# **Supplemental Material**

| OTU | Phylum         | Class               | Order            | Family               | Genus               | Species       |
|-----|----------------|---------------------|------------------|----------------------|---------------------|---------------|
| 152 | Actinobacteria | Actinobacteria      | Actinomycetales  | Corynebacteriaceae   | Corynebacterium     | variabile     |
| 46  | Actinobacteria | Actinobacteria      | Actinomycetales  | Microbacteriaceae    | Candidatus Aquiluna | rubra         |
| 34  | Actinobacteria | Actinobacteria      | Actinomycetales  | Microbacteriaceae    | Microbacterium      | maritypicum   |
| 24  | Actinobacteria | Actinobacteria      | Actinomycetales  | Microbacteriaceae    | Salinibacterium     | amurskyense   |
| 23  | Actinobacteria | Actinobacteria      | Actinomycetales  | Nocardiaceae         | Rhodococcus         | fascians      |
| 112 | Actinobacteria | Actinobacteria      | Actinomycetales  | Propionibacteriaceae | Propionibacterium   | acnes         |
| 12  | Bacteroidetes  | Flavobacteriia      | Flavobacteriales | Cryomorphaceae       | unclassified        | unclassified  |
| 7   | Bacteroidetes  | Flavobacteriia      | Flavobacteriales | Flavobacteriaceae    | Lacinutrix          | unclassified  |
| 45  | Bacteroidetes  | Flavobacteriia      | Flavobacteriales | Flavobacteriaceae    | Lacinutrix          | unclassified  |
| 16  | Bacteroidetes  | Flavobacteriia      | Flavobacteriales | Flavobacteriaceae    | unclassified        | unclassified  |
| 28  | Bacteroidetes  | Flavobacteriia      | Flavobacteriales | Flavobacteriaceae    | unclassified        | unclassified  |
| 11  | Bacteroidetes  | Flavobacteriia      | Flavobacteriales | Flavobacteriaceae    | Zhouia              | unclassified  |
| 17  | Bacteroidetes  | Saprospirae         | Saprospirales    | Saprospiraceae       | unclassified        | unclassified  |
| 61  | Bacteroidetes  | Saprospirae         | Saprospirales    | Saprospiraceae       | unclassified        | unclassified  |
| 37  | Bacteroidetes  | unclassified        | unclassified     | unclassified         | unclassified        | unclassified  |
| 74  | Firmicutes     | Bacilli             | Bacillales       | Staphylococcaceae    | Staphylococcus      | epidermidis   |
| 35  | Nitrospinae    | Nitrospinia         | Nitrospinales    | Nitrospinaceae       | Nitrospina          | unclassified  |
| 18  | Planctomycetes | Phycisphaerae       | Phycisphaerales  | unclassified         | unclassified        | unclassified  |
| 32  | Proteobacteria | Alphaproteobacteria | Kiloniellales    | unclassified         | unclassified        | unclassified  |
| 126 | Proteobacteria | Alphaproteobacteria | Rhizobiales      | Bradyrhizobiaceae    | Bradyrhizobium      | unclassified  |
| 33  | Proteobacteria | Alphaproteobacteria | Rhizobiales      | Hyphomicrobiaceae    | unclassified        | unclassified  |
| 21  | Proteobacteria | Alphaproteobacteria | Rhodobacterales  | Rhodobacteraceae     | Loktanella          | unclassified  |
| 13  | Proteobacteria | Alphaproteobacteria | Rhodobacterales  | Rhodobacteraceae     | Marivita            | unclassified  |
| 29  | Proteobacteria | Alphaproteobacteria | Rhodobacterales  | Rhodobacteraceae     | Octadecabacter      | unclassified  |
| 22  | Proteobacteria | Alphaproteobacteria | Rhodobacterales  | Rhodobacteraceae     | Phaeobacter         | gallaeciensis |
| 58  | Proteobacteria | Alphaproteobacteria | Rhodobacterales  | Rhodobacteraceae     | Rhodobacter         | unclassified  |
| 20  | Proteobacteria | Alphaproteobacteria | Rhodobacterales  | unclassified         | unclassified        | unclassified  |
| 6   | Proteobacteria | Alphaproteobacteria | Rickettsiales    | Pelagibacteraceae    | unclassified        | unclassified  |
| 40  | Proteobacteria | Alphaproteobacteria | Rickettsiales    | Pelagibacteraceae    | unclassified        | unclassified  |

### Table S1: Taxonomy of indicator OTUs, alphabetically ordered from phylum to species level.

| 102 | Proteobacteria | Alphaproteobacteria | Sphingomonadales  | Sphingomonadaceae      | Sphingomonas        | unclassified |
|-----|----------------|---------------------|-------------------|------------------------|---------------------|--------------|
| 9   | Proteobacteria | Alphaproteobacteria | Sphingomonadales  | Sphingomonadaceae      | unclassified        | unclassified |
| 47  | Proteobacteria | Betaproteobacteria  | Methylophilales   | Methylophilaceae       | unclassified        | unclassified |
| 5   | Proteobacteria | Gammaproteobacteria | Alteromonadales   | Alteromonadaceae       | Alteromonas         | unclassified |
| 8   | Proteobacteria | Gammaproteobacteria | Alteromonadales   | Alteromonadaceae       | Alteromonas         | unclassified |
| 15  | Proteobacteria | Gammaproteobacteria | Alteromonadales   | Alteromonadaceae       | Alteromonas         | unclassified |
| 44  | Proteobacteria | Gammaproteobacteria | Alteromonadales   | HTCC2188               | HTCC                | unclassified |
| 69  | Proteobacteria | Gammaproteobacteria | Enterobacteriales | Enterobacteriaceae     | unclassified        | unclassified |
| 19  | Proteobacteria | Gammaproteobacteria | Legionellales     | Coxiellaceae           | unclassified        | unclassified |
| 2   | Proteobacteria | Gammaproteobacteria | Methylococcales   | Crenotrichaceae        | Crenothrix          | unclassified |
| 53  | Proteobacteria | Gammaproteobacteria | Oceanospirillales | Halomonadaceae         | Candidatus Portiera | unclassified |
| 10  | Proteobacteria | Gammaproteobacteria | Oceanospirillales | Oceanospirillaceae     | unclassified        | unclassified |
| 38  | Proteobacteria | Gammaproteobacteria | Vibrionales       | Pseudoalteromonadaceae | Pseudoalteromonas   | porphyrae    |
| 14  | Proteobacteria | Gammaproteobacteria | Vibrionales       | Pseudoalteromonadaceae | Pseudoalteromonas   | unclassified |
| 26  | Proteobacteria | Gammaproteobacteria | Vibrionales       | Pseudoalteromonadaceae | Pseudoalteromonas   | unclassified |
| 4   | Proteobacteria | Gammaproteobacteria | Vibrionales       | Vibrionaceae           | Vibrio              | fortis       |
| 59  | Tenericutes    | Mollicutes          | Acholeplasmatales | Acholeplasmataceae     | Acholeplasma        | unclassified |
| 1   | Tenericutes    | Mollicutes          | Mycoplasmatales   | Mycoplasmataceae       | Mycoplasma          | unclassified |
| 3   | unclassified   | unclassified        | unclassified      | unclassified           | unclassified        | unclassified |
| 43  | unclassified   | unclassified        | unclassified      | unclassified           | unclassified        | unclassified |

#### Table S2: Oligonucleotide probes used for FISH.

| Probe     | Target group     | Target rRNA | Sequence $(5' \rightarrow 3')$ | Target site | Hybridisation<br>temperature | Formamide<br>concentration | Reference |
|-----------|------------------|-------------|--------------------------------|-------------|------------------------------|----------------------------|-----------|
|           |                  |             |                                |             | [°C]                         | [%]                        |           |
| NONEUB338 | none (control)   | 16S         | ACTCCTACGGGAGGCAGC             | -           | 55                           | 20                         | (4)       |
| EUB338    | most bacteria    | 168         | GCTGCCTCCCGTAGGAGT             | 338-355     | 55                           | 20                         | (1)       |
| GAM42a    | γ-Proteobacteria | 238         | GCCTTCCCACATCGTTT              | 1027-1043   | 47                           | 35                         | (3)       |
| LGC0354a  | Firmicutes       | 168         | TGGAAGATTCCCTACTGC             | 354-371     | 50                           | 35                         | (2)       |
| LGC0354b  | Firmicutes       | 16S         | CGGAAGATTCCCTACTGC             | 354-371     | 50                           | 35                         | (2)       |
| LGC0354c  | Firmicutes       | 16S         | CCGAAGATTCCCTACTGC             | 354-371     | 50                           | 35                         | (2)       |

| Designation      | Sequence $(5' \rightarrow 3')$                           |
|------------------|----------------------------------------------------------|
| V2_A_Pyro_27F    | CGTATCGCCTCCCTCGCGCCATCAGTCAGAGTTTGATCCTGGCTCAG          |
| V2_B_Pyro_27F    | CTATGCGCCTTGCCAGCCCGCTCAGTCAGAGTTTGATCCTGGCTCAG          |
| V2_A_338R_tMID1  | CGTATCGCCTCCCTCGCGCCATCAGACGAGTGCGTCATGCTGCCTCCCGTAGGAGT |
| V2_A_338R_tMID2  | CGTATCGCCTCCCTCGCGCCATCAGACGCTCGACACATGCTGCCTCCCGTAGGAGT |
| V2_A_338R_tMID3  | CGTATCGCCTCCCTCGCGCCATCAGAGACGCACTCCATGCTGCCTCCCGTAGGAGT |
| V2_A_338R_tMID4  | CGTATCGCCTCCCTCGCGCCATCAGAGCACTGTAGCATGCTGCCTCCCGTAGGAGT |
| V2_A_338R_tMID5  | CGTATCGCCTCCCTCGCGCCATCAGATCAGACACGCATGCTGCCTCCCGTAGGAGT |
| V2_A_338R_tMID6  | CGTATCGCCTCCCTCGCGCCATCAGATATCGCGAGCATGCTGCCTCCCGTAGGAGT |
| V2_A_338R_tMID7  | CGTATCGCCTCCCTCGCGCCATCAGCGTGTCTCTACATGCTGCCTCCCGTAGGAGT |
| V2_A_338R_tMID8  | CGTATCGCCTCCCTCGCGCCATCAGCTCGCGTGTCCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID1  | CTATGCGCCTTGCCAGCCCGCTCAGACGAGTGCGTCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID2  | CTATGCGCCTTGCCAGCCCGCTCAGACGCTCGACACATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID3  | CTATGCGCCTTGCCAGCCCGCTCAGAGACGCACTCCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID4  | CTATGCGCCTTGCCAGCCCGCTCAGAGCACTGTAGCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID5  | CTATGCGCCTTGCCAGCCCGCTCAGATCAGACACGCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID6  | CTATGCGCCTTGCCAGCCCGCTCAGATATCGCGAGCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID7  | CTATGCGCCTTGCCAGCCCGCTCAGCGTGTCTCTACATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID8  | CTATGCGCCTTGCCAGCCCGCTCAGCTCGCGTGTCCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID9  | CTATGCGCCTTGCCAGCCCGCTCAGTCTCTATGCGCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID10 | CTATGCGCCTTGCCAGCCCGCTCAGTGATACGTCTCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID11 | CTATGCGCCTTGCCAGCCCGCTCAGCATAGTAGTGCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID12 | CTATGCGCCTTGCCAGCCCGCTCAGCGAGAGATACCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID13 | CTATGCGCCTTGCCAGCCCGCTCAGATACGACGTACATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID14 | CTATGCGCCTTGCCAGCCCGCTCAGTCACGTACTACATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID15 | CTATGCGCCTTGCCAGCCCGCTCAGCGTCTAGTACCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID16 | CTATGCGCCTTGCCAGCCCGCTCAGTCTACGTAGCCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID17 | CTATGCGCCTTGCCAGCCCGCTCAGTGTACTACTCCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID18 | CTATGCGCCTTGCCAGCCCGCTCAGACGACTACAGCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID19 | CTATGCGCCTTGCCAGCCCGCTCAGCGTAGACTAGCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID20 | CTATGCGCCTTGCCAGCCCGCTCAGTACGAGTATGCATGC                 |
| V2_B_338R_tMID21 | CTATGCGCCTTGCCAGCCCGCTCAGTACTCTCGTGCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID22 | CTATGCGCCTTGCCAGCCCGCTCAGTAGAGACGAGCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID23 | CTATGCGCCTTGCCAGCCCGCTCAGTCGTCGCTCGCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID26 | CTATGCGCCTTGCCAGCCCGCTCAGACTACTATGTCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID27 | CTATGCGCCTTGCCAGCCCGCTCAGACTGTACAGTCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID28 | CTATGCGCCTTGCCAGCCCGCTCAGAGACTATACTCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID29 | CTATGCGCCTTGCCAGCCCGCTCAGAGCGTCGTCTCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID30 | CTATGCGCCTTGCCAGCCCGCTCAGAGTACGCTATCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID31 | CTATGCGCCTTGCCAGCCCGCTCAGATAGAGTACTCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID32 | CTATGCGCCTTGCCAGCCCGCTCAGCACGCTACGTCATGCTGCCTCCCGTAGGAGT |
| V2_B_338R_tMID33 | CTATGCGCCTTGCCAGCCCGCTCAGCAGTAGACGTCATGCTGCCTCCCGTAGGAGT |

## Figures



**Fig. S1: Life cycle of the moon jellyfish** *Aurelia aurita.* The sexual medusa stage (a) releases planula larvae (b) which settle and colonize shallow benthos and develop into the asexual polyp stage (c). The polyp reproduces either by asexual budding or strobilation (d) releasing ephyrae (e). Young medusae (f) develop from this stage and further become the adult medusa.





**Fig. S2:** Phylogenetic position of identified uncultured *A. aurita* specific *Mycoplasma* bacterium. The tree was calculated from full-length 16S rRNA gene sequences by the Maximum-Liklihood method. Nearest relatives to the 16S rRNA sequence of uncultured Mollicutes bacterium (highlighted in orange) were obtained via BLAST search using the NCBI database. Highlighted are clusters (orders) belonging to the class of Mollicutes: order Entomoplasmatales (blue) and Mycoplasmatales (green). The scale bar represents evolutionary distance (substitutions per nucleotide).

Indicator OTUs



Factor levels

0

100

90

80

- 70

60

50

- 40

- 30

20

10

Relative Abundance [%]

**Fig. S3: Distribution of indicator OTUs across experimental factor levels.** The matrix visualizes the (log-scaled) average relative abundance of indicator OTUs (rows; sorted at phylum level) across factor levels (columns; sorted by experimental parts) by color code and symbol size. For each OTU, its phylum is stated, followed by its name at the lowest-determinable taxonomic level and the OTU number. The factor level which an OTU is an indicator for is framed in black. Note that an OTU may be an indicator in several experimental parts.

#### **References Supplemental material**

1. Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919-25.

2. Meier, H., R. Amann, W. Ludwig, and K. H. Schleifer. 1999. Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G + C content. Syst Appl Microbiol 22:186-96.

3. Wagner, M., R. Amann, H. Lemmer, and K. H. Schleifer. 1993. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59:1520-1525.

4. Wallner, G., R. Amann, and W. Beisker. 1993. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136-43.