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Supplementary Data 
 

Methods 

Residual Variance Intolerance Score 
To consider the relationship between the Residual Variance Intolerance Score 
(RVIS) and coding-sequence length (CDS), we performed the following 
randomisations. We considered 15,144 genes with RVIS scores, known CDS 
and known numbers of variants obtained from the NHLBI exome server (as 
for the NoVaDs). For these 15,144 genes, we calculated the proportion of 
common (MAF>0.1%) among all nonsynonymous and synonymous variants. 
In each randomization, we permuted the proportions of common 
nonsynonymous variants. The total numbers of nonsynonymous and 
synonymous variants for each gene were kept constant; the randomised 
number of common nonsynonymous variants was obtained from rounding the 
proportion multiplied by the total number of variants. The randomised number 
of common nonsynonymous variants was then regressed on the total number 
of variants in the gene. The studentised residuals from the regression yielded 
the equivalent of the RVIS in the randomised data. 
 
NoVaDs 
We examined the how the NoVaDs was affected by the chosen cut-off of 
MAF>0.1% for common variants. To this end, we considered the alternative 
with cut-off MAF>1% for common variants (denoted “NoVaDs_1%”) and the 
alternative with cut-off MAF>0.01% for common variants (denoted 
“NoVaDs_0.01%”). Both the NoVaDs_1% and the NoVaDs_0.01% were 
highly correlated with the NoVaDs (Spearman ρ=0.69 and ρ=0.62, 
respectively). We evaluated how well the NoVaDs_1% and NoVaDs_0.01% 
predicted human disease genes compared to the NoVaDs, following the same 
procedure as in the comparison of the NoVaDs and the RVIS. We found that 
the NoVaDs performed significantly better than the NoVaDs_1% and the 
NoVaDs_0.01% in all comparisons (Table S9). 
 

HIS score predictions 
The HIS scores presented in the main paper were constructed using a support 
vector machine (SVM) with linear kernel. We also considered an SVM with 
radial kernel, using the same approach as in the main paper.  
Applying 10-fold cross-validation to the HIS and HS training sets, the radial 
kernel SVM achieved an AUC of 0.70 (standard deviation 0.02; Figure S8). In 
total, the radial kernel SVM yielded predictions for 20,557 human genes. 
Again, we found that 100 subsampling runs of HS genes were sufficient, as 
the Spearman correlation was ρ>0.996 with scores obtained when repeating 
the process.  
The scores obtained with the linear kernel SVM and the radial kernel SVM 
were highly correlated (Spearman ρ=0.82, p<10-100). 
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We compared the HIS scores obtained from the linear kernel SVM to the 
radial kernel SVM using the Mann-Whitney rank test and all gene sets as in 
the main text. 
The “radial kernel SVM” score outperformed the “linear kernel SVM” on the 
“OMIM HI” and “CGD AD” genes using both the MCC and the AUC metric (all 
q<10-4), and on the “OMIM HI de novo” and “MGI Lethality” genes using the 
AUC metric (both q<10-4; Figure S7, Tables S7, S8).  
By contrast, across both the MCC and the AUC metrics, the linear kernel SVM 
significantly out-performed the radial kernel SVM on “MGI Seizures”, “SMP 
Viability” and “SMP Viability new” genes (all q<10-8), as well as on all three 
autism gene sets (all q<0.01).  
Notably, the “radial kernel SVM” fitted the training set more strongly than the 
linear kernel SVM (mean AUC higher by 0.03; Mann-Whitney p<10-10), 
consistent with the significantly better performance for better-studied genes 
and significantly worse performance for less-studied genes observed here. 
These results show that stronger tuning to the training set does not 
necessarily translate to consistently better performance on other gene sets. In 
particular, the “gold standard” set of haploinsufficient genes we used to 
construct the predictions comprises very well-studied genes. The radial kernel 
SVM, which achieved slightly better performance on this “gold standard”, did 
not perform consistently better on less-studied genes, and made predictions 
for significantly fewer genes without Pubmed papers (linear kernel SVM: 
23.46%; radial kernel SVM: 19.12%; Fisher’s test p<10-10). Intuitively, fitting a 
predictor to capture known genes and thus corresponding biological process 
does not make it more likely to successfully predict new genes with different 
biological mechanisms.  
 

Expected AUC and MCC for the ASD genes 
Given that only about 50% of the ASD genes (after removal of the training 
genes) are expected to be causal, what is the expected MCC and AUC under 
a best-case scenario? We calculated approximate values as follows. 
Given 100 ASD genes, if 50 of them are causal, under the best-case scenario, 
these would be ranked among the most likely to be haploinsufficient. The 
remaining 50 genes would be random (for simplicity, disregerding possible 
bias to enable approximate calculations) and thus fall uniformly across the 
HIS spectrum. The 100 random “control” genes we compare them to would 
also fall uniformly across the HIS spectrum. 
For the AUC, the 50 causal genes would all or amost all have higher scores 
than any of the random control genes. The random 50 ASD genes would have 
higher scores than the control genes about 50% of the time. Hence the AUC 
as the probability that a given ASD gene has a higher score than a given 
cotrol gene is (0.5*1+0.5*0.5)=0.75. 
For the MCC, the 50 causal ASD genes would all fall among genes with the 
top 25% HIS score (“TP”). Of the remaining 50 non-causal ASD genes, about 
13 would fall among genes with the top 25% HIS score (for the MCC, counted 
as “FN” since we do not know which genes are causal). Finally, of the 100 
control genes, about 25 would fall among the genes with the top 25% HIS 
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score (“FP”) and 75 would fall outside (“TP”). Using the formula in the 
Methods, this yields an MCC of 0.38. 
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Supplementary figure legends 
 
 
Figure S1. The number of Pubmed papers differs between human 
genes. 19,957 genes with at least one Pubmed paper are shown. 
 
Figure S2. a) Genes in various disease sets tend to have a high number 
of associated Pubmed papers, with different medians between the sets. 
Only genes mapped to at least one Pubmed paper are shown (total: 19,957; 
OMIM HI: 53; OMIM HI de novo: 31; CGD AD: 488; MGI Lethality: 80; MGI 
Seizures: 35; SMP Viability: 184; SMP Viability new: 113). 
b) The number of associated Pubmed papers for disease candidate 
genes. Only genes mapped to at least one Pubmed paper are shown (total: 
19,957; ASD1: 46; ASD2: 44; ASD12: 89). 
 
Figure S3. a) The Residual Variance Intolerance Score (RVIS) depends 
on gene coding-sequence length (CDS). In particular, the absolute value of 
the RVIS (1) is highly correlated with CDS (see Results); moreover, the 
lowest and highest scores are preferentially attained by the genes with 
highest CDS. b) The coding-sequence length of genes does not 
confound the NoVaDS defined as 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑚𝑚𝑜𝑛  𝑛𝑜𝑛𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠  𝑣𝑎𝑟𝑖𝑎𝑛𝑠𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑟𝑎𝑟𝑒  𝑛𝑜𝑛𝑠𝑦𝑛𝑜𝑛𝑦𝑜𝑢𝑠  𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠  for each 
gene (see Methods). Lower NoVaDS indicates higher intolerance to gene 
disruptions. c) The NoVaDS distinguishes disease genes from random 
genes as good as or better than the RVIS when using the MCC metric. 
Disease genes were taken from Petrovski et al. and compared to random sets 
of human genes matched for CDS (see Methods). In all comparisons, the 
average MCC value is higher for the NoVaDS than for the RVIS. Error bars 
show standard errors across 100 samplings. d) The NoVaDS distinguishes 
disease genes from random genes as good as or better than the RVIS 
when using the AUC metric 
“OMIM HI”: 175 genes annotated as haploinsufficient in OMIM; “OMIM HI de 
novo”: 108 OMIM HI genes with de novo mutations listed in OMIM; “OMIM 
DomNeg”: 364 genes annotated as dominant negative disease genes in 
OMIM; “OMIM Recessive”: 817 genes annotated as recessive disease genes 
in OMIM; “OMIM disease”: 2131 disease genes from OMIM; “MGI Lethality 
(P)”: 91 genes for which the disruption of an orthologue in mouse yields 
lethality; “MGI Seizures (P)”: 95 genes for which the disruption of an 
orthologue in mouse yields seizures. 
 
Figure S4. a) The RVIS depends on coding-sequence length (CDS). b-f) 
The dependance of the RVIS on CDS is retained when the proportion of 
rare nonsynonymous variants per gene is randomized. The darkness of 
the hexagrams represents the number of points falling into the corresponding 
area of the plot. After randomization, the equivalent of the RVIS was re-
calculated; randomizations were repeated 5 times to obtain panels b-f (see 
Supplementary Data). As for the actual RVIS, the absolute value of the score 
is highly correlated with CDS (Pearson’s r between 0.49 and 0.62); moreover, 
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the lowest and highest scores are preferentially attained by the longest genes 
both for the actual RVIS and the equivalent in the randomizations. 
 
 
Figure S5. a) Genes in various disease gene sets tend to have high 
coding-sequence length (CDS). b) Disease candidate genes identified 
through exome sequencing tend to have high coding-sequence length 
(CDS). 
 
Figure S6. Among 18 ASD genes with multiple de novo loss-of-function 
mutations (“ASD_M”), cumulative number of genes ranked in the top 
percentiles. a) The GHIS includes at least as many ASD_M of genes 
among any of the top percentiles as the Huang HIS score and the 
Essentiality score. b) The ASD_M coding-sequence length (CDS) is 
highly correlated with the RVIS, yielding similar rankings. Due to the 
gene-length bias, it is difficult to disentangle the effect of de novo mutations 
being more likely in long genes on the RVIS, and no like-for-like comparison 
of the RVIS to the three other methods was possible in this case. 
 
Figure S7. Comparison of GHIS scores (linear SVM) with scores 
obtained from a radial SVM. 
a) Comparison of scores based on known disease genes and mouse 
phenotypes using the MCC metric. b) Comparison of scores based on 
candidate disease genes using the MCC metric. c) Comparison of 
scores based on known disease genes and mouse phenotypes using 
the AUC metric. d) Comparison of scores based on candidate disease 
genes using the AUC metric. 
Mann-Whitney p-values for the comparisons are listed in Tables S7, S8. 
 
Figure S8. a) AUC curves from 10-fold cross-valiadation for the GHIS 
(linear SVM). b) AUC curves from 10-fold cross-valiadation for the radial 
SVM.  
Insets show Spearman correlation of the final score with the individual 
features. 
 

Supplementary tables 
 
See separate Excel file. 
Table S1: 31 adult and 4 foetal tissues used to calculate the foetal-to-adult 
gene expression ratio (F2A). 
Table S2: Study bias - Spearman ρ and p-values for Figure 1. 
Table S3: GHIS scores. 
Table S4: Mann-Whitney p- and q-values for MCC for Figure 2a,c. 
Table S5: Mann-Whitney p- and q-values for AUC for Figure 2b,d. 
Table S6: Mann-Whitney p- and q-values for MCC and AUC for Figure S3. 
Table S7: Mann-Whitney p- and q-values for MCC for Figure S7a,b. 
Table S8: Mann-Whitney p- and q-values for AUC for Figure S7c,d. 
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Table S9: Comparison of NoVaDs to NoVaDs_1% and NoVaDs_0.01% 
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