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1 Materials and Methods

For the approximation of the forward and inverse problem based on parametric, nonlin-
ear deterministic systems of ODEs arising in the analysis of cellular networks, we use
an adaptive Smolyak-type algorithm described in section 2. The algorithm successively
identifies parameters with a large impact on quantities of interest, which leads to an
adaptive refinement in the parameter space exploiting the sparsity and nonisotropic be-
havior of the underlying model. This strategy yields convergence rates independent of
the number of unknown parameters and superior to MC based sampling strategies. The
nonintrusive nature of the proposed algorithm allows to use available forward solvers
and is well-suited for a parallel implementation.

All simulations in this work were performed on the BRUTUS and SC02 computing
cluster at ETH Zurich (using up to 128 cores for a parallel simulation).

2 Theory and Proposed Method - Adaptive Smolyak
Approach

We briefly review theoretical underpinnings of the proposed numerical method, in partic-
ular we make precise the notion of sparsity of the parameter dependence of the solution
x(t) on the vector p of parameters. To this end, in this section we make explicit the
dependence of x(t) on the parameter sequence p and write x(t; p). Since we are par-
ticularly interested in numerical methods whose performance does not deteriorate for a
large number np of parameters, we derived in [1] bounds on the approximability of the
parametric solution x(t; p) in the case when np = ∞, i.e. when p = (pj)j≥1 denotes a
parameter sequence.

The local Lipschitz conditions for v(x(t), u(t),p) are satisfied, in particular, for
v(x(t), u(t),p) = diag (p) ρ (x(t))+Ou(t) which case occurs in mass-action kinetic mod-
els. In this case, the dependence of v(x(t), u(t),p) on p is affine, i.e. the right hand side
is of the form

f(x(t), u(t),p) = φ0 (x(t), u(t)) +
∑
j≥1

pjφj (x(t), u(t)) (1)

and the mathematical results of [1] apply. Using that in (1), we may rescale the pa-
rameters and the φj , we assume in the following wlog. that pj ∈ [−1, 1] for all j ∈ N.
The results of [1] imply, in particular, that under a smallness condition on the φj (re-
quired to ensure convergence of the series in (1)), there exists a unique solution x(t; p)
( [1, Theorem 4]), the solution x(t; p) can be analytically continued as a function of



the parameters p into the complex domain, and can be represented by so-called gener-
alized polynomial chaos expansions with respect to multivariate tensorized, Legendre-
and Chebyshev polynomials of p which converge unconditionally on the possibly infinite-
dimensional parameter space U = [−1, 1]N. To state these results (which are formulated
and valid even for problems with infinitely many parameters indexed by N, ie., for
parameter sequences) we introduced in [1] the multi-index set

F = {ν ∈ NN
0 : | supp ν| <∞} , supp ν = {j ∈ N : νj 6= 0} . (2)

As any ν ∈ F has only finitely many nonzero entries, the definitions

ν! =
∏
j∈N

νj ! , |ν| =
∑
j∈N

νj , ∂νp =
∂|ν|

∂pν11 ∂p
ν2
2 · · ·

for multi-factorials, the length of a multi-index ν and for the partial derivative of order
ν are well-defined for ν ∈ F.

At every p ∈ U ⊂ RN, the solution x(t) of (1) can be represented by the formal
Taylor expansion

x(t; p) =
∑
ν∈F

Tν(t)pν , (3)

where, for ν ∈ F : pν = pν11 p
ν2
2 ... and

Tν(t) =
1

ν!
∂νpx(t; p)|p=0 ∈ Ck+1([0, T ];S), ν ∈ F .

The convergence of the formal Taylor expansion (3) is shown in [1] to be unconditional
and pointwise in [0, T ]×U , i.e. we have pointwise convergence in U as a mapping taking
values in the space Ck+1([0, T ];S), for any finite order k of differentiability with respect
to the time variable t. Therefore, in particular, the convergence theory for any standard
timestepping scheme for the approximate numerical solution of the parametric IVP (1)
applies.

In our computational approach, we truncate the Taylor series (3) to a finite number
of N terms, i.e. we consider

xMN
(t; p) =

∑
ν∈MN

Tν(t)pν (4)

with suitable index sets MN ⊂ F of at most N indices. Evidently, the question is
what the best/ optimal index set MN is, second what the convergence rate for the
error x(t)−xMN

(t) is and, third, how such setsMN could be spotted computationally.
It was shown in [1] that there exist so-called monotone sequences of sparse index sets
MN ⊂ F (to which we will also refer as “sparsity models” for the parametric dependence
of x(t)) which identify at most N “active” Taylor coefficients Tν(t), ν ∈ MN in (3),
which can be constructed such that the corresponding, finitely truncated parametric
expansions (4) realize a convergence rate with respect to the number N of terms which
equals the so-called best N -term convergence rate. Second, once such truncations have
been selected, it will be necessary to solve the initial value problems by ODE solvers
for approximation of the expansion coefficients Tν(t) in (3).

A key role in our algorithms is played by index setsM⊂ F that we refer to as lower
or monotone index sets. This class of index sets was introduced in [2] in the context of
adaptive, multivariate Taylor approximations of parametric elliptic partial differential
equations. We now strengthen the N -term approximation properties of the Taylor series
by constraining the admissible, nonempty index sets M⊂ F.

The notion of lower index sets is based on the following semi-ordering of F: for any
two indices µ, ν ∈ F, we say that µ ≤ ν if and only if µj ≤ νj for all j ≥ 1. We will also
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say that µ < ν if and only if µ ≤ ν for all j ∈ N and if µj < νj for at least one value of
j.

A sequence (aν)ν∈F of nonnegative real numbers is said to be monotone decreasing
if and only if for all µ, ν ∈ F

µ ≤ ν ⇒ aν ≤ aµ .

A nonempty setM⊂ F is called monotone if and only if ν ∈M and µ ≤ ν ⇒ µ ∈M.
We now present the sparsity result [1, Theorem 5]. We consider the parametric IVP

ODE (1) for parameter vectors p ∈ U = [−1, 1]N. We assume that there exist real
numbers R > 0 and 0 < κ < 1 with the following properties:

1. In (1) the vector field f depends on the parameter vector p in the affine fashion
(1) with φj satisfying for some sparsity parameter 0 < σ < 1(

‖φj‖`Lip0(S,R)

)
j≥1
∈ `σ (N) ,(

ρj‖φj‖`Lip0(S,R)

)
j≥1
∈ `1 (N) ,

(5)

where the polyradius ρ is given by ρj = max
(
1, δ

4Lj(R)

)
for some arbitrary fixed

δ > 0, and for Lj(R) := ‖φj‖`Lip0(S,R).

2. The initial data x0 ∈ C([0, T ]× U ;S) satisfies a smallness condition (see [1, The-
orem 5] for details).

sup
p∈U
‖x0(z)‖ ≤ (1− κ)R exp(−TL(ρ,R)/κ) . (6)

Then the Taylor expansion (3) of the parametric solution x(t; p) of (1) is σ-sparse in
the following sense: for every N ∈ N there exists a monotone sparsity model MN ⊂ F
with #MN = N such that it holds, with rate r = 1/σ − 1,

sup
p∈U

∥∥∥∥∥x(t; p)−
∑

ν∈MN

Tν(t)pν

∥∥∥∥∥
L(ρ,R)/κ,T,S

≤ CN−r, (7)

where the constant C > 0 is independent of np and of N , and where∑
ν∈MN

Tν(t)zν ∈ PMN
(U ;Ck+1([0, T ];S)) (8)

with PM(U ;Ck+1([0, T ];S)) denoting the span of multivariate polynomials of p ∈ U
with coefficients in the linear (Banach) space Ck+1([0, T ];S).

The actual, computational approximation of the parametric solution x(t; p) family in
the polynomial space PM(U ;Ck+1([0, T ];S)) can be constructed by sparse interpolation
so that the (dimension-independent) convergence rate 1/σ−1 is realized by our proposed
interpolation scheme. We now present some details of this scheme. Denoting by (zk)k≥0

a sequence of univariate interpolation points and by (Ik)k≥0 the corresponding sequence
of interpolation operators, the sparse interpolation operator is defined by

IM =
∑
ν∈M

∆ν =
∑
ν∈M

⊗
j≥1

∆νj (9)

with ∆j = Ij − Ij−1, j ≥ 0. Under the assumption (5) and (6), and if the univariate
sequence (zk)k≥0 is chosen such that the Lebesgue constant λk ≤ (k+1)θ for some θ ≥ 1,
there exists a constant C and a nested sequence of monotone index sets (MN )N≥1 with
#MN = N such that

sup
p∈U
‖x(t; p)− IMN

x(t; p)‖L(ρ,R)/κ,T,S ≤ CN
−r (10)
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with r = 1
σ −1, (independent of number N of interpolation points and of the number of

parameters), see [3]. Analogous to [3–5], we propose a deterministic, adaptive algorithm,
which iteratively determines a nested sequence (MN )N≥1 of monotone index sets to
realize the rate (10).

The refinement strategy of the algorithm is based on a greedy-type approach aiming
at localizing most profitable indices in a reduced neighborhood of the current index set
defined by

N (M) := {ν /∈M : ν − ej ∈M,∀j ∈ Iν and νj = 0 ,∀j > j(M) + 1}

with j(M) = max{j : νj > 0 for some ν ∈ M}, Iν = {j ∈ N : νj 6= 0} ⊂ N. The
estimated profit of an index ν ∈ N (Mk) in iteration k, denoted by gν , is measured
according to its expected contribution to the approximation in terms of gν(Mk; Ξ) =
maxt∈Ξ |x(t)(zν)−IMk

x(t)(zν)| with zν denoting the corresponding interpolation point
of the index ν and Ξ ⊂ [0, T ] is a suitable, finite subset, so that the dimension-adaptive
index set is constructed recursively as follows.

Algorithm 1

1: function ASG
2: Set M0 = {0} , k = 0
3: Compute ∆0(x(t)(·)) and the error indicator g0

4: Determine the set of reduced neighbors N (M1).
5: Compute ∆ν(x(t)(·)) and the error indicator gν , ∀ν ∈ N (M0).
6: while maxν∈N (Mk) gν > tol do
7: Select ν from N (Mk) with largest gν and set Mk+1 =Mk ∪ {ν}.
8: Determine the set of reduced neighbors N (Mk+1).
9: Compute ∆ν(x(t)(·)) and gν ,∀ν ∈ N (Mk+1).

10: Set k = k + 1.
11: end while
12: end function

Details on the algorithm, which was originally proposed in the current version in [4], can
also be found in [3,6] and in the references therein. In the present case, after rescaling,
the parameter domain U = [−1, 1]np (cp. Eqn [4] of the main text).

Furthermore, the sparsity results presented allow to design efficient, deterministic
algorithms for identification of parameters in the underlying system from noisy mea-
surements. The problem of computational inference of responses of uncertain systems in
the presence of noisy observational data can be solved using a Bayesian approach, suit-
ably generalized to (infinite-dimensional) function space settings in [7, 8]. In Bayesian
prediction, the goal of computation is to evaluate numerically a mathematical expecta-
tion over all possible realizations of the unknown parameter sequence p conditional on
given data D ∈ RK stemming from K observations

y = h(p) + η,

where the uncertainty-to-observation map h : U → RK is given by h = O◦G with O :→
RK denoting a bounded, linear observation operator and with G : U → Ck+1([0, T ];S))
denoting the solution map. We assume throughout what follows that the Bayesian prior
measure on the uncertain parameters p is the uniform measure denoted by µ0(dp) and
that the observational noise η ∈ RK is an additive Gaussian random variable with law
N (0,Γ) with some positive covariance matrix Γ that is assumed to be known. The
present analysis can be generalized to the case of nonuniform, separable priors with
compactly supported densities. In [8], it is shown that assuming the boundedness and
continuity of h(p), then µD(dp), the distribution of p ∈ U given D, is absolutely
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continuous with respect to µ0(dp), i.e.

dµD

dµ0
(p) =

1

Z
Θ(p)

with the parametric Bayesian likelihood Θ given by

Θ(p) = exp
(
−δ(p;D)

)
, (11)

with δ(p;D) := 1
2 |y − h(p)|2Γ and the normalization constant

Z =

∫
U

Θ(p)µ0(dp) . (12)

Note that this formulation is equivalent to the presentation in the main text, for example,
with the normalization constant Z corresponding to the Bayesian evidence for the data.

In general, our aim is to compute the conditional expectation over all parameters
p of a quantity of interest (QoI) Φ under the given noisy observational data and, in
particular, we are interested in the case Φ = h(p), the states of the underlying system
or higher moments of the states. To this end, Bayes’ formula gives

E[Φ(p)] = Z−1

∫
U

Φ(p)µD(dp)

= Z−1

∫
U

Φ(p) exp
(
−δ(p;D)

)
µ0(dp) =:

Z ′

Z
(13)

In [9], regularity and sparsity of the posterior density as a function of the parameter
vector p ∈ U is analyzed. The results in [9], together with the sparsity analysis in [1],
imply sparse approximations of the posterior with convergence rate r determined only
by the model sparsity, but independent of the model size. These results are the basis for
sparse, adaptive Smolyak quadrature algorithms to efficiently approximate the possibly
infinite-dimensional integrals Z ′, Z defined in (13). Similar to the definition of the sparse
interpolation operator in (9), we introduce the sparse quadrature operator for any finite
monotone index set M⊂ F by

QM =
∑
ν∈M

∆ν =
∑
ν∈M

⊗
j≥1

∆νj (14)

with the quadrature difference operators ∆ν =
⊗

j≥1 ∆νj , ∆j = Qj−Qj−1 and (Qk)k≥0

sequence of univariate quadrature formulas, see [6, 9] for details on the construction of
the tensorized multivariate quadrature formulas.

Then it can be proven, under appropriate assumptions on the univariate quadrature
formulas and on the forward problem, i.e. under the sparsity assumption (5) and the
smallness condition (6), that there exists a sequence of finite, monotone index sets
(MN )N≥1 with #MN = N such that

|Z −QMN
(Θ)| ≤ CZN−r , (15)

and

‖Z ′ −QMN
(ΦΘ)‖L(ρ,R)/κ,T,S ≤ CZ′N−r (16)

with r = 1
σ − 1. Analogously to the sparse interpolation, the construction of the mono-

tone index sets (MN )N≥1 is based on the greedy-type strategy summarized in Algo-
rithm 1.

Note that the convergence rates presented are given with respect to the cardinality
of the index set M. Estimates of the work required for the evaluation of the adaptive
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Smolyak approximation rely on the specific choice of the univariate interpolation and
quadrature formulas. In [3], details on univariate interpolation formulas leading to
the same convergence rates with respect to the number of interpolation points can be
found. The quadrature case requires a slight adaption of the rate by a factor of log2 3,
see [10, Proposition 1].

3 Models

To investigate the performance of the adaptive Smolyak approach, the proposed al-
gorithm is applied to three models from the biochemical literature. The first model
describes the uptake of glucose into cells of bakers’ yeast S. cerevisiae, which is the first
step of glycolysis. This model has 10 parameters that were assumed to be uncertain.
Due to the moderate size, this model gives an opportunity to verify that our method is
correctly implemented by comparison to Monte-Carlo simulations.

The second model describes the short-term response of the epidermal growth factor
receptor (EGFR) pathway for stimulation with EGF. This model has 50 parameters,
which is a typical number of parameters for models of cell signaling in the literature, but
constitutes a substantial challenge for any known computational method for statistical
inference due to the curse of dimensionality.

The third model describes the coupling of signaling pathways in mammalian cells.
With 227 parameters, it is to our knowledge one of the largest dynamical models re-
ported in the literature.

3.1 Model 1 - Glucose Transport in Yeast

The ODEs that describe the system dynamics are based on mass-action kinetics and
take the form:

dxeGlc
dt

= −k1x
e
Ex

e
Glc + k−1x

e
E−Glc (17a)

dxiGlc
dt

= −k2x
i
Ex

i
Glc + k−2x

i
E−Glc (17b)

dxiE−G6P

dt
= k4x

i
Ex

i
G6P − k−4x

i
E−G6P (17c)

dxiE−Glc−G6P

dt
= k3x

i
E−Glcx

i
G6P − k−3x

i
E−Glc−G6P (17d)

dxiG6P

dt
= −k3x

i
E−Glcx

i
G6P + k−3x

i
E−Glc−G6P (17e)

− k4x
i
Ex

i
G6P + k−4x

i
E−G6P

dxeE−Glc
dt

= α(xiE−Glc − xeE−Glc)+ (17f)

k1x
e
Ex

e
Glc − k−1x

e
E−Glc

dxiE−Glc
dt

= α(xeE−Glc − xiE−Glc)− k3x
i
E−Glcx

i
G6P+ (17g)

k−3x
i
E−Glc−G6P + k2x

i
Ex

i
Glc − k−2x

i
E−Glc

dxeE
dt

= β(xiE − xeE)− k1x
e
Ex

e
Glc + k−1x

e
E−Glc (17h)

dxiE
dt

= β(xeE − xiE)− k4x
i
Ex

i
G6P+ (17i)

k−4x
i
E−G6P − k2x

i
Ex

i
Glc + k−2x

i
E−Glc

where the nine state variables correspond to concentrations of the following chemi-
cal species: external glucose xeGlc, internal glucose xiGlc, internal G6P-bound carrier
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xiE−G6P , internal glucose and G6P-bound carrier xiE−Glc−G6P , internal G6P xiG6P , ex-
ternal glucose-bound carrier xeE−Glc, internal glucose-bound carrier xiE−Glc, external
free carrier xeE , and internal free carrier xiE . The model has 10 rate parameters: k1,
k−1, k2, k−2, k3, k−3, k4, k−4, α, β. We also need to specify at least three initial condi-
tions for (external) glucose, G6P, and for carrier E, if we assume that the concentrations
of the other chemical species are initially negligible.

This model was originally introduced in a reduced form in Rizzi et al. [11], and a
derivation of the reduced model from Eq. (17) is presented in [12]. For this article, the
rate parameters have been chosen as in [11] to reflect the assumptions used to derive the
reduced model (e.g., the time scales of reactions resulting in quasi-steady state relations).
The artificial observation data used in the numerical experiments is generated from a
randomly chosen reference parameter (10±0.25 variations around the nominal point).
Observations are assumed to be available for the first state (external glucose) at time
points 20.0, 30.0, 60.0 and for the first, second and fifth state at time point 30.0. The
noise in the measurements is given by a normal distribution with variance 0.12.

3.2 Model 2 - Epidermal growth factor receptor (EGFR) sig-
naling

This model describes the short-term (up two minutes after stimulation) response of the
epidermal growth factor receptor (EGFR) pathway upon stimulation with EGF [13].
The model was created to explain why the concentration of phosphorylated EGFR,
phospholipase C-γ (PLCγ), and the total concentration of Grb2-EGFR complexes, peak
after about half a minute and then return to low levels within a few minutes upon
EGF stimulation. Specifically, it was proposed that the peak in EGFR phosphoryla-
tion could be explained by EGFR being protected from phosphatases when bound to
target molecules (Grb2, Shc, or PLCγ), rather than by a rapid activation of (tyrosine)
phosphatases.

The model has 50 kinetic parameters, which were determined from previous experi-
mental results in the literature. The one-dimensional sensitivity analysis in [13] demon-
strated that most parameters could be individually varied without significant changes
in the pathway response. However, changing all parameters simultaneously may result
in a “marked change in the response dynamics”, although it was also pointed out that a
multiplication of all estimated parameters values by 2 only results in a scaling in time.
It was also noted that the model is sensitive to the relative concentrations of signaling
proteins. By applying our method it is possible to investigate the model response to
variations in any combination of parameter values around the estimated optimal param-
eter point. Within the inverse setting, we use artificial data, generated from a randomly
chosen parameter value in the range of 10±0.1 and 10±0.25 around nominal (assuming
a uniform prior distribution) and perturbed by normally distributed noise. For all nu-
merical experiments presented below, the first state of the model is observed at discrete
time points 20.0, 30.0, 60.0.

3.3 Model 3 - Coupled signaling pathways

This model describes the EGF (and heregulin) activated response in, and interaction of,
a number of signaling pathways in mammalian (rat) cells. Components of the signaling
network that can be simulated with this model are the mammalian ErbB signaling
pathways and the MAPK and Akt cascades.

The model exists in two forms: with and without rules for time-dependent assign-
ments of parameter values. We used the model without rules, downloaded from the
supplementary material of [14], since only this model is directly compatible with our
odeSD solver [15]. However, as pointed out by Chen et al. the difference between the
models is small, although the model without rules cannot be simulated in the ”pre-

7



incubation” phase. We decided to keep the 500 initial conditions for the state variables
of the model fixed to the values specified in the model, and to explore the impact of all
the 227 model parameters in the dimension-adaptive algorithm.

Detailed computational results of 20 runs of the optimiziation algorithm by Chen
et al. are provided in the supplementary material in [14], and 48 parameters and 9
initial conditions were calibrated to different values (in the A431 cell line). The re-
maining model parameters were either fixed to the values predefined in the model, or
estimated to very similar values in all the runs of the optimization algorithm (numeri-
cally equivalent for the precision provided in the file: Parameters_A431_20models.mat
in the supplementary material in [14]). Note that the model response variables should
be sensitive to the parameters that are always estimated to similar values.

Our computations of the local sensitivities were made for the parameter point that
is incorporated in the following model file (supplementary material of [14]):
ErbB-Chen_et_al_2008-A431-norules.xml

which was found in the folder:
inline-supplementary-material-2\_dataset\Chen et al - Model files
in the zip-file:
msb200874-sup-0002.zip

on the website:
http://msb.embopress.org/content/5/1/239#sec-26

Artificial data was generated by simulating the model for this parameter point, and
adding Gaussian noise to the response variables (Akt, Erk, and ErbB1) in the model cor-
responding to entities that can be experimentally measured. The reference values used
to generate the artificial data are randomly chosen in the parameter box p0±0.01p0. The
response variables Akt, Erk and ErbB1 are observed at time instants 75.0, 100.0, 150.0
and 50.0, 75.0, 100.0, 150.0, respectively. The noise in the data is modeled by a normal
distribution with variance 0.12.

4 Numerical Experiments

In the following section, we present numerical results of the proposed method for all
three models introduced in Sec. S3. We compare the results and the performance of the
adaptive Smolyak algorithm to state-of-the art methods (first-order sensitivity approach
and MCMC methods) and discuss the improvements achieved as well as our method’s
limitations.

4.1 Model 1

4.1.1 Comparison between the adaptive Smolyak interpolation and a first-
order sensitivity approach

In systems biology, common methods to analyze the system behavior with respect to
changes in the parameter space are local methods based on first-order-sensitivity in-
formation. In the following, we will compare the proposed adaptive Smolyak inter-
polation with a first-order approach approximating the solution x(t; p) by x̃(t; p) =
x(t; p0) + Jp(t)(p − p0), where Jp denotes the Jacobian with respect to the param-
eters at the nominal point p0. The quantities of interest are the first, second and
fifth state in Eq. (17) (external and internal glucose and internal G6P) at time in-
stants [0, 12, 20, 30, 60, 120, 200, 300, 400, 500, 1000] for parameter variations in the range
of ±0.25p0.

The sensitivity profile, which quantifies the maximum (absolute value of the) sen-
sitivity over states and time with respect to the parameters, is shown in Fig. S1. The

8



sensitivity index σ, defined by

σ := max
p
{ max
xi(tj),i=1,...,nx,j=1,...,nt

(∂pxi)(tj)} , (18)

with nx number of states and nt number of discrete time points, equals 0.1866 for model
1.
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Figure S1. Sensitivity profile of the first model: absolute value of the sensitivities
with respect to the parameters at the nominal point p0 sorted in descending order
with respect to maximum over states x1, . . . , x9 and time instants
[0.0, 12.0, 20.0, 30.0, 60.0, 120.0, 200.0, 300.0, 400.0, 500.0., 1000.0] of each parameter.

The sparse interpolation operator (9) is constructed using Clenshaw-Curtis points
or projected Leja sequences defined as follows:

� Clenshaw-Curtis (CC),

zkj = − cos

(
πj

nk − 1

)
, j = 0, . . . , nk − 1, if nk > 1 and

zk0 = 0 , if nk = 1

with n0 = 1 and nk = 2k + 1, for k ≥ 1

� R-Leja sequence (RL),
projection on [−1, 1] of a Leja sequence for the complex unit disk initiated at i

zk0 = 0 , zk1 = 1 , zk2 = −1 , if j = 0, 1, 2 and

zkj = R(ẑ), with ẑ = arg max
|z|≤1

j−1∏
l=1

|z − zkl | , j = 3, . . . , nk, if j odd ,

zkj = −zkj−1 , j = 3, . . . , nk, if j even ,

with nk = 2 · k + 1, for k ≥ 0.

Fig. S2 displays the estimated (absolute) interpolation error in terms of the number
of indices in the adaptively constructed index set and in terms of the number of ODE
solves needed. We observe that both interpolation sequences lead to an almost identical
convergence behavior of the Smolyak algorithm with convergence rate 1 (with respect to
the number of ODE solves needed). Note that, in the following, Λ denotes the monotone
index set computed by the adaptive algorithm given in 1.
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Figure S2. Estimated L∞ (absolute) error curves of the interpolation of the states
1, 2, 5 with respect to the cardinality of the index set ΛN based on the sequences CC
and RL (left) and with respect to the number of ODE solves needed (right), variations
of ±0.25p0, first model. The solid line corresponds to the interpolation based on CC
points, the dashed line to the interpolation based on Leja points. Both interpolation
operators show an almost identical approximation behavior, so that the two lines are
on top of each other.

In order to compare the proposed dimension-adaptive sparse grid approach with the
first-order approximation, we evaluate both approximations at three randomly chosen
realizations of the parameters, shown in Figs. S3-S5.
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Figure S3. Methods comparison for forward simulation of model 1, realization 1.
(A) Comparison of the states approximated by the adaptive sparse grid based on CC
and RL interpolation nodes, the first-order sensitivity approximation and the solution
of the underlying ODE at a randomly chosen realization of the parameter (variations
of ±0.25p0). (B) Resulting errors, namely (absolute) errors from the adaptive
interpolation based on CC points (top row), from the interpolation based on Leja
points (middle row) and from a first-order sensitivity approximation (bottom row).
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Figure S4. Methods comparison for forward simulation of model 1, realization 2 (see
caption of Fig. S3 for details).
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Figure S5. Methods comparison for forward simulation of model 1, realization 3 (see
caption of Fig. S3 for details).

We first notice that the Smolyak interpolation based on CC and RL points leads to
errors in the range of 10−5, as predicted by the error estimator. The approximation error
of the first-order approach is in the range of 10−3, which means a loss in accuracy of
two orders of magnitude compared to the sparse grid interpolation. Increased accuracy
can be crucial to suppress numerical errors in the analysis of system quantities and
calibration to measurements. The adaptive sparse interpolation provides an efficient
way to approximate the solution on the entire parameter space and thus, in contrast to
local methods, allows to consider larger domains of parameter variations.

4.1.2 Bayesian inverse problem

We also estimated error curves for Bayesian inference with the Smolyak based method,
which are shown for the normalization constant Z in Fig. S6, and for the quantity Z ′ of
the first moment of the six non-measurable state variables in Fig. S7, given observations
of the first state variable (external glucose). The first and second moments of the six
non-observable state variables over time are shown in Fig. S8 and Fig. S9, respectively.
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Figure S6. Estimated (absolute) error curves of the normalization constant Z with
respect to the cardinality of the index set ΛN based on the sequences CC and RL (A)
and with respect to the number of ODE solves needed (B), uniform distribution of the
parameters, variations of p0 · 10±0.25, η ∼ N (0, 0.12) and 3 observations of state 1,2,5
at tobs = [30.0], first model. The solid line corresponds to the interpolation based on
CC points, the dashed line to the interpolation based on Leja points. Both
interpolation operators show an almost identical approximation behavior, so that the
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Figure S7. Estimated (absolute) error curves of the first moment of state
3, 4, 6, 7, 8, 9 with respect to the cardinality of the index set ΛN based on the sequences
CC and RL (left) and with respect to the number of ODE solves needed (right),
uniform distribution of the parameters, variations of p0 · 10±0.25, η ∼ N (0, 0.12) and 3
observations of states 1,2,5 at tobs = [30.0], first model. The solid line corresponds to
the interpolation based on CC points, the dashed line to the interpolation based on
Leja points, both lines are on top of each other.
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Figure S8. Conditional expectations of the first moment of state 3 (black), 4 (blue),
6 (green), 7 (pink), 8 (red), 9 (light blue) at
t = [12.0, 20.0, 30.0, 60.0, 120.0, 200.0, 300.0, 400.0, 500.0.1000.0] based on the sequences
CC and RL, uniform distribution of the parameters, variations of p0 · 10±0.25,
η ∼ N (0, 0.12) and 3 observations of states 1,2,5 at tobs = [30.0], first model.
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Figure S9. Conditional expectations of the covariance of state 3 (A), 4 (B), 6 (C), 7
(D), 8 (E), 9 (F) at t = [12.0, 20.0, 30.0, 60.0, 120.0, 200.0, 300.0, 400.0, 500.0.1000.0]
based on the sequences CC and RL, uniform distribution of the parameters, variations
of p0 · 10±0.25, η ∼ N (0, 0.12) and 3 observations of states 1, 2, 5 at tobs = [30.0], first
model.

4.1.3 Comparison between Monte Carlo and the adaptive Smolyak ap-
proach

To analyze the glucose transport model in section 3.1, we used a Metropolis Hastings
Markov Chain Monte Carlo (MH-MCMC) algorithm [16], and the results are then com-
pared to those of the Smolyak approach.

Assume that we have the following (artificial) observations of the first state variable
in the model xeGlc (external glucose) at time instants: xeGlc(t = 20) = 1.4695, xeGlc(t =
30) = 1.2386, xeGlc(t = 60) = 0.9625. We also assume that the standard deviation for
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the measurement noise is known and equal to 0.1 for all three time instants. We explore
the parameter space in the interval [p0 · 10−0.25,p0 · 10+0.25], where p0 is the nominal
point of model 1. The proposal distribution that we use for MH-MCMC is a uniform
distribution on the interval of considered parameter values (±0.25, around the nominal
parameter point in log-space) to compute estimates of the model entities. This makes a
burn-in period (with discarded parameters) unnecessary, since the proposal distribution
remains the same along the chain. However, we also tested the performance of proposal
distributions with narrower distributions, for which the results were similar in terms of
the convergence rate (data not shown). This strategy is of course only feasible in the
case of artificial data, since in general, the unknown data is not at hand. Hence, the
burn-in period is considerable and leads to a significant increase in the overall number
of forward simulations needed to sample from the posterior.

To investigate the convergence rate of the MH-MCMC approach we generated a se-
quence of parameter points from the posterior distribution, and computed the posterior
first moment of the state variables of interest based on all drawn parameter points. A
sufficient number of parameter points was drawn (100.000 points) to ensure that the
drawn parameter points could be used to compute the first moments to a sufficient
numerical precision. We then simulated a second, independent sequence of parameter
points from the posterior and estimated the distance to convergence for the points along
this sequence, with the first chain as a reference. We used an empirical measure Ek for
convergence, after k samples have been drawn from the prior, which is given by:

Ek = max
i=3,4,6,7,8,9

max
j=t1,...,t10

|yijk − ŷijK | (19)

where the index i refers to the six non-observed state variables, t1, . . . , t10 denote the
discrete time instants, yijk = 1

k

∑k
l=1 yijl, k = 1, . . . ,K is the mean of state i at time

instant j for the first k points of the Markov chain, and ŷijK is the estimated averaged
over K points from a separate Markov chain.

The results are presented in Fig. 2E. Monte Carlo has a convergence rate of around
0.5 (in mean square with respect to the prior measure) as expected, which should be
compared to the rate of around 2.6/4.1 ≈ 0.65 (in the maximum norm, ie., in the worst-
case setting) for the adaptive Smolyak approach. However, note that the convergence
rate of Smolyak is close to that of MH-MCMC for a couple of hundred ODE solves,
before transitioning to a new (higher) asymptotic convergence rate which is stable (at
around 1.2) after the first few thousand ODE solves. The convergence rate of the
adaptive Smolyak approach is higher than for the MH-MCMC approach, indicating a
significant improvement. However, the adaptive Smolyak approach does not seem to
reach its full potential in this case since the parametric response of the model does
not appear to be sparse (the model response appears to be equally sensitive to most
parameters). Finally, we note that other numerical experiments, with different response
variables and observation time points, show better convergence rates (> 1), cf. Fig. S6
and Fig. S7.

To verify that the adaptive Smolyak algorithm is correctly implemented we computed
the first two moments of the state variables for the posterior with MH-MCMC, and com-
pared those to the moments computed with adaptive Smolyak. The results for the first
moment are shown in Fig. S10, where we observe an excellent agreement. The second
moment of the state variables computed with MH-MCMC is presented as the covariance
over time, and is shown in Fig. S11. Also here the results of MH-MCMC agree with
those of adaptive Smolyak. We therefore conclude that the adaptive Smolyak method
is correctly implemented, and that it converges faster than MH-MCMC, although the
rate of convergence is strongly dependent on the sparsity of the model (cf. Fig. 2E).
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Figure S10. First moment of the posterior parameter distribution.
Comparison of the first moment of the posterior for the unobserved state variables (A:
xiE−G6P , B: xiE−Glc−G6P , C: xeE−Glc, D: xiE−Glc, E: xeE , F: xiE) computed with the
Monte Carlo (blue) and adaptive Smolyak approach (red), variations of p0 · 10±0.25,
η ∼ N (0, 0.12) and 3 observations of state 1 at tobs = [20.0, 30.0, 60.0], first model.
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Figure S11. Second moment of the posterior parameter distribution for
Monte Carlo. For each state variable (A: xiE−G6P , B: xiE−Glc−G6P , C: xeE−Glc, D:
xiE−Glc, E: xeE , F: xiE) the second moment is presented as the covariance at several
time instants, variations of p0 · 10±0.25, η ∼ N (0, 0.12) and 3 observations of state 1 at
tobs = [20.0, 30.0, 60], first model.
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4.2 Model 2

4.2.1 Comparison between the adaptive Smolyak interpolation and a first-
order sensitivity approach

We investigate the interpolation behavior of the Smolyak algorithm in the 50-dimensional
parameter space for variations in the range of±0.25p0 at time instants [0.0, 12.0, 20.0, 30.0, 60.0, 120.0].

A sensitivity analysis of the model, the sensitivity profile is displayed in Fig. S12,
gives the sensitivity index σ, defined by (18) with nx = 23, nt = 6, σ = 5.8058e3.
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Figure S12. Sensitivity profile of the second model: absolute value of the
sensitivities with respect to the parameters at the nominal point p0 sorted in
descending order with respect to maximum over states x1, . . . , x23 and time points
[0.0, 12., 20.0, 30.0, 60.0, 120.0] of each parameter.

The sparse Smolyak interpolation approach gives the estimated error curves shown
in Fig. 3A, which suggest a convergence rate of 0.75 with respect to the number of ODE
solves needed. As discussed in section 2, the convergence rate is determined by the
sparsity of the underlying problem.

Taking a look at the index set computed by the adaptive algorithm, we notice that
the interpolation of the states requires an almost isotropic refinement (with interpolation
formulas of order 1 and 2), cf. Fig. 3B, limiting the convergence rate.

Next, we compare the proposed approach with the first-order approximation by
measuring the approximation error at three randomly chosen realizations of the 50
parameters, displayed in Fig. 3C, Fig. S13 and Fig. S14.
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Figure S13. Comparison of the (absolute) errors or the adaptive sparse grid based
on CC interpolation nodes (above) and the first-order sensitivity approximation
(below), variations of ±0.25p0, 2nd realization, second model.
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Figure S14. Comparison of the (absolute) errors for the adaptive sparse grid based
on CC interpolation nodes (above) and the first-order sensitivity approximation
(below), variations of ±0.25p0, 3rd realization, second model.

As already observed in the previous numerical example, the local method cannot
capture the global behavior of the states and leads to an error of order 1, whereas the
Smolyak approximation shows an error of the estimated order 10−2.

4.2.2 Analysis of ’sloppy’ parameter sensitivities

In [17], changes in model behavior upon parametric perturbations are measured by the
average squared change in the model states

χ2(p) =
1

nx

nx∑
k=1

1

nt

nt∑
l=1

(
xk(tl, p)− xk(tl, p0)

σk

)2

, (20)

where p0 denotes the nominal value of the parameters, nx denotes the number of states,
nt is the number of time points considered in the model and σk is defined as the maxi-
mum of state k over all (discrete) time points, i.e. σk = maxt∈{t0,...,tnt−1} xk(t, p0).

The Hessian matrix of χ2 is computed to analyze the sensitivity of the models to
parameter variations. Since in our models, we already reparametrized the parameter
space, such that the parameter variations are in the range of [−1, 1], we do not consider
derivatives w.r.t. log p as suggested in [17] to overcome scaling issues. The Hessian
matrix

Hjk =
dχ2

dpj dpk
(21)

is then approximated using finite differences, i.e. we compute an approximation H̃ by

H̃jk =
χ2(p0 + εej + εek)− χ2(p0 + εej)− χ2(p0 + εek) + χ2(p0)

ε2

=
χ2(p0 + εej + εek)− χ2(p0 + εej)− χ2(p0 + εek)

ε2
,

since χ2(p0) = 0. The Hessian approximation is computed with a finite difference step
size ε = 10−6.

4.2.3 Bayesian inverse problem

In our next numerical experiment, we are interested in the inverse problem, i.e. the
goal of computation is the conditional expectation of a quantity of interest, state 1,
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with respect to noisy measurements. The 50 parameters are assumed to be uniformly
distributed with variations in the log space of the range p0 · 10±0.1. The noise of the
(synthetic) measurement data is modeled by a Gaussian random variable with zero mean
and standard deviation 1. We observe a convergence order of almost 1 with respect to the
number of ODE solves required for the approximation of the normalization constant and
of the quantity Z ′ defined by (13), see Fig. S15 and Fig. S16. Enlarging the parameter
variations to p0 · 10±0.25 (Fig. S17), we observe a deterioration of the convergence rate,
caused by the increasing nonlinearity of the underlying model. However, compared to
the state of the art Monte-Carlo methods, the convergence rate r is only limited by
the intrinsic sparsity of parametric system response, with, in addition, maximum-norm
(or worst-case) error bounds thus enabling computational uncertainty quantification
and parameter identification also for complex reaction networks on high-dimensional
parameter spaces.
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Figure S15. Estimated (absolute) error curves of the approximations for the
normalization constant Z (left) and the quantity Z ′ (right) with respect to the
cardinality of the index set ΛN based on the sequences CC, uniform distribution of the
uncertain parameters, variations of p0 · 10±0.1, η ∼ N (0, 1.0) and 3 observations of
state 1 at tobs = [20.0, 30.0, 60.0], second model.
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Figure S16. Estimated (absolute) error curves of the approximations for the
normalization constant Z (left) and the quantity Z ′ (right) with respect to the number
of ODE solves needed based on the sequences CC, uniform distribution of the
uncertain parameters, variations of p0 · 10±0.1, η ∼ N (0, 1.0) and 3 observations of
state 1 at tobs = [20.0, 30.0, 60.0], second model.
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Figure S17. Estimated (absolute) error curves of the approximations for the
normalization constant Z (left) and the quantity Z ′ (right) with respect to the number
of ODE solves needed based on the sequences CC, uniform distribution of the
uncertain parameters, variations of p0 · 10±0.25, η ∼ N (0, 1.0) and 3 observations of
state 1 at tobs = [20.0, 30.0, 60.0], second model.

The numerical experiment discussed above clearly demonstrates the potential of the
proposed approach, especially for problems which depend on high-dimensional param-
eter spaces. The convergence rates and approximation error could be significantly im-
proved compared to the state of the art methods. Limitations of the adaptive Smolyak
approach arise by increasing the parameter domain leading to a highly nonlinear be-
havior of the underlying model, which cannot be captured properly by global approx-
imations. The deterioration of the convergence rate can be also observed for standard
methods and is expected due to the nonlinearity of the underlying biochemical systems.
However, depending on the parameter ranges, the adaptive Smolyak algorithm shows
in our experiments consistently a significantly better performance than other state of
the art methods and thus, is able to deal with the computational forward and Bayesian
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inversion analysis even in large-scale applications.

4.3 Model 3

4.3.1 Comparison between the adaptive Smolyak interpolation and a first-
order sensitivity approach

A detailed analysis of the sensitivities with respect to the parameters of the model
reveals that the sensitivities at the nominal point p0 of 135 parameters are larger than
1e4, illustrated in the sensitivity profile of the model in Fig. 4A.

The sensitivity index σ (nx = 500, nt = 10) for this model equals 2.4860e15 render-
ing the forward analysis and Bayesian inference infeasible even for moderate parameter
ranges. We therefore restricted the variations of the parameters to the range of ±0.01
to ensure bounded variations in the states. The Smolyak algorithm fails to converge for
larger parameter ranges indicating the ill-conditioning due to modeling issues related to
sensitivities of these magnitudes.

As shown in Fig. S18, the estimated error curves of the Smolyak algorithm indicate
an asymptotic rate of convergence of 1.5 with respect to the number N of ODE solves
needed.
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Figure S18. Estimated L∞ (absolute) error curves of the adaptive interpolation of
state variables 1− 500 with respect to the cardinality of the index set ΛN based on the
sequences CC (left) and with respect to the number of ODE solves needed (right),
variations of ±0.01p0, third model.

The comparison of the Smolyak performance and the first-order approximation
shows, similar to the previous numerical experiments, a gain in accuracy of up to two
orders of magnitude, cf. Fig. S19.
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Figure S19. Comparison of the (absolute) errors for the adaptive sparse grid based
on CC interpolation nodes (above) and the first-order sensitivity approximation
(below), variations of ±0.01p0 (1st realization), third model.

4.3.2 Bayesian inverse problem

We now turn to the inverse problem, i.e. the goal of computation is the conditional ex-
pectation of a quantity of interest given noisy observational measurement data. Bearing
in mind that the parameter sensitivities are > 1e5 for more than half of the parameters,
we restrict, as in the previous experiment, the parameter variations to ±0.01 around
their nominal values. The observational noise is assumed to be independently, normally
distributed with zero mean and variance σ2 = 0.12. The proposed adaptive algorithm
gives an estimated convergence rate of 1 − 1.5 in terms of the number N of forward
solves, given (artificial) measurement data in the three system variables Akt, Erk, ErbB
at time instants [75.0, 100.0, 150.0] (Akt, Erk) and [50.0, 75.0, 100.0, 150.0] (ErbB), see
Fig. S20.
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Figure S20. Estimated (absolute) error curves of the normalization constant Z of
the three model variables Akt (left), Erk (middle), ErbB (right) with respect to the
cardinality of the index set ΛN (above) based on the sequences CC and with respect
to the number of ODE solves needed (below), uniform distribution of the uncertain
parameters, variations of p0 ± 0.01 · p0, third model.
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To further explore the parameter space, we propose the following ad-hoc computa-
tional remedy, leaving aside the issue of modeling correctness: the idea of the adaptive
Smolyak algorithm relies on the efficient detection of dimensions in the parameter space
with a large impact on the quantities of interest. The information provided by the
already activated indices can be used to enlarge the parameter variations of parameters
showing less/ no influence on the quantities of interest, i.e. to enlarge the parameter
domain for parameters not activated by the dimension-adaptive Smolyak algorithm.
In [18], a reduction of the parameter dimension based on first order sensitivity informa-
tion is proposed, leading to an overall reduction from 227 to 75 parameters. In contrast
to this a priori choice of the active parameters, our approach allows to successively ex-
plore and enlarge the parameter space based on the information gained by the adaptive
exploration of the parameter space by the Smolyak algorithm.

The number of parameters activated by the algorithm is 112 for variations in the
range of ±0.01 · p0. We define a vector p1

0 by p1
0 ∈ R227, p1

0 = 1, if index i is activated
and a second vector p2

0 by p2
0 ∈ R227, p2

0 = 1, if index i is not activated, indicating the
set of parameters with enlarged parameter variations ±0.1p0. The convergence results
of this heuristic strategy are summarized in Fig. S21.
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Figure S21. Estimated (absolute) error curves of the normalization constant Z of
the three model variables Akt (left), Erk (middle), ErbB (right) with respect to the
number of ODE solves needed based on the sequences CC, uniform distribution of the
parameters, variations of p0 ± 0.01 · p1

0 / ± 0.1 · p2
0, third model.

Repeating the proposed strategy, we define a third vector p3
0 by p3

0 ∈ R227, p3
0 =

1, if index i not activated allowing for variations in the range ±1.0p0.
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Figure S22. Estimated (absolute) error curves of the normalization constant Z of
the three model variables Akt (left), Erk (middle), ErbB (right) with respect to with
respect to the number of ODE solves needed based on the sequences CC, uniform
distribution of the parameters, variations of p0 ± 0.01 · p1

0 / ± 0.1 · p2
0 / ± 1.0 · p3

0,
third model.

As displayed in Fig. S22, we finally end up with a similar convergence behavior as
in the case of variations in the range of ±0.01p0 and could moreover significantly en-
large the parameter space. The heuristic strategy proposed above could be a promising
approach to exploit the additional information given by the adaptively determined in-
dex sets, namely the influence of each parameter on the quantities of interest in the
output. The numerical experiments presented clearly indicate the high impact of some
parameters on the quantities of interest, but there are also parameters having no or less
influence on the response. This nonisotropic behavior can be exploited by the adaptive
algorithm, in particular by the proposed heuristic strategy, which allows to enlarge the
parameter space. Nevertheless, sensitivities of the magnitude appearing in the sensi-
tivity profile of the underlying model will cause numerical stability problems for any
algorithms in system and parameter identification problems. For “reasonable” param-
eter sensitivities, the proposed dimension-adaptive Smolyak algorithm can construct
a parametric surrogate model and allows for computational Bayesian estimation with
work vs. accuracy which is dimension-robust (ie., with work which scales linearly with
the number of active model parameters) and which can be, asymptotically, superior to
that afforded by Monte Carlo algorithms, in all examples which we investigated in the
present work. A necessary prerequisite for the success of the presently proposed com-
putational strategy, however, is proper model specification. Model misspecification can
severely hamper the performance of any numerical approach. The presently proposed
(linear scaling with respect to the model size) computation of “sensitivity profiles” prior
to Bayesian inversion allows for a fast identification of possible model misspecification
and, in any case, alerts the modeler to computational pitfalls due to intrinsic model
stiffness and ill-conditioning.

Parameter sensitivities of computed system responses of the magnitude reported
in Fig. 4A indicate, in our view, serious issues with numerical stability of forward
simulation and calibration, and are to be taken as evidence for model misspecification,
which can not (and should not) be addressed by efficient numerical simulation alone.

Assuming the absence of ill-conditioning or of model misspecification, the presently
proposed, dimension adaptive interpolation and quadrature algorithms was found to
scale and perform reliably in computations for nonlinear models of biochemical reaction
pathways with up to several hundred states and parameters. Based on these observa-
tions and on recent theoretical results [1] by some of the authors on intrinsic sparsity in
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polynomial chaos expansions of the parametric responses, linear scaling and comparable
performance are expected for considerably larger models with affine-parametric struc-
ture imposed by mass-action kinetics. We add that affine-parametric models are not a
prerequisite for the applicability of the presently proposed algorithm. In further exper-
iments, we found similar performance also for Michaelis-Menten kinetics and, based on
theoretical results for parametric partial differential equation models in [19], analogous
(theoretical and computational) results can be expected also for models with nonlinear,
holomorphic parametric dependencies.
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