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METHODS 
 

Extraction of genomic DNA 

For tumor DNA extraction, approximately 30 mg of frozen tumor specimen was lysed in RLT 

Plus buffer and immediately homogenized for 2 x 4 minutes at 30 Hz using a TissueLyser 

(Qiagen). The AllPrep DNA/RNA kit (Qiagen) was used to isolate the nucleic acids. The 

procedure was automated on a Qiacube extraction robot (Qiagen). For all 20 patients, normal 

genomic DNA was isolated from 1 mL of blood (1-year time-point for all patients except patient 

EM14 for which a 5-month time-point was used) using the Wizard Genomic DNA Purification 

method (Promega) according to manufacturer's instructions.  
 

Isolation of circulating DNA from plasma 
Within two hours of collection, the patient EDTA blood samples were centrifuged at 1200g for 

10 minutes at room temperature (RT) to separate the plasma, white blood cell, and red blood cell 

fractions. Aliquots of each fraction were stored at -80 °C. The circulating DNA present in the 

blood plasma was isolated using the QIAamp UltraSens Virus Kit (Qiagen). DNA LoBind tubes 

(Eppendorf) were used wherever possible. Briefly, blood plasma was thawed on wet ice and then 

centrifuged at 10000g for 10 minutes at 4 °C and 0.5 mL of the supernatant was transferred to a 

new tube for circulating DNA isolation according to manufacturer’s instructions with some 

modifications. The samples were eluted in 100 μl Buffer EB. 
 

Sample preparation for sequencing 
For the 20 patients, the genomic DNA for 21 primary tumors was sequenced (patient EM6 had 

bilateral breast cancer). In addition, in order to filter germline and false-positive rearrangements, 

normal DNA samples were sequenced for 3 of these patients as well as normal DNA samples 

from 7 non-matched individuals. The tumor and normal DNA samples were measured by a ND-

1000 NanoDrop spectrophotometer (NanoDrop Technologies), and 2.4 µg was sheared to 700 bp 

average length using the S220 Focused-Ultrasonicator Instrument (Covaris) with the following 

settings: duty cycle 5%, intensity 3, cycles per burst 200, time 30 s at 5 °C. After shearing the 

fragment sizes were determined using the 2100 Bioanalyzer (Agilent Technologies). Sample 

preparation was performed using the TruSeq DNA Sample Preparation Kit (Illumina) according 

to the TruSeq Sample preparation guide (Part # 15005180 Rev. A) using the low-throughput 

protocol. Briefly, 1 µg of sheared genomic DNA was used for each library preparation. 

Following end-repair and adenylation of 3’-ends, the samples were indexed with paired-end 

adaptors. After purification, each library was size separated on a 2% agarose gel (Invitrogen) 
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with empty lanes between all samples. Fragments between 550 bp and 950 bp were cut out and 

purified before PCR amplification. The size of each library was validated on the 2100 

Bioanalyzer and the concentration was measured on Qubit (Invitrogen). Compatible libraries 

were pooled prior to cluster generation. 
 

Cluster generation and sequencing 

Sequencing clusters were generated on a cBot instrument (Illumina) using TruSeq Cluster Kit V2 

cBot HS (Illumina) and v1.5 or v3 PE Flow Cells (Illumina). Paired-end sequencing of 2x50 bp, 

2x100 bp, or 2x150 bp plus index was performed in-house on a HiSeq 2000 or HiSeq 2500 

sequencer using TruSeq SBS Kit v3 HS chemistry (Illumina) according to manufacturer’s 

instructions.  
 

Alignment of sequencing paired-end reads 

Paired-end reads were aligned to Genome Reference Consortium Human Build 37 (GRCh37; 

used in the 1000 genomes project phase 1; downloaded from 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz). 

Alignments were performed using Novoalign v2.07.18 (Novocraft Technologies) with soft-

clipped read alignments (option -o Softclip). Data from samples run on multiple lanes of a flow 

cell were merged into one BAM file per sample using Novosort V1.00.01 (Novocraft 

Technologies). Duplicate read-pairs in the BAM files were flagged with Picard MarkDuplicates 

v1.66 and ignored in subsequent analyses.  Sequencing statistics are presented in Supplementary 

Table S1. 
 

In silico identification of putative chromosomal rearrangements 

To identify chromosomal rearrangements, aligned tumor BAM files were first searched with 

BreakDancer (Chen et al, 2009) using default options for discordant read-pairs, resulting in the 

prediction of translocations, duplications, inversions, and deletions (BreakDancer types CTX, 

ITX, INV, and DEL, respectively). To reduce false-positive rearrangement predictions due to 

misalignment of paralogous sequences, all rearrangement-supporting discordant read-pairs were 

re-aligned to the reference genome using Novoalign with the 1000 top-scoring alignments above 

a moderate alignment score being reported (parameters -r Exhaustive 1000 -t 250). Initially 

discordant read-pairs that became concordant after this exhaustive re-alignment step were 

discarded. 
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Copy number analysis 
Using whole-genome sequencing data, copy number was determined across the genome in 

windows of 50 kb using FREEC version 5.6 with default parameters (Boeva et al, 2011).  

 
Annotation of rearrangements 

Identified rearrangement breakpoint ends were annotated with RefSeq genes, sequence gaps 

(gaps track), and repetitive elements (RepeatMasker track) for the human reference genome 

(hg19), all obtained from the UCSC Table Browser (http://genome.ucsc.edu/cgi-bin/hgTables), 

and with entries from the Database of Genomic Variants (http://dgv.tcag.ca/). Further, each 

rearrangement was annotated with a list of matching rearrangements in the other tumor samples, 

and in 10 normal DNA samples (3 matched normals, and 7 additional unmatched normals with 

similar sequencing depth). 
 

Filtering rearrangement calls 
To deplete the list of predicted chromosomal rearrangements for potential non-specific 

rearrangements and false-positives before experimental validation, the following filtering criteria 

were applied: 

1. At least 2 discordant read-pairs supporting the rearrangement. 

2. No satellite DNA (RepeatMasker class “Satellite”) present within 1 kb of any of the two 

breakpoint ends of the rearrangement. 

3. No sequence gap (UCSC track “gaps”) present within 1 kb of any of the two breakpoint 

ends. 

4. No matching rearrangement in other tumor samples within 1 kb (both breakpoint ends 

matched). 

5. No matching rearrangement in other normal samples within 1 kb (both breakpoint ends 

matched). 

6. For intra-chromosomal rearrangements, size of the rearrangement (distance between the 

two breakpoint ends) greater than 1 kb. 

7. Both breakpoint ends on chromosomes 1–22 or X (i.e. no involvement of non-standard 

sequence contigs present in the human genome reference). 

 

Reconstruction of exact breakpoint fusion sequence 
To facilitate detecting short fragments (<200 bp) of rearranged DNA in blood plasma by PCR, 

identifying the exact sequence of the breakpoints and a tight primer design is crucial. To this end, 

we developed SplitSeq, a computational pipeline that can reconstruct the exact fusion sequence 
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spanning chromosomal rearrangements. A discrete rearrangement consists of two breakpoint 

genomic positions that are fused and made contiguous. Briefly, SplitSeq proceeds as follows. 

Using discordant read-pairs as anchors, the regions around the breakpoints are searched for split-

reads with at least 2 soft-clipped bases (of base quality ≥15) that do not match the reference (soft-

clipping in Novoalign can occur either due to mismatches or due to low base qualities at any end 

of a read). The same regions are also searched for reads with unmapped mates (i.e. read-pairs 

where only one read of the pair is aligned), and alignment of the unmapped mates to the 

breakpoint regions is attempted. Alignment is done with a reduced gap extension penalty 

(parameter -x 1) starting with the full read length, followed by two rounds of trimming the read to 

2/3 of its previous length on either end. Any mapped split-read identified with this procedure 

with at least 2 soft-clipped bases that do not match the reference is added to the list of split reads. 

Next, all soft-clipped reads from this list are sorted by their clipping position in the reference 

genome in order to identify putative exact breakpoint positions. Reference genome positions with 

support of less than a total of 6 clipped bases are discarded. For all other positions, starting with 

those with the highest number of clipped-base support, all pairs connecting the two breakpoints 

(defined by the discordant read-pair anchors) are searched for perfect matches of all clipped bases 

when aligned to a fusion sequence reconstructed from the two breakpoint positions. 

Reconstructed fusion sequences where both breakpoints have clipped-base support on both sides 

(i.e. left of and right of each breakpoint position) are chosen first. If no such reconstructed cases 

exist, cases where only one breakpoint position has clipped-base support on both sides are 

chosen. If no such cases exist, cases where both breakpoints have clipped-base support on only 

one side are selected. If no such cases exist, no exact breakpoint positions are called, and no exact 

fusion sequence is reconstructed.  
 

Rearrangement nomenclature 
To unambiguously describe a 

rearrangement such that its exact 

fusion sequence can be reconstructed, 

the chromosome and position of both 

breakpoints plus the information on whether the DNA left of or right of each breakpoint is 

involved in the fusion event is needed. Here were use the following nomenclature: for each 

breakpoint, L denotes that the genomic DNA left of the breakpoint when viewed in a genome 

browser (i.e. towards lower genomic coordinates) participates in the fusion, whereas R denotes 

that the genomic DNA right of the breakpoint when viewed in a genome browser (i.e. towards 

higher genomic coordinates) participates in the fusion (see drawing above). We found that the 
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L/R notation is more intuitive and creates less confusion than the use of strandedness (plus or 

minus) or strand orientation (5’ or 3’). All chromosomal rearrangements used in the study are 

summarized in Supplementary Table S1, listed in Supplementary Table S2, and shown in Circos 

plots (Krzywinski et al, 2009) in Supplementary Fig. S1. 
 

Primer and probe design 

Quantitative PCR assays for droplet digital PCR, spanning the predicted breakpoints of selected 

structural variants, were manually designed by using the Primer Express 3.0.1 software (Applied 

Biosystems). Traditional guidelines for design of TaqMan probes and primers were followed 

(Applied Biosystems User Guide). The size of amplicons were designed to be as short as possible 

due to the highly fragmented nature of circulating DNA. The primers and probe were generally 

placed >1 bp from the predicted breakpoint (in either direction). The probes were labeled with 

FAM and quenched by an internal ZEN and a 3’-IBFQ molecule. The assay for an invariant 

region of chromosome 2p14 was designed similarly. All oligonucleotides were ordered from 

Integrated DNA Technologies (IDT) and the sequences are provided in Supplementary Table S3. 
 

PCR validation of structural variants 
Touchdown PCR was used to validate the assays for the predicted breakpoints of the structural 

variants. To distinguish tumor-specific variants from germline variants, each primer pair PCR 

assay was performed using primary tumor DNA and matched normal DNA for each patient. PCR 

reactions were performed in a total volume of 10 µL with Phusion Master Mix 1x (Thermo 

Scientific), 250 nM of each primer, and 10 ng of template DNA. PCR cycling conditions were as 

follows: initial denaturation at 98 °C for 2 minutes followed by 11 cycles of 98 °C for 10 s, 70°C 

(–1 °C/cycle) for 30 s and 72 °C for 15 s and then 29 cycles of 98 °C for 10 s, 60 °C for 30 s and 

72 °C for 15 s and a final elongation at 72 °C for 5 min. The PCR products were analyzed on a 

Caliper LabChip XT microcapillary gel instrument (PerkinElmer) for band size and specificity.  
 

Droplet digital PCR 

Structural variants that were confirmed to be somatic by touchdown PCR were also analyzed 

with droplet digital PCR (ddPCR) using the QX100 Droplet Digital PCR System (Bio-Rad). In 

ddPCR, sample DNA, rearrangement-specific primers, quenched fluorescent probe, and PCR mix 

are partitioned into thousands of uniform nanoliter-size droplet reactions. PCR is carried out, 

wherein only if one or more target molecule is present in the droplet and successfully amplified 

will the fluorescent probes be unquenched by polymerase-mediated hydrolysis. All assays, 

including both primers and probes, were tested both on primary tumor DNA and matched normal 
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blood before continuing with ctDNA isolated from blood plasma from the same patient. Because 

the random distribution of zero, one, or more than one target molecule into each droplet follows a 

Poisson distribution, the ratio of the number of positive droplets to number of total recorded 

droplets can be Poisson-corrected to derive a highly quantitative count of the absolute number of 

target molecules present in the input sample(Hindson et al, 2011). Droplet digital PCR reactions 

were performed in a total volume of 20 µL with Master Mix ddPCR mix (Bio-Rad), 250 nM of 

each primer, 250 nM of probe and 4 µL of template ctDNA. The cycling conditions for ddPCR 

were as follows: initial denaturation at 95 °C for 10 minutes followed by 10 cycles of 94 °C for 

30 s, 65 °C (–0.7 °C/cycle) for 60 s and then 35 cycles of 94 °C for 30 s, 58 °C for 60 s and a 

final step at 98 °C for 10 min. The ramp rate between any two consecutive steps was 2.5 °C/s. 

Matched tumor DNA and normal DNA were utilized as positive and negative controls, 

respectively, for each ddPCR rearrangement assay, and tumor DNA and no-template control 

(water), respectively, as controls for the 2p14 assay. Droplets were read by the QX100 Droplet 

Reader. The results were evaluated with QuantaSoft version 1.4.0 (Bio-Rad). Because all 

experiments were run using assays with single-fluorophore probes, droplets that appeared as 

outliers in 2D amplitude clustering plots, with simultaneous outlier positive intensities in both 

fluorescent channels, were removed as these likely represent false-positive signals due to 

nanoparticulate contamination such as plastic (25 droplets were removed out of >1.9 million 

droplets analyzed).  
 

Droplet digital PCR data normalization 
Because the feature in QuantaSoft software for automatic thresholding of droplet intensities 

frequently failed, the droplet intensity values were exported from QuantaSoft in order to be able 

to apply an automatic, unbiased, reproducible, and operator independent thresholding method. 

Custom scripts were developed and used to import and normalize the intensity values in R 

(version 2.14.1; http://www.r-project.org). Normalizing the data facilitated employing one 

intensity threshold for all samples in order to define negative droplets (below threshold) and 

positive droplets (above threshold). Using centering and scaling, this procedure normalized each 

individual assay’s droplet fluorescent intensity data to a new scale where 0 corresponds to no 

intensity (at the median intensity of negative control droplets) and 1 corresponds to full intensity 

(at the median intensity of positive control droplets) and was carried out as described below, and 

is illustrated in Supplementary Fig. S3. For each rearrangement assay: 

1. Determine negMax = maximum intensity value in the negative control well. 

2. For each ddPCR reaction well, define a lower group of droplets with intensity <= 

2*negMax and an upper group of droplets with intensity > 2*negMax. 
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3. For each well, determine lowerMed = median intensity value of the lower group of 

droplets. 

4. For each well, subtract lowerMed from each intensity value (bringing all medians to 

zero). 

5. Determine posUpperMed = median intensity value in the upper group of droplets in the 

positive control well. 

6. For each well, divide each intensity value by posUpperMed (setting the median of the 

upper droplets in the positive control to 1). 

7. Set threshold t to 0.5 to define negative droplets (below threshold) and positive droplets 

(greater than or equal to threshold). 

 

Calculation of template DNA concentration and ctDNA percentage 

The number of fragments per µl input purified circulating DNA (CVi) was calculated from the 

number of positive droplets P, total number of droplets analyzed T, droplet volume Vd            

(0.91 × 10–3 µl), ddPCR reaction volume Vr (20 µl; includes PCR mix, primers, probe, input 

DNA), and volume (4 µl) of purified circulating DNA input into the reaction Vi, using the 

formula . For each plasma sample, the concentration of a normal non-

rearranged 132 bp region of chromosome 2p14 as well as of four to six tumor-specific 

rearrangements was determined. To control for possible variability in the efficiency of plasma 

DNA isolation or degradation of cell-free circulating DNA during long-term storage of plasma, 

for each rearrangement, ctDNA level was estimated as a percentage of total circulating DNA by 

dividing the quantity of measured rearrangement by the quantity of the 2p14 control region (see 

Supplementary Table S5). In the event that more than one extraction was performed, the ctDNA 

percentage was calculated within the relevant extraction, and for plotting, the average value was 

used (Supplementary Fig. S2). 
 

Receiver operating characteristic (ROC) curve analysis  
Because the sensitivity and specificity of ctDNA-based monitoring for occult disease can be 

influenced by the fluorescent intensity threshold used in calling ddPCR droplets positive or 

negative, we applied a ROC curve analysis. In this analysis, the threshold t (as defined above), 

for each assay, was incrementally varied from 0.0 to 1.0 in 0.1 increments and applied to the 

normalized data from all samples, defining negative droplets (below threshold) and positive 

droplets (above threshold). For each time-point, the concentration (in copies per nanoliter ddPCR 

reaction) of each rearrangement in blood plasma was then calculated as above for all patients, and 

CVi =
− ln(1− P

T )
Vd

)(Vr

Vi
)
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the rearrangement with the highest concentration was used to represent each time-point as this 

was thought to be most clinically relevant. Thus, ctDNA was represented and analyzed using a 

single covariate. If a patient had at least one detectable rearrangement (CVi > 0 copies/nl, i.e. 

ctDNA >0%) in a blood plasma sample at any time after surgery, the patient was predicted as 

having a recurrence (recurrence positive). Patients with CVi = 0 copies/nl for all rearrangements at 

all time-points after surgery were predicted as recurrence-free (recurrence negative). The 

predicted recurrence state was then compared with the known true recurrence state obtained from 

the clinical records in order to determine true positive (TP), true negative (TN), false positive 

(FP), and false negative predictions (FN). Sensitivity was calculated as TP/(TP+FN), and 

specificity was calculated as TN/(TN+FP). Sensitivity was plotted against 1–specificity for each 

threshold t, producing a ROC curve (Fig. 5a). At thresholds t from 0.35 to 0.95, identical 

sensitivity and specificity results were obtained.  
 

Statistical Analyses 
All statistical calculations were done in R version 2.14.1. Confidence intervals for sensitivity, 

specificity, and area under the ROC curve were calculated based on the Clopper-Pearson exact 

binomial distribution method using the R package binom v1.1-1 with the function call 

binom.confint(x, n, conf.level=0.95, methods="exact") representing x successes in n independent 

binomial trials. Input values were x=13 and n=14 for sensitivity, x=6 and n=6 for specificity, and 

x=19 and n=20 for area under the ROC curve. All P-values and confidence intervals calculated 

are two-sided except for the confidence interval for specificity (one-sided 95% confidence 

interval since the proportions are estimated to 1; i.e., conf.level=0.90 in the function call).  
 

Logistic regression analysis with ctDNA level as covariate 

All regression analyses were done using the R package glm and brglm. Follow-up ctDNA 

percentage levels measured in patient plasma (see Supplementary Fig. S2) were used as a 

continuous covariate in logistic regression analysis. At each time-point, the rearrangement with 

the maximal ctDNA percentage value was used as this was thought to be most clinically relevant. 

Only the most recent plasma sample time-point before an event was used, resulting in one ctDNA 

percentage level per patient. Standard logistic regression modeling (R package glm with family 

binomial and link logit), failed to converge for recurrence as dependent variable due to quasi-

complete separation of ctDNA level between DF patients (Fig. 5D, lower black dots) and EM 

patients (Fig. 5D, upper black dots). We therefore employed Firth logistic regression (Firth, 

1993) implemented in the R package brglm (Kosmidis, 2013), which uses a penalized maximum 

likelihood approach that allows reliable estimation also for separated data (Heinze, 2006). Since 
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we assumed that e.g. a 10-unit increase in ctDNA percentage from 0% to 10% may have a 

different prognostic implication than an increase of the same magnitude from 50% to 60%, we 

allowed for non-linear effects of ctDNA levels on the risk. To this end, we used fractional 

polynomials of degree 1, corresponding to a transformation xk with k taking the values {–2, –1, –

0.5, 0, 0.5, 1, 2, 3}, with x being the ctDNA level in percent, and where k=0 was defined as a 

log2-transformation and k=1 corresponds to no transformation (linear effect). To avoid undefined 

values in the log2(x)-transformation or the xk transformation for k≤0, we added 0.1% to the 

ctDNA value before these transformations (e.g., for k=0, log2(x+0.1)). For each k, we fitted one 

model with (ctDNA)k as covariate and death as dependent variable (Table 1), and one model with 

(ctDNA)k as covariate and clinical recurrence as dependent variable (Supplementary Table S6). 

We then used the Akaike information criterion (AIC) to select the best transformation by 

summing the AIC for the two models (death and clinical recurrence) for each of the eight 

transformations, and selecting the transformation with the minimal summed AIC. The best 

models were obtained using a log2-transformation, followed by the square-root (sqrt) 

transformation (k=0.5), with the AIC being 39.05 and 39.38 for log2 and sqrt, respectively, 

making the models using log2-transformed ctDNA levels 1.18 times as probable to minimize the 

information loss as the sqrt-based models (exp((39.38 – 39.05)/2) = 1.18). AIC for the 

untransformed (k=1) models was 40.38, making them 1.94 times less likely to minimize 

information loss as the log2-transformed models. Since the input ctDNA level is log2-transformed, 

the resulting odds ratios are for an increased risk per unit increase in log2 (each unit 

corresponding to a 2-fold increase in percentage ctDNA; e.g. from 1% to 2%, or 3% to 6%). 
 

Univariable logistic regression analysis with clinical covariates 

The primary diagnosis clinical parameters of tumor size (T3, >5 cm, versus T1, ≤2 cm, and T2, 2-

5 cm), number of positive lymph nodes (N1, 1-3 positive, N2, 4-9 positive, and N3 >9 positive 

nodes versus N0, none), Nottingham histological grade (G3 versus G1 and G2), estrogen receptor 

status (ER-negative versus ER-positive), progesterone receptor status (PR-negative versus PR-

positive), and HER2 status (HER2-positive versus HER2-negative), and the Nottingham 

Prognostic Index (NPI; calculated as 0.2 * S [size of index tumor in cm] + N [number of nodes; 

0=1, 1-2=2, ≥3=3] + G [G1=1, G2=2, G3=3]) were each used as a single covariate in univariable 

Firth logistic regression analyses as described in the previous section. For patient EM6 with 

bilateral breast cancer, the left-side tumor with worse clinical prognostic features was used (Table 

1). Clinical variables were coded dichotomized as such because there was only one T3 class case, 

one G1 case, and one N3 case.  
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Software implementation 
Python, R, and Bash shell scripts were written to run all bioinformatics analyses. 
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