
Text S1. Analytic and simulation details.

Integration of the Kolmogorov Equation
The Forward Kolmogorov Equation is generally used to describe the probability distribu-
tion of the trajectory of an allele in frequency space within a population [33,55]. If one
analyzes the frequency of all polymorphic alleles in the population, or the site frequency
spectrum (SFS), one can describe the collective dynamics of this distribution in a very
similar form using an infinite sites model. The Kolmogorov equation describes the time
dependence of the probability density ⇢(x, t) of an allele’s frequency x at some time t. In
the limit of a large number of simultaneously polymorphic alleles, one can think of all
points in this probability distribution as being filled by one or more alleles. Choosing to
focus on the case of purely recessive variation, one can write down the time dependence
of the SFS in the following form.
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The presence of the delta function represents an influx of new mutations into the spectrum
at initial frequency 1/2N coming from 2N individuals in the population, each with a
mutation rate Ud per individual per generation. This acts like a source in the SFS at
x = 1/2N, and is a reasonable approximation in the limit of a long genome with no
double mutations or back mutations. We are interested in the time dependence of specific
moments of this distribution. For example, to determine the time dependence of the first
moment of the distribution hxi, we multiply by x and integrate to find the time dependence
of this moment.
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The delta function integral is trivially computed and we integrate by parts once on each of
the other integrals, noting that the boundary term at x = 0 vanishes due to the x2(1�x)�(x)
factor under the derivatives and the rapid decay of �(x) ensures approximate vanishing of
the boundary term at x = 1, which scales as x at low frequencies x! 0 and decays rapidly
as x! 1 provided selection is e�cient.
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The drift term can be identified as a total derivative, which vanishes, leaving the following
dynamical equation for the mutation burden.
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The time dependence of all higher moments can be computed in a completely analogous
way. Since it is relevant for our present purposes, we note the equation of motion for the
second non-central moment.
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Equations of motion for moments of the site frequency spectrum of alleles under
purely additive selection can be computed in the same way. Here we cite these results for
convenience. Note that we are using the convention sadd ⌘ hs = s/2
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In the limit
p

2Ns� 1, the SFS for recessive alleles rapidly vanishes at high frequencies
such that we can drop the (1 � x) dependence to find the following approximate equation
of motion.
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The (1�x) contribution in the dynamics of higher moments can be similarly neglected. For
alleles under additive selection, the analogous strong selection limit is given by2Ns � 1,
which results in the following simplified dynamics.
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Notably, this equation of motion is diagonal and can be easily solved analytically, as is the
case for all higher moments of the SFS for alleles under strong additive selection.

Analytic calculation of the trajectory of the mutation burden for recessive
selection
Here we are interested in the motion of the first moment hx(t)i of the distribution �(t)
after re-expansion from the bottleneck. First, we consider the equation of motion given by
Equation (13), which is derived above. We repeat it here for the convenience of the reader.

@thx(t)i ⇡ Ud � shx(t)2i (35)
Since the time scale on which the mutation burden rises to a maximum is shorter than the
time scale of drift, we can imagine rescaling time by the e↵ective population size 2N0 and
then working in the perturbative regime t⌧ 1. This allows us to Taylor expand near t = 0
to understand the motion of the burden at early times immediately after the bottleneck. We
later determine all of the moments used below and see su�cient subsequent suppression
to validate this expansion.
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To understand the time dependence of hx2i, we analyze the next moment in the same
fashion as employed for the first moment, as described in the previous appendix and
given in Equation (30).
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Note that these moments and all higher moments have a non-negligible contribution from
the di↵usion term in the forward equation.

We model a single-generation bottleneck as a single-generation downsampling of 2NB

chromosomes out of the original population of 2N0 chromosomes. We can approximately
compute hx2i, hx3i, and higher moments if desired, immediately after bottleneck sampling
(denoted “a f ter”) since we have an integral form for �B(x) given by appropriately scaling k
in terms of x in Equation (12). Here, �0 represents the initial pre-bottleneck site frequency
spectrum, and the nth moment of this distribution is represented as hxni0.
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The exchanging the order of the integral and the sum, the sum can be computed directly as a
function of x corresponding to the second non-central moment of the binomial distribution.
One can compute hx3i completely analogously.
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The first three non-central moments of the binomial distribution are as follows:
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In the limit NB � 1, the second and third moments are well approximated by the following
expressions.

µ02 ⇡ 2NBx + (2NB)2x2 (43)
µ03 ⇡ 2NBx + 3(2NB)2x2 + (2NB)3x3 (44)

From this we can directly compute the sum in Equations (38) and (39).

hx2ia f ter =
1

(2NB)2

Z
dx µ02 �0(x)

=

Z
dx

✓ x
2NB

+ x2
◆
�0(x)

=
hxi0
2NB

+ hx2i0 (45)

For the third moment, we find the following expression.
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The third moment is relevant in that it allows us to approximately compute the time
dependence of the second moment immediately after re-expansion.
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All of the hxmi0 moments can be computed from the initial distribution, determining the
Taylor expanded expression in Equation (36) explicitly. These integrals are well approxi-
mated in the limit N0s� 1, as described in a following appendix. We calculate the integrals
using this approximation and express the first three moments below, the first two of which
were described originally in [34].
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Additionally, we are working under the approximation of a relatively short bottleneck,
such that hxia f ter ⇡ hxi0 + UdTB ⇡ hxi0. Corrections can easily be computed to determine
the TB dependence, if desired. Plugging these in, we can gauge the order of magnitude
and sign of the initial contributions to the motion of the mutation burden.
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Note that the N�
1
2

0 terms exactly cancel in the previous equation and that we have sup-
pressed O(N�1

0 ) corrections. Putting these results together, we integrate Equation (36) to
find the following time dependence hx(t)i.
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Here the integration constant is simply the initial first moment immediately after re-
expansion (which is well approximated by hxia f ter = hxi0 in the case of a strong single-
generation bottleneck). We substitute our computed value from Equations (48) and (49)
in the above equation to compute the time dependence of the mutation burden hx(t)i.
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At this point, we generalize to multi-generation, but low intensity bottlenecks with the
substitution 1

2NB
! IB ⌘ TB

2NB
. By doing this we have matched the bottleneck intensity to

that of a more extreme, but single-generation bottleneck. The time dependence of the
mutation burden can be approximated as follows.
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From this we can easily compute the time dependent form BR(t) = hxi0
hx(t)i .

BR(t) ⇠
 
1 � stIB + st2IB

 
sIB + 3

r
s

4N0

!!�1

(53)

This quadratic time dependence allows us to find extrema. Note that the inclusion of higher
order contributions allows for a more accurate temporal dependence hx(t)i, however this is
somewhat unnecessary to understand the dominant behavior of the curve. Concentrating
just on this second order expansion in t, we find that the curve first drops from its initial
value hx(0)i = Ud

p
4N0p
s , quickly reaches a minimum, and is then brought back up by the

positive second order term. The location of the minimum can be found approximately by
solving the following equation.
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As expected, the second derivative is positive at this extremum, implying a local minimum.
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Plugging tmin into our expression for hx(t)i, we find the approximate magnitude of the
mutation burden at this minimum.
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We have factored out hxi0 ⇠ ✓0p
4N0s

here since it allows for easier calculation of BR ⌘ hxi0/hxi
below. Thus, in the limit N0s � 1 employed to approximate hxi0, we find the following
minimum value for the average number of recessive deleterious mutations per genome
following a bottleneck.

hx(tmin)i ⇠ ✓0

0
BBBBBB@

1p
4N0s

� 1⇣
4
p

4N0s + 12/IB

⌘

1
CCCCCCA (58)

32



From this expression, we can immediately calculate the peak value for the BR statistic as
follows.
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We note that in the limit NB � pN0s > 1 of a low intensity bottleneck (I�1
B �

p
N0s for an

extended bottleneck), which is biologically relevant for many founder’s events in humans,
these results simplify as follows. The time dependence of the mutation burden for the
founded population is given by,
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This can be used to obtain the functional dependence of BR(s, t).
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In the limit I�2
B � N0s, the peak response BR(tmin) occurs at a time,
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and takes the following approximate functional form.
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We use this expression to compare to simulations in this regime of interest, with the
understanding that it breaks down at relatively large bottleneck intensities.

Distribution of selective e↵ects
For a distribution of s e↵ects, the s of maximum e↵ect on BR is dependent on the time
since the bottleneck as given in Equation (23). This describes the transient shift of the
elevated load ratio towards smaller s values. To determine the total BR

observed at the time
of observation tobs, one must integrate over all s values present in the population. This
assumes that distinct s classes for recessively acting deleterious alleles can be thought
to behave independently in a well mixed, freely recombining diploid population. The
distribution of selective e↵ects for de novo mutations, ⇢(s), provides the appropriate
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weight associated with each class of selective e↵ects, as the mutation rate for mutations of
selective e↵ect s is given by Ud⇢(s). Assuming a static distribution of selective e↵ects, we
can calculate the observed load ratio at tobs. For a given population, the observed mutation
burden hxiobs at the time of observation is the mutation burden for each class of selected
e↵ects averaged over their representative fraction of new mutations into the population.

hx(t)iobs =

Z
ds ⇢(s) hx(s, t)i (64)

This is true for both the equilibrium and founded populations, allowing us to compute
the observed burden ratio BR

obs as follows.
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The largest contribution to the load ratio at time tobs occurs at some e↵ective smax,
denoted by sobserved

max . The distinction here is that, although smax may have the largest mutation
burden, it may occupy only a small fraction of the mutations present in the population
when weighted by ⇢(s) and thus have a reduced e↵ect on the observed burden ratio BR

obs.
The maximum contribution to the mutation burden sobs

max satisfies the following constraint.
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Although we remain agnostic to the distribution of selective e↵ects in the present work, we
mention that the model of an exponentially decaying distribution ⇢(s) ⇠ e��s is somewhat
popular in the literature for theoretical, experimental, and aesthetic reasons. As a result,
the introduction of such a distribution (or more generally any monotonically decaying
distribution) would produce an smax

obs value in the range,

smax > smax
obs � 1/2N0. (67)

The selective e↵ect for which the observed change to the load ratio BR(tobs) is maximized
has suppressed signal relative to slightly lower s values. This is due to the e↵ective
rarity of high s mutations in the population, as they both are introduced at a lower
rate ⇢(slarge) < ⇢(ssmall) and are being more e�ciently purged from the population due to
selection. This indicates that the elevated load ratio BR(tobs) may be most readily observed
in the data by looking at mutations with low to intermediate selective e↵ects, rather than
those with highest e↵ect. Additionally, we note that the corrected equilibration time for
the distribution of e↵ects is given by the time constant associated with sobs.

Most generally, the mutation burden will be comprised of a combination of alleles with
varied selective e↵ects and dominance coe�cients. Treatment of alleles with intermediate
dominance coe�cients is discussed below. We can generalize our observed burden ratio
as follows.
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General dominance coe�cient and distributions of coe�cients
The analysis above presumes that deleterious mutations act with a single average selective
e↵ect, either purely additively or purely recessively. One can extend our analysis to the
case of partial dominance with a general coe�cient 1/2 � h � 0, with extreme values
corresponding to additivity and recessivity, respectively. We ask at what value of h does
the change from BR < 1 to BR > 1 occur. This critical value at some intermediate dominance
coe�cient h = hc is of practical interest, as our statistic only has sensitivity to detect whether
the average dominance coe�cient of a set of alleles lies above or below this critical value.
The Kolmogorov equation is easily generalized to include a general dominance coe�cient.

@t�(x, t) = 2NUd �

x � 1

2N

�
+

1
4N
@2

x(x(1 � x)�)

+ sh@x(x(1 � x)�(x, t)) + s(1 � 2h)@x(x2(1 � x)�(x, t)) (69)

As detailed in the appendix above, we can use this equation to describe the dynamics of
the mutation burden.

@thxi ⇡ Ud � sAhxi � sRhx2i (70)

Here we have defined sA ⌘ sh and sR ⌘ s(1 � 2h) for convenience, and taken the strong
selection limit in the initial and final population, such that both 2N0sA � 1 and

p
2N0sR � 1

are satisfied. In this limit, one can compute the dynamics of the moments after a short
bottleneck with completely relaxed selection in complete analogy to the recessive case
described above. The perturbative dynamics immediately after re-expansion from the
bottleneck are well described by the following Taylor expansion.
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The critical value occurs when BR = 1, such that hx(t)i f ounded = hxi0, providing the following
time dependent condition.
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As described above, this can be expressed in terms of the moments of the initial distribution
hxni0. The values of sA, sR, and all of the moments of the initial distribution are a function
of the dominance coe�cient h, such that the solution to the above equation provides the
critical value hc. Given the exponential dependence of the initial distribution �0(x) on h,
this equation is generally transcendental and thus requires a numerical solution.

Notably, the solution hc(t) is an inherently time dependent quantity. The additive re-
sponse is largely due to accumulation of mutations due to relaxed selection during the
bottleneck with subsequent decay after re-expansion. In contrast, the recessive response
occurs largely after re-expansion due to the purging of newly formed deleterious homozy-
gotes. As a result, at very early times the critical value occurs close to pure recessivity
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such that hc(t ! 0) ⇠ 0, since BR < 1 for even partially additive alleles at this time. The
purely additive case equilibrates far more quickly than the recessive case (tA

relax / s�1 and
tR
relax / s�1/2), such that purely additive alleles become distinguishable from all other cases

with even minor excess selection on homozygotes at late times. After this time, nearly
additive modes begin to decay, such that there is a breakdown in the definition of hc since
multiple values satisfy the constraint hx(t)i f ounded = hxi0. After additive alleles have re-
equilibrated, partially recessive alleles remain detectable in times tR

relax > t > tA
relax, with the

strongest signal coming from purely recessive alleles at t � tmin / p4N0/s. This behavior
is summarized in Figure S1.

As discussed in the previous section, a distribution of dominance coe�cients can be
incorporated into the analysis as follows.

hxiobs =

Z
dh

Z
ds ⇢(s, h) hx(s, h, tobs)i (73)

Convolution of multiple dominance coe�cients can dilute the recessive signal, as additive
and weakly recessive alleles (h & hc ⇠ 0.25) may respond in the opposite direction. As
shown by both analytics and simulations, the magnitude of the additive signal is weaker
than that for strongly recessive alleles, since it is at most linear in the accumulation of
deleterious alleles during the bottleneck and exponentially decays in time. For the present
purposes, let us approximate the additive response as roughly the same as that of neutral
alleles, as their contribution likely does not significantly deviate from the equilibrium
value (consistent with s = 0). We have chosen hc ⇠ 0.25 to be consistent with the Out of
Africa value, however a similar analysis could be performed more generally. We can then
ask what fraction of new mutations, ✏mut, fall in the quasi-recessive regime (h . hc ⇠ 0.25)
that responds nontrivially to the bottleneck.

✏mut =

Z hc⇡0.25

0
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0
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We may also postulate that the dynamics are driven by segregating alleles, rather than
new mutations, and ask what fraction of segregating alleles in an initially equilibrium
population are quasi-recessive. This fraction ✏seg can be computed analagously.
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Here �eq is the SFS (initially in equilibrium), given in Equation 1, and we note that since
the SFS is not normalized, we must divide by the total number of segregating mutations.
If this fraction is relatively small (perhaps on the order of ✏seg ⌧ 0.1) significant dilution
occurs, and deviation from BR ⇠ 1 may not be observable.

Substantial literature has been devoted to the parameterization and quantification of
the distribution of dominance coe�cients, as elaborated in the introduction of our paper. In
particular, the relationship between selective e↵ect and dominance coe�cients remains an
active field of interest [4, 6, 7, 9, 10, 11, 56]. Estimations of this relationship come exclusively
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from model organisms, as established methods require crossing and/or propagation over
several generations [7, 11]. In the case of humans and other macroscopic, long lived
organisms, these techniques are infeasible. Thus estimates of parameters derived from
model organisms may or may not be appropriate to describe comparable quantities in
humans, and we proceed with a general parameterization, acknowledging that existing
estimates perhaps provide a useful guide.

We split the joint distribution ⇢(h, s) into the DFE ⇢(s) and a conditional distribution
H(h|s) that describes the relationship between selective e↵ects and dominance coe�cients.
Given the accepted belief of an inverse relationship, we choose an exponential parameter-
ization as described in [7].

h =
e�↵s

2
(76)

Here ↵ is an organism-specific constant that has been well studied in flies, where a value
of ↵Drosophila ⇡ 13 is suggested in [7]. This parameterization describes only the mean
dependence, rather than also fitting the variance, however for the present purposes this is
su�cient. The conditional distribution can then be expressed in terms of a delta function
as follows.
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Since h is a positive semidefinite quantity, the second delta function representation is
equivalent to the first, and will prove easier to work with. Parameterizing the DFE as an
exponential with mean selective e↵ect s̄ for analytic simplicity, we write down the joint
distribution.
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In the case of new mutations, we can integrate this density directly to find the desired
fraction ✏mut.
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For segregating mutations, we can numerically ascertain the analogous parameter depen-
dence ✏equil

seg (↵, s̄) using an equilibrium SFS given in Equation (1).
Requiring a substantial fraction of new mutations to be quasi-recessive amounts to a

transcendental inequality of the following form.

0.1 .
↵

s̄
⇣
1 + 1

↵s̄

⌘
(2)4+1/↵s̄

(80)

Numerical solutions to this equation can provide a bound on↵ for a given average selective
e↵ect s̄. For humans, the parameter ↵ is unknown, and most estimates of s̄ 2 [0.0001, 0.001]
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explicitly assume additivity in their method of inference. Naively taking this range, one
can numerically show that on the weak selection end (s̄ ⇠ 0.0001) the rough bound requires
↵ & 500, and on the strong selection end (s̄ ⇠ 0.001) the bound requires ↵ & 50. These
values are significantly higher than the estimate for flies (↵ ⇠ 10), implying that, on the
whole genome level, weak e↵ect mutations substantially dilute the measured BR making
observation of recessive variants unlikely unless ↵human & 50. By restricting to segregating
sites in an equilibrium population, a bound can be numerically derived using ✏equil

seg & 0.1.
This bound is substantially stronger, such that for s̄ ⇠ 0.001, the allowed values are roughly
↵human & 1000.

Based on numerical solutions of Equation (80) over a large range of parameters (and
the analogous integral equation for segregating mutations), the bound appears to be
monotonic and can be very roughly approximated as ↵ & 0.05/s̄ for new mutations and
roughly ↵ & 1/s̄ for segregating mutations in a quasi-equilibrium population in mutation-
selection-drift balance. We note that in real human populations, for example in both
Africans and Europeans, recent exponential expansion results in the accumulation of many
segregating rare deleterious mutations at sub-drift frequencies such that the SFS deviates
substantially from Equation (1) at the low frequency end. This can drive the true fraction
of segregating quasi-recessive sites in an expanding population towards the larger fraction
associated with new mutations, such that ✏exp. growth

seg ! ✏mut, where ✏mut > ✏
exp. growth
seg > ✏equil

seg .
As a result, the relevant bound in a population that experienced recent exponential growth
may be closer to ↵ & 0.05/s̄ for a set of alleles with average selection strength s̄, however
the exact bound is highly dependent on the recent demographic history of the population.

The dependence of the bound on the strength of selection indicates that deviation from
BR = 1 is likely to be observable for the strongest e↵ect mutations. In the case that humans
and flies have similar joint distribution of selective e↵ects and dominance coe�cients,
such that ↵human ⇠ ↵Drosophila ⇠ 10, we find that s̄ ⇠ 0.01 may be su�cient to observe
strong deviation from BR ⇠ 1 due to the prevalence of rare (highly deleterious) partially
recessive variants in a recently exponentially expanded population. This is consistent
with our observations of BR > 1 for a set of predicted deleterious variants in medically
important genes, and highlights the usefulness of recessive Mendelian disease genes for
demonstrative purposes and potential future applications.

Additionally, the present analysis indicates that for diploid organisms with very large
↵ � ↵Drosophila, such that a large fraction of variants are at least partially recessive (h < hc),
it may be possible to create a more detailed map of the average dominance coe�cients
for specific genes using this method. Such an organism would also allow for detection of
BR > 1 on the whole genome level, such that sequencing of low coverage genomes may
be su�cient to bound ↵, provided a population split, bottleneck, and expansion occurred
relatively recently. We also note that the present analysis details results appropriate for
the human Out of Africa bottleneck (where hc ⇠ 0.25) that ended roughly 1000 generations
in the past. Distinct demographic events could provide di↵erent, potentially stronger
bounds on ↵, and likely warrant a similar analysis for di↵erent hc values.
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Long bottleneck limit
In the case of a long bottleneck of duration TB ⇠ O(2NB) generations, the bottlenecked
population has had su�cient time to equilibrate into mutation-selection-drift balance
with the new population size 2NB. The site frequency spectrum can be written in the same
form given by Equation (1). In the case of recessive variation, we find the following form
during the bottleneck.

�(x) = ✓B
e�2NBsx2

x (1 � x)

2
66666641 �

R x

0 e2NBsx2

R 1

0 e2NBsx2

3
7777775 (81)

Here we have defined ✓B ⌘ 4NBUd. In the limit Nbs� 1, this can be written approximately
as follows.

�(x) ⇡ ✓B
e�2NBsx2

x
(82)

Immediately after re-expansion from the bottleneck, the first three moments of this dis-
tribution can be easily calculated using the Gaussian integrals described in an appendix
below. These can be substituted into the Taylor expanded time dependent form for @thx(t)i
in Equation (14) to analyze the dynamics and solve for the functional dependence of the
BR statistic.

For analysis of bottlenecks of intermediate length, a full non equilibrium description is
required, but this can be well approximated by analytically patching the solutions given
by the single-generation and long bottleneck limits.

Exponential expansion and more general geometries
Exponential expansion is a general feature of many natural populations, particularly after
a founding event, motivating the generalization of our analysis to such cases. In this
work, we describe the transient behavior of BR(s, t), and the s values that are favored as
time progresses. As a result, this behavior is extremely sensitive to exponential expansion,
for example, as opposed to the simple square bottleneck model described above. In the
most general case, we may have a general time dependence for the population size after the
bottleneck, which sensitively e↵ects the s values for which the burden ratio BR is largest.
For an explanatory example, we will model the immediate exponential inflation of the size
of both the founded and equilibrium populations after re-expansion from the bottleneck.

Nf (t) ⇠ N0et/a (83)

We rescale time by the population size tI ⌘ t 2N0
2N f
= te�t/a, yielding exponentially slowed

“inflated” time in the decelerated frame of the fixed population size. In this rescaled frame
we can analyze the shift of the transient peak of the load ratio (in inflated time) BR

I(sI, tI)
by plugging our new scaled time into Equation (23).

sI
max ⇠ 2N0e2t/a

10t2 (84)
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Note that this factor of N0 refers to the initial population size prior to the bottleneck,
and does not get rescaled due to the inflating population size. Taylor expansion of the
exponential demonstrates that there is a perturbative crossover at time t ⇠ 2a.

sI
max /

 
1
t2 +

2
at
+

22

2a2 +
23t
6a3 + ...

!
(85)

When t ⇠ a, the third term in the expansion, initially the quadratic term of the exponential,
finally begins to dominate over the second term in the expansion. At this point positive
powers become technically relevant in the perturbative expansion. This is the transition
between the initial transient decrease in smax and the exponential freezing out of the rapidly
decaying large s components of BR. At this time, the maximum of the load ratio is given
by,

smax ⇠ 2N0e2

10a2 ⇡
2N0

a2 . (86)

For very rapid inflation, a is small, indicating that the dominant modes in BR still exist at
high s values, such that smax � 1. For large a � 1, corresponding to slow, even adiabatic,
expansion, the transient rapidly decays towards smaller s values, such that smax ⌧ 1.
Intermediate values are particularly interesting, as the rate of expansion can actually
compete dynamically with the transient decay. In this case, any intermediate selection
e↵ect may be frozen in, dominating the signature in the burden ratio BR.

Evaluating Gaussian integrals
The steady state distribution prior to the bottleneck is well approximated by the following
form.

�0 ⇡ ✓0
e�2N0sx2

x(1 � x)
(87)

The decay at large frequencies is made even more rapid by the suppressed terms, so for the
present argument this form is su�cient. Computing the first moment of this distribution
corresponds to the following integral.

hxi0 ⇡ ✓0

Z 1

0
dx x

e�2N0sx2

x(1 � x)
⇡ ✓0

Z 1

0
dx

e�2N0sx2

1 � x
(88)

For su�ciently large 2N0s � 1, the exponential rapidly converges prior to reaching the
x = 1 upper limit. In this case, in addition to canceling the linear terms in the numerator and
denominator, the (1� x) term in the denominator is highly suppressed by the exponential.
The first moment can be simply computed as half of a Gaussian integral.

hxi0 ⇡ ✓0

Z 1

0
dx e�2N0sx2 ⇡ ✓0

2

Z 1

�1
dx e�2N0sx2 ⇡ ✓0

2

r
⇡

2N0s
(89)

Using the following definition, we can compute the first few moments of interest for the
site frequency spectrum �(x) of recessive deleterious mutations.
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hxn+1i0 /
Z 1

0
dx xne��x2

=

8>>>>><>>>>>:
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(2�)n/2

1
2

q
⇡
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( 1
2 (n�1))!

2�(n+1)/2 for odd n

(90)

The first few moments are given by the following equations.

hxi0 ⇡ ✓0

Z 1

0
e�2N0sx2 ⇡ ✓0

2

r
⇡

2N0s
⇠ ✓0

(4N0s)1/2 (91)

hx2i0 ⇡ ✓0

Z 1

0
xe�2N0sx2 ⇡ ✓0

4N0s
(92)

hx3i0 ⇡ ✓0

Z 1

0
x2e�2N0sx2 ⇡ ✓0

8N0s

r
⇡

2N0s
⇠ ✓0

(4N0s)3/2 (93)

hx4i0 ⇡ ✓0

Z 1

0
x3e�2N0sx2 ⇡ ✓0

2(2N0s)2 ⇠
2✓0

(4N0s)2 (94)

Simulation curve collapse
Here we extend our analysis of the accuracy of our analytic results by continuing to
scrutinize the comparison with our simulation. To represent how the breakdown of our
approximation depends on the selective coe�cient, we plot a subset of the data labeled
by selective e↵ect size s in Figure S2. We find generally good agreement between analytic
approximations and simulation (represented by a flat line at one on the plots in Figure
S2). We note that deviations from our analytic scaling occur most substantially when both
the selective e↵ect s and bottleneck intensity IB are large, implying that the correct scaling
of a more extended bottleneck involves a correction to the s dependence. This is due to
the approximation of neutrality during the bottleneck. Alleles under selection eventually
equilibrate during the bottleneck, with faster equilibration times for alleles under strong
selection, such that this approximation breaks down for either long bottlenecks or strong
selection. The second plot in Figure S2 represents such a scaling, motivated by analytic
dependence of the burden ration on sqrt(s).
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Variable definition legend

BR Mutation burden ratio.
x Allele frequency.
s Magnitude of selection of deleterious alleles.
h Dominance coe�cient for deleterious alleles.
Ud Per individual deleterious mutation rate.
� Site frequency spectrum (SFS).
hxi Per haploid individual mutation burden.

Equivalently, weighted mean of the SFS.
hx2i Homozygosity.

Equivalently, second non-central moment of the SFS.
N0 Number of diploid individuals in initial (and final) population.
�0, hxi0, hx2i0 Initial (equilibrium) site frequency spectrum and corresponding

initial moments.
�B, hxiB, hx2iB Site frequency spectrum and corresponding moments at the end

of the bottleneck.
NB Number of diploid individuals during bottleneck.
TB Duration of bottleneck.
IB Bottleneck intensity.
t Time after end of bottleneck/re-expansion.
tmin Time of minimum mutation burden in founded population after

re-expansion in response to population bottleneck.
BR(tmin) Maximum mutation burden ratio after re-expansion.
tobs Time of observation of the burden ratio after re-expansion.
smax At time of observation, selection strength associated with the

maximum value of BR.
Also, most readily observable selection coe�cient, given a
demography and observation time.

trelax Maximum relaxation time (re-equilibration time) of BR

for recessive alleles of any selection strength.
hc Critical dominance coe�cient separating above and below BR = 1.

Also, maximum bound for empirically observed recessive alleles.
⇢(s) Distribution of selection strengths.

Equivalently, distribution of fitness e↵ects (DFE).
⇢(s, h) Joint distribution of selection strengths and dominance e↵ects.
✏mut Fraction of de novo mutations that are recessive (h⌧ 0.5) necessary

to observe a signal in BR.
✏seg Fraction of segregating mutations that are recessive (h⌧ 0.5) necessary

to observe a signal in BR.
↵ Selection-dominance coupling parameterizing inverse correlation

of h and s.
s̄ Estimated average selection strength in an exponential DFE.
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