Supplementary Methods

Western Blotting

Supplementary Table 1. Primary Antibodies.

Antibody	Source	Host	Dilution	Application
TRA-1-60	Cell Signaling	Mouse	1:200	ICC
TRA-1-81	Cell Signaling	Mouse	1:200	ICC
SSEA-4	Cell Signaling	Mouse	1:200	ICC
OCT4	Cell Signaling	Rabbit	1:200	ICC
SOX2	Cell Signaling	Rabbit	1:200	ICC
NANOG	Cell Signaling	Rabbit	1:200	ICC
Phospho-DARPP-32 (Thr34)	Santa Cruz	Goat	1:100	WB
DARPP-32	Cell Signaling	Rabbit	1:500	WB
Neurofibromin (C)	Santa Cruz (sc-67)	Rabbit	1:250	WB, IHC
Neurofibromin (N)	Santa Cruz (sc-68)	Rabbit	1:250	WB
RAS (Clone RAS10)	Millipore	Mouse	1:1000	WB
SMI-312	Covance	Mouse	1:1000	ICC
α-Tubulin	Life Technologies	Mouse	1:10000	WB

WB, Western Blot; IHC, immunohistochemistry; ICC, immunocytochemistry

Real-time quantitative reverse transcription-PCR (qRT-PCR)

The expression of *NF1* (NM_001042492) was examined by real-time reverse transcription-PCR (RT-PCR) using SYBR Green detection. Forty nanograms of fibroblast cDNA were used as template for PCR amplification with primers listed in **Supplementary Table 2**. Each reaction was performed in triplicate and was repeated for at least three separate passages of each of the cultured fibroblasts. Bio-Rad CFX Manager 3.1 Software (Bio-Rad Laboratories, CA) was used to convert the fluorescent data into cycle threshold (CT) measurements, and the $\Delta\Delta$ CT method was used to calculate fold expression, using *GAPDH* (NM_002046) as an internal control.

Supplementary Table 2. qRT-PCR Primers.

Gene	Domain	Forward primer	Reverse primer
NF1	5' (exon 2)	5'-AAAAACAGGACAGCAGAACACAC- 3'	5'-TAGTGAGGCCGCTTATAACCAAA-3'
NF1	RAS-GAP (exon 27)	5'-ATCGGTTTGAGAGATTGGTGGAA-3'	5'-TCATCCCACTGAGAACAAGGAAC-3'
NF1	3' (exon 52)	5'-AGGCAAGAAATGGAATCAGGGAT-3'	5'-GGTGCTGTTGTGATGAGGAAATC-3'
GAPDH	5' (exon 1)	5'-ACAGTCAGCCGCATCTTCTTTG-3'	5'-AATACGACCAAATCCGTTGACTC-3'

Supplementary Figures

Supplementary Figure 1. Germline *NF1* gene mutations result in different levels of neurofibromin expression in NF1-patient fibroblasts. (A) Neurofibromin immunoblot with C- (C) and N- (N) terminal antibodies reveal significantly different protein expression levels only in Group 2 individuals with NF1 relative to controls. Tubulin was used as an internal protein loading control. (B) Combined *NF1* real-time quantitative PCR (RNA qPCR) analysis of NF1-patient fibroblasts with primers designed against the 5'end, the RAS-GAP domain and the 3'end of the transcript showed no significant difference relative to control fibroblasts. All quantitative data was normalized to GAPDH levels. All data are represented as means \pm s.e.m. (*P<0.0001, one-way ANOVA with Bonferroni post-test).

Supplementary Figure 2. Water maze analysis of *Nf1+/-* **mice.** (**A**) *Nf1+/-* mice exhibited similar numbers of ambulations to WT controls. (**B**) *Nf1+/-* mice exhibited similar vertical rearing frequency compared to their WT controls (rmANOVA). Escape latencies, path lengths and swimming speeds on the (**C**) cued and (**D**) place trials in the Morris water maze were not significantly different from the WT controls (rmANOVA).

Supplementary Figure 3. Water maze analysis of $Nf1^{FFC}$ mice. $Nf1^{FFC}$ mice exhibited similar (A) ambulations and (B) vertical rearings as control mice (rmANOVA). $Nf1^{FFC}$ had similar escape latency, path length and swimming speeds on the (C) cued and (D) place trials in the Morris water maze (rmANOVA).

В

Supplementary Figure 4. Behavioral analysis of $NfI^{TH+/-}$ and $NfI^{TH+/-}$ mice. (A) Time spent in target quadrant is significantly reduced in $NfI^{TH+/-}$ compared to $NfI^{TH+/+}$ mice, but not in $NfI^{TH+/-}$ relative to $NfI^{*TH+/+}$ mice (*P=0.014; Student's t-test). The tests were performed separately with no significant differences between the two control groups. As such, all four groups were subsequently

analyzed collectively. (**B**) All NfI^{TH} mice showed spatial bias, spending significantly more time in the target quadrant than the other quadrants during probe trial 2 of the Morris water maze test (*P<0.0001; two-way ANOVA with Bonferroni post-test). $NfI^{TH+/-}$ and $NfI^{TH-/-}$ mice exhibited similar (**C**) ambulations and (**D**) rearings as control mice (rmANOVA). $NfI^{TH+/-}$ and $NfI^{TH-/-}$ mice exhibited similar escape latencies, path lengths, and swimming speeds on the (**E**) cued and (**F**) place trials in the Morris water maze.