
S1. Electronic Supplementary Appendix

S1.1. Network Mask. The first step in our process is to obtain a binary mask (or set of voxels)
that describes the shape of the blood vessel network. Separating a structure of interest from
the background is known in the computer vision literature as segmentation[56]. The literature
on image segmentation is voluminous and includes studies specifically examining segmentation
of tomographic images of blood vessels. There are many approaches to segmentation of blood
vessels, including region-growing, ridge-tracing, watershed models, spectral approaches, and
deformable contours[54]. We chose a threshold-based approach for its conceptual simplicity,
estimability of errors, and lack of implicit assumptions about blood vessel geometry. There are
more sophisticated approaches, but they rely on circularity[S1], volume-servicing[S2], or other
assumptions to improve their visual quality. We avoid these assumptions as they might bias the
output in favor of models our measurements are designed to test. By using simple thresholds
rather than Bayesian classification, we remain agnostic to the image capture method by ignoring
the physics of the imaging system.

To select a mask representing the blood vessel network, we calculated the set of voxels that
passed an image-specific intensity threshold, then chose the largest connected group of such
voxels. To identify the largest connected group, and at many other steps of the analysis, we
consider a set of voxels as an adjacency graph. In an adjacency graph, the nodes are the voxels,
and the edges are connections between neighboring nodes. We considered two voxels to be
connected if they were adjacent in any sense, that is, the voxels touch at at least one corner. The
distance along the edge is the distance between the center points of neighboring voxels. In the
language of graph theory, the largest connected group of voxels that pass a given threshold is
the largest connected component of the adjacency graph. A typical network mask is shown in
panel 2 of Fig 6. We use only the largest connected component because smaller groups of voxels
are either noise, patient motion artifacts, fa�y tissue, or isolated vessels whose relationship to
the rest of the network cannot be determined. Finding the largest connected component is the
rate-limiting process at this stage, but its time is still O(N ln(N)) for an N-voxel image.

The threshold parameter a�ects how much of the network is visible. The value a�ects the
volume measurement of each vessel segment to some degree, but the magnitude is expected to
be small[53]. At lower (more permissive) thresholds, more of the network is visible, but dimmer
objects that are not blood are more likely to be part of the largest connected component. For-
tunately, these misidentified objects are readily identifiable to a human observer, allowing us to
easily choose a threshold at which no such objects appear. The optimal threshold is the lowest
threshold that does not misidentify any objects. We chose an optimal threshold for each image
using a manual binary search.

S1.2. Endpoint Identification. The skeletonization process removes voxels from the network
mask until only those required for maintaining a single connected component remain. With-
out some initial set of non-removable nodes, this process would remove all nodes. Therefore,
it is important to reliably determine a set of non-removable nodes – network endpoints that
represent the most distal visible part of each vessel branch. Given the network endpoints, skele-
tonization will reduce the network mask to centerlines, but skeletonization itself cannot identify
the endpoints because they may be removed without disconnecting the graph. Failure to iden-
tify endpoints before skeletonization results in the loss of vessel segments from detection (see
Methods).

We identify endpoints as the local maxima of a distance transform starting from an interior
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voxel. Distance transforms are discussed in the next section. This transform assigns higher values
to voxels that are more distal in the network, measured along the contours of vessels. Voxels at
a local maximum of distance are the network endpoints. We consider a local maximum to be
any voxel whose distance value is greater than all of its neighbors. Since this sometimes leads to
multiple endpoints in a single terminal vessel, we collapse endpoints that are within the largest
vessel radius (7 mm) of one another and joined by a straight line through the network mask.

S1.3. Skeletonization. We use skeletonization to identify vessel centerlines and branch points.
A skeleton is an irreducible set of voxels that connect a set of endpoints. That is, the removal of
any non-endpoint voxel in the skeleton breaks its adjacency graph into at least two connected
components. Thus, we compute our skeleton by recursively removing (eroding) voxels from the
network mask, provided that they do not break the new mask into two components. There
typically does not exist a unique skeleton for a given network mask and set of endpoints. We
chose a particular skeleton in which the remaining voxels conform to the blood vessel centerlines
by preferentially removing nodes from the outside (surface) of the mask first.

To remove outermost voxels first, we use a distance transform to rank the voxels according to
a measure of how close they are to the outside of the mask. We chose a measure that is lower for
voxels closer to the exterior of the mask, and lower when a voxel has more neighboring voxels
outside the mask. By removing voxels with more outside neighbors first, we remove voxels at
convex points on the surface, smoothing the surface during erosion. A distance transform D(v )
of a voxel v has the property that

(1) D(v ) = min
n∈N(v ){Dist(v, n) +D(n)},

where N(v ) is the set of v ’s 26 neighbors and Dist(v, n) is the Euclidean distance from v to a
neighbor n, which depends on whether the neighbors share one, two, or four corners (i.e., a
face). This property is valid except when v is the origin or part of an initial boundary condition.
Given a value D(v ) at any set of voxels, this property (1) can be used to extrapolate the distance
transform to any connected set of voxels using a greedy algorithm. We use an analog of Dijkstra’s
algorithm[S3]. We supply the values D(v ) at points on the surface — the boundary condition.
We choose the boundary to be the set B = {v such that N(v ) − M 6= ∅} of voxels with any
neighbors outside the network mask M , and define D(v ) on the boundary to be ∑

n∈N(v )−M
1Dist(v, n)

−1
.

This inverse sum of inverses assigns lower scores to voxels with more neighbors outside the
network mask.

Erosion requires checking each voxel for whether its removal disconnects the remaining voxels.
Calculating the number of connected components of the remaining voxels is computationally
expensive (O(N lnN)), making the erosion process notoriously slow[55]. However, we greatly
speed our algorithm by exploiting the fact that removal of a voxel cannot disconnect the whole
graph unless it disconnects its neighbors. Checking the last condition is fast (O(1)). A few
passes of removing such voxels eliminate most of the voxels in the network, creating a close
approximation to the skeleton. To erode the last few removable voxels, we use the whole-network
algorithm, calculating connected components for each remaining voxel. This novel algorithm
produces a skeleton in a small fraction of the time.

Because the skeleton is not unique, di�erent erosion algorithms result in di�erent skeletons.
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For our 20 images, our erosion leads to adequate representations of vessel centerlines. We expect
any erosion algorithm that preferentially removes voxels roughly according to the above criteria
to well-represent the centerlines and give similar results.

S1.4. Segment decomposition. Using the skeleton, we can detect which voxels correspond
to the branch points of the blood vessel network. The skeleton itself is a set of voxels, and
hence its adjacency graph is not a tree because small cycles occur near branch points. Thus,
we first compute a minimal spanning tree of the skeleton. In this tree, nodes with more than
two neighbors exactly correspond to branch points, and nodes with only one neighbor are vessel
endpoints. Branch points and endpoints demarcate vessel segments. We consider the length of
a vessel segment to be the distance along the tree between the segment’s ends. This distance is
the sum of distances between the centers of adjacent voxels, which are either 1,

√2, or
√3 times

the voxel width. This path length along the voxel grid is greater than or equal to the Euclidean
distance between two points, and thus quantization of the vessel centerline will cause lengths to
be overestimated in comparison to other studies that do not require vessel contours to conform
to the grid[S4][S5]. Much as with the Manha�an metric (discrete l1 norm), the ratio between
the grid distance and Euclidean distance is independent of the scale of the grid. That is, at any
given orientation relative to the grid, the bias is a fixed ratio independent of line length. This
error is correctable with smoothing, but because our use of length measurements is to determine
scaling exponents (relative measures), our results are not a�ected by biases that increase length
of vessels by a constant factor. Consequently, we choose to ignore biases of this type.

Given the centerlines of vessel segments, we can a�ribute each voxel in the network mask to
the vessel segment whose centerline lies closest to it. To accomplish this we use Dijkstra’s algo-
rithm to generate a shortest path tree in which any path along the center lines is zero distance.
Removing all branch points then breaks the shortest path tree into one connected component
per vessel segment. The connected component of each segment contains all information about
the segment size, shape, and spatial position. The volume of a segment is the number of voxels
multiplied by the volume of each voxel. We compute the radius of each segment from the length
and volume as r = √V /πl. This is e�ectively equivalent to averaging multiple measurements
of radius along the vessel, resulting in a low error in radius. We also label vessel segments and
record their topology to compute the number of downstream endpoints, scaling exponents a and
b, and scaling ratios β and γ.

Segment decomposition leads to erroneous vessel segments when: 1. a closely-spaced bundle
of vessels is identified as a single vessel; 2. endpoint identification misses an endpoint; 3. the
network mask contains a loop; or 4. patient motion artifacts cause large volumes of blood to
appear as patches that are skeletonized as individual blood vessel segments. Case 1 introduces
segments with erroneously large radii into the distributions, but it occurs rarely, and usually in
conjunction with a loop. Cases 2 and 3 cause one segment to be missed, and its voxels a�ributed
to adjacent segments, but these malformed segments are detectable. Most of the voxels of tubu-
lar vessel segments are within a distance from the centerline that is less than the average vessel
radius. We eliminate any vessel in which more than 20% of the voxels are further than (r + 1)
from the centerline, or whose total volume is less than 4 voxels. This criterion also eliminates
most of the vessels erroneously introduced in case 4.
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