	0.4
Detector distance (mm)	167.9	117.3	166.2	188.6	188.6
Oscillation width (°)	0.4	1.0	1.0	1.0	1.0
Frame number	500	180	300	300	300
Oscillation range (°)	200	180	300	300	300

Supplementary Table S2. Experimental condition of X-ray diffraction.

Supplementary Figure S1. The EC_{50} values and *t*-test.

Supplementary Figure S1. One-tailed *t*-test was performed between γ -M and the selected compounds with 0.05 of significance level. ** indicates p < 0.01 and *** indicates p < 0.001.

Supplementary Figure S2. Concentration-dependent effect in the intrinsic fluorescent and resveratrol competitive experiments.

Supplementary Figure S2. (a) Fluorescent intensities at 340 nm at the various γ -M concentrations in the intrinsic fluorescent experiments. (b) Fluorescent intensities at 400 nm at the various γ -M concentrations in the resveratrol competitive binding assay.

Supplementary Figure S3. The quaternary structural stability of V30M mutant TTR in the presence of compounds.

Supplementary Figure S3. Glutaraldehyde cross-linking experiments using compounds 5, 6, 7, 8, 9 and 10 (a) and the control and 11 (b). The concentrations of the compounds were 5 and 50 μ M. The + lane of Cont. indicates the positive control incubated at pH 8.0 without the compounds. The – lane indicates the negative control incubated at pH 4.5 without the compounds.

Supplementary Figure S4. The relative tetramer fractions at 50 μ M compounds and inhibition ratio at 20 μ M compounds.

Supplementary Figure S4. The tetramer fractions at 50 μ M compounds relative to γ –M (3.6 μ M V30M) were indicated as the column bars with the standard deviations (left side axis). The tetramer fractions were quantified by the glutaraldehyde cross-linking experiments. Inhibition ratios were indicated as red-filled square (right side axis). The The inhibition ratio of **6** was not determined because of its low inhibitory potency.

Supplementary Figure S5. Resveratrol competitive assay including the spectra of free γ -M and Resveratrol.

Supplementary Figure S5. The fluorescence spectra (350–500 nm) of resveratrol (5 μ M) bound to V30M and on addition of γ -M by excitation at 320 nm.