
Supplementary Model

1 Summary

In this supplementary note, we build a stochastic model of RecBCD’s action on a DNA double
strand break (DSB). As explained in the main text, the goal is to use this model to estimate
the key biophysical parameters describing the mode of action of RecBCD in vivo. Given a set of
parameters, the model can be used to assign a likelihood to our experimental data. Whichever
set of parameters maximises this likelihood will provide the estimate we seek.

The model is of a hybrid “mechanistico-genomic” nature. On one hand, it draws from tra-
ditional stochastic modeling (discrete-time Markov chains) to represent the progression of the
RecBCD complex on DNA and the various stages of DNA resection after a DSB; on the other
hand, it incorporates precise genomic information to fix the position of Chi sites which are the
master triggers of this process. It is this somewhat unusual combination of mechanistic and ge-
nomic information which allows us to exploit the data quantitatively and use it to investigate
some of its underpinning biophysics.

This note is organised as follows. First, we review the extant knowledge and detail the sim-
plifications we make to obtain the structure of our model. As is generally the case, the exercise
of setting up the model is an excellent way to integrate the current biological understanding of
the process. With the basic modeling choices in place, we analyse the mathematical structure
of the model. We find that the model is simple enough that one can derive a closed formula for
the resected single-stranded DNA segments produced by our idealised stochastic process. Then,
we use this formula to compute the likelihood of the actual data according to various choices of
parameters, and narrow down on a most likely set thereof. Finally, we expand on the discussion
of our results presented in the Main Text.

2 Model

2.1 The mechanism of action of RecBCD

Extensive biochemical characterisations reviewed in Ref. [3] and in Ref. [9] demonstrate that the
RecBCD complex loads on a DSB and translocates along DNA until it recognises a Chi site. Chi
recognition is not certain, and RecBCD may read through several Chi sites before recognising one.
Before recognition, the RecB and RecD motors are both engaged. As RecB is slower than RecD,
a single strand loop accumulates ahead of RecB. Upon recognition, RecB becomes the lead motor
and RecBCD’s activity is modified so that the 5’ strand is degraded, while RecA gets loaded on
the 3’ overhang. The loop formed prior to Chi recognition contributes to the 3’ resected end that
starts at the recognised Chi. Fig. 1 summarises the two stages of the resection process. Eventually
RecBCD stops loading RecA and dissociates from DNA. This model is equally compatible with
biochemical data of RecBCD activities obtained when the concentration of magnesium exceeds
that of ATP or when the concentration of ATP exceeds that of magnesium.

2.2 Modeling choices

We translate this molecular knowledge in a series of modeling decisions and simplifying assump-
tions which we detail below. First, we model the recognition of a Chi site as a stochastic event.
This seems natural as it is well observed that Chi recognition is not deterministic, and indeed
only a stochastic model will allow us to get quantitative estimates on this important aspect of
the process. Specifically, we assume that Chi sites are recognised by RecC with a probability pχ
which does not depend on the distance from the DSB, nor does it depend on the number of Chi
sites previously encountered by RecBCD.
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Figure 1. Sketch of DNA resection by RecBCD. Left panel - before Chi recognition: the RecB
and RecD motors move along DNA and the RecB motor lags behind the RecD one; a loop
forms ahead of RecB. Right panel - after Chi recognition: the entire RecBCD complex
undergoes a conformational change which directs RecB’s nuclease activity to the 5’ strand, and
induces the loading of RecA on the 3’ one. In this schematic representation, the Chi site is
shown held in its recognition site. However, the Chi site will be released either by disassembly
of the RecBCD complex or at some point prior to this and the second single-stranded region
will be converted from a loop to a tail.

We also model RecBCD’s translocation in a stochastic way. The specific translocation mode
depends on whether a Chi site has already been recognised or not. Before recognition, to take
into account the different speeds vB , and vD of RecB and RecD, we distinguish two types of
steps:
- one where the RecB and RecD motors move in unison with probability p−;
- one where only the faster one, RecD, moves with complement probability p+ = 1− p−.

In this mode, the mean ratio of the distances covered by RecD and RecB after any number
of steps is given by 1/p− (see §2.4), hence the speed ratio of the two motors is given by vB/vD =
p− ≤ 1. This means that, consistently with Ref. [12], the model assumes that vB ≤ vD.

Together with pχ, estimating the speed ratio p− is a key objective of the model.
After Chi recognition, the 3’ strand is extended further and RecA is loaded on this strand. In

this second mode, we assume that RecA is loaded uniformly on the single strand and we suppose
that there is a constant probability pstop for RecBCD to stop loading RecA (or to fall off) at
each step.

We write τ1 for the length of the single stranded loop (on the 3’ strand ahead of RecB) at the
time a Chi site is recognised. The mean value of τ1 depends linearly on the distance of the said
Chi site from the original DSB - the further the Chi site, the longer the loop. Similarly, we write
τ2 for the length of the single strand extension after Chi recognition and until RecBCD stops
loading RecA (and possibly dissociates from DNA). Differently from τ1, the value of τ2 does not
depend on which Chi site is recognised.

We also assume that the RecB subunit starts loading RecA only after Chi recognition (on
the 3’ resected strand). This means that the resected segment will begin at whichever Chi site is
recognised and will have a total length of τ1 +τ2. And finally, we assume that whenever RecBCD
falls off DNA before having recognised a Chi, the obtained single strand is not observable in the
experiment as no RecA has been loaded.

Putting our choices together, we obtain a stochastic model (a discrete-time Markov chain)
which generates the 3’ resected segment onto which RecA is loaded. The model uses a restricted
set of parameters P which consists of pχ, p−, and pstop. Its overall structure is described in Fig. 2.

The model also includes the spatial configuration of Chi sites on the DNA. Let I = {1, . . . , c}
be the set indexing the Chi sites in order of appearance after the DSB, we write λi for the
distance of the ith Chi site from the DSB with λ1 < . . . < λc. Because we know the genome
sequence of the strain of interest, and the sequence of the Chi sites (5’-GCTGGTGG-3’), there
is no need to make these sites explicit parameters of the model. It has been suggested that other
sites can act as Chi-like motifs [2], but these are weaker and we do not take them into account.
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Figure 2. Decision tree for the model of DSB resection by RecBCD: x, y represent the
respective DNA positions currently read by RecB and RecD; when x is a Chi site, with
probability pχ RecBCD switches to the mode where only 5’ is degraded, else both motors
continue to translocate along the dsDNA as before.

2.3 Variants

There are several other modeling options we could have considered. Let us mention two. A natural
way to enrich the model would be to allow for reversible translocation of the motors, following the
lines of the toy bimotor model developed in Ref. [10]. This would result in a smoother behaviour
and potentially describe better the finer details of the biophysics of the motors. Another natural
elaboration is to assume stochasticity in the parameters vB , vD governing the speed of the motors
on DNA. Indeed, it has been shown recently that, in vitro, the pre-recognition translocation speed
of RecBCD is itself fixed for an entire run by initial stochastic molecular events [7]. We discuss
later whether incorporating this particular observation could result in a useful refinement of our
model. With the simple model which we employ first, there is no need to predict the kinetics
of the operation of RecBCD, and therefore no need to calibrate the time unit implicitly in our
discrete-time modeling.

2.4 Derivation of the single strand distribution

There are three sources of randomness which jointly determine the segment produced by RecBCD:
- Y the (index of the) Chi site recognised by RecC,
- τ1 the length of the single strand loop at the time a Chi site is recognised, and
- τ2 the additional distance travelled by RecBCD after having recognised a Chi site.

In the following, we derive a simple formula for the distribution of these segments and their
total length τ = τ1 + τ2, and for the probability Pr(x|P) that a nucleotide x is part of a segment.

Our first step is to calculate τ1, assuming the Chi site recognised is at distance λ from the
DSB. The value of τ1 is given by the number of steps where RecB has not moved, and which
have therefore resulted in extending the loop ahead of RecB, by the time RecB reaches λ.

Let B−(X = k|n, p) =
(
n+k−1

k

)
pn(1 − p)k denote the probability that a random variable

X, distributed according to a Negative Binomial with parameters n > 0 and p > 0, takes a
non-negative integer value k. The values of X track the number of failures needed to obtain n
successes, each trial being independent, and p being the common probability of success. This
translates directly to our setting, with n being the number of moves of RecB prior to Chi
recognition, and p being p− the probability of RecB moving.

Hence, when RecB arrives at position λ, RecD is ahead at position λ+ τ1, with the distance
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between the two, namely τ1, being distributed as:

Pr(τ1 = k) = B−(τ1 = k|λ, p−) (1)

From this, we can write an explicit formula for the mean length of the loop as a function of λ -
the position where recognition happens (measured as a distance from the DSB):

τ1 = λ(1− p−)/p− (2)

This formula is useful to evaluate the impact of p− on the length of the loop. We can see from
this that the mean ratio of the distances covered by the two motors is the mean of (λ+ τ1)/λ. As
a negative binomial has mean n(1−p)/p, we find that the mean speed ratio is 1 + (1−p−)/p− =
1/p− = vD/vB . In other words, p− is none other than the vB/vD speed ratio.

Our second step is to evaluate the additional distance τ2 travelled by RecBCD (with only
RecB engaged, and the 5’ strand being degraded) after recognition of the Chi site and until RecA
loading stops. The 3’ strand is extended until RecBCD stops loading RecA and/or dissociates,
hence τ2 follows a geometric distribution with parameter pstop. We will write G(X = k|p) =
B−(X = k|1, p) = (1 − p)kp for the geometric distribution of parameter p where the random
variable X tracks the number k ≥ 0 of failures.

Taking into account the fact that τ1 and τ2 are independent variables, we get the following
expression for the distribution of the total length τ = τ1 + τ2 of the segment produced by
RecBCD, conditioned on the Chi site at λ being recognised:

Pr(τ = z|λ) =
z∑
k=0

B−(τ1 = k|λ, p−)G(τ2 = z − k|pstop) (3)

The next step is to obtain the joint distribution of the 2D-random variable (τ, λ) where τ is the
length of the segment, and λ is the distance from the DSB where the segment starts. As in our
simple model, the DNA is always degraded up to the recognised Chi, λ takes values in the set
of distances of Chi sites from the DSB, namely (λi;∈ I). The index Y of the Chi site eventually
recognised is distributed as G(Y = i+ 1|pχ) for 0 ≤ i < |I|. (The offset by 1 comes from the fact
that we start numbering Chi sites at 1).

Putting our calculations together we get the joint distribution:

Pr(τ = z, λ = λi) = G(Y = i+ 1|pχ)

z∑
k=0

B−(τ1 = k|λi, p−)G(τ2 = z − k|pstop) (4)

From this one can compute the hit probability of a nucleotide x, that is to say the probability
of x to be included in the segment defined by τ and λ:

Pr(x|P) =
∑

{i∈I|λi≤x}

∑
{z≥x−λi}

Pr(τ = z, λ = λi) (5)

Note that the hit probability at x is zero unless one of the Chi sites before x is recognised. In
particular, a ‘runaway’ RecBCD which fails to recognise any Chi, generates no segment and
induces no RecA loading. Note also that the sum

∑
x Pr(x|P) is not 1, as many x’s receive hits

simultaneously. In fact,
∑
x Pr(x|P) is the mean number of hits, that is to say the mean length

of the resected segment.
The hit probability depends strongly on the particular set of parameters P and we will

exploit this dependency to estimate our three parameters: pχ, p−, and pstop. By sampling the
set of parameters, we can compute for each set how likely the data are according to this set
-a quantity defined as the likelihood of the parameter set (see below for a precise definition).
Provided we can do this sampling efficiently, we can obtain a precise ‘heat map’ of the parameter
space, whose peaks will denote the maximally likely values of the parameters.

2.4.1 An approximation

In order to sample efficiently our parameter space, we use an approximation of Pr(x|P) and
replace τ1 by its mean λi(1−p−)/p−. This is equivalent to supposing that the speed ratio vB/vD
is constant.
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Figure 3. We use here for comparison a single transition site positioned at 1000 with
pstop = 0.01, p− = 0.5, pχ = 0.3. Hence α = 2 and the approximation (green) of
Pr(x|λ = 1000,P) is flat until position 2000. We see that it is quite close to the exact
calculation (red).

With this approximation the expression for the hit probability, conditioned on recognition
happening at λi, simplifies to:

Pr(x|λ = λi,P) = 1{λi≤x≤αλi} + (1− pstop)x−αλi1{x>αλi} (6)

with α = 1 + (1 − p−)/p−, and 1A the indicator function for A. This approximation incurs a
negligible loss of precision as we see in Fig. 3 for a set of representative parameters. In general,
the normalised error on the hit probability will be of the order of the coefficient of variation
1/
√
λi(1− p−) which quickly becomes negligible as λi increases, as the closest Chi sites stand

at 3kb from the DSB.

3 Data

The data consist of six data sets corresponding to the strains carrying 1 to 6 Chi sites at 3kb on
the origin proximal side of the DSB. We focus on a 100kb region X on the origin proximal side
of the DSB, as beyond this distance the signal reaches background noise level. This region does
not contain any DSB-independent RecA binding loci (see Main Text) thus allowing us to apply
the model described above on the entire region.

We use as input the 50bp reads mapped on the reference genome using novoalign version 2.0
(see Supplementary Methods). In order to compensate for any bias introduced by PCR amplifica-
tion of DNA fragments before sequencing, multiple duplicate fragments (fragments starting and
ending at the same positions) are replaced by a single 50bp read. The data are then processed by
dividing the region in 250bp long non-overlapping bins and aggregating the reads that fall within
each bin. The size of the bin is chosen as a trade-off between data robustness and resolution. As
the bin size is much smaller than the expected size of a single strand coated by RecA (which is
in the order of several kb) resolution should be minimally affected.

It remains to define and measure the background level of the RecA signal. To do this, we
assume that there is no RecBCD-mediated loading of RecA before the Chi sites which stand
closest to the break at about 3kb. The RecA signal seen in this Chi-less region is treated as
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background, and we subtract its average level from the the binned data before comparison with
the model.

3.1 Comparing model and data

In order to compare our model and the data, we rank sets of parameters P according to the
probability they assign to the processed data within the region of observation X (see above). For
adequate comparison the model results are aggregated in bins of 250bp. One of the parameters
which has a dimension, namely pstop which is the inverse of a distance, is divided by the bin size
250.

The probability of detecting a nucleotide x in X (or the probability of observing a hit at x)
can be written as:

F (x|P) =
Pr(x|P)∑
x∈X Pr(x|P)

(7)

This simple model assumes that the DNA fragments that are read are of the same length
and located at identical positions as the initial single strand fragments onto which RecA is
loaded. It also assumes that the DNA fragments are distributed uniformly and not biased by the
sequence. This assumption is supported by the following arguments: (i) DNA fragments produced
by sonication at the start of the ChIP process are unaffected by RecA binding. Hence fragments
whether covered by RecA or not have the same probability of being sheared. (ii) As said above,
PCR generated duplicates (identical fragments) are discarded, and then only the first 50bp (out
of an average length of the fragment of 200bp) of each remaining sequenced fragment is retained
in the final hit count. (iii) The pileup data generated from the input samples (without RecA
pulldown) show no sequence bias in the double strand break region (Fig. 4) (we note that the
sequence GC content does not vary significantly in this region which does not contain horizontally
transferred segments). (iv) While E. coli replication mechanism will lead to regions close to the
origin showing a higher DNA copy number than regions close to the terminus of replication,
the variability on the analysed region given a cell doubling time of 40 minutes is 0.25% and is
therefore negligible.
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Figure 4. Two replicates of the hit counts per 1 kbp obtained from sequencing without RecA
immuno-precipitation on the region of interest

3.2 Parameter estimation

The amount of DNA obtained before PCR amplification (of which the only role is to produce
enough material for sequencing) is small enough that with a very high probability, no two reads
come from the same individual DSB event. This means that the hits recorded from each read are
approximately statistically independent. Hence we can conceptualize the experiment as drawing
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repeatedly and independently from a pool of nucleotides (the total amount of DNA collected in a
given experiment), some of them being marked (included in a resection segment), and some not.
Then again, because the sample taken from the pool is extremely ‘thin’, we can assume that the
drawing is with replacement, and follows therefore a multinomial distribution. The likelihood of
the data, can then be written to a very good approximation in this simple way:

L(n|P) = C(n)
∏
x∈X

F (x|P)nx (8)

where X is our 100kb region of interest, x ranges in the observation region X, n is the sequence
nx of x’s hit counts in the data, and C(n) is a multinomial coefficient. Taking a logarithm of
the above, and forgetting C(n) which does not depend on P, and therefore plays no role in the
maximisation of L, we arrive at the following objective:∑

x∈X
nx logF (x|P) (9)

that is to say we wish to find the value of P which maximises the above expression.
To estimate this best set of parameters, we follow a simple strategy and sample the [0, 1]3

interval as follows:
- [0.5, 1] with step size 10−2 for p− = vB/vD,
- [0.1, 0.7] with step size 10−2 for pχ,
- [0.810−4, 1.2× 10−4] with step size 4× 10−6 for pstop.

The sampling was implemented using a Matlab script (available upon request) to compute
the log-likelihood and locate the global maximum. The obtained optimal values are shown in
Fig. 5. The box plots describe the likelihood of each parameter in the neighbourhood of these
optimal values (see below).

3.3 Discussion

As one can see in Fig. 3 (Main Text), our parsimonious model reiterates the data rather well for
the optimal parameters. This suggests that the model has indeed captured some of the salient
aspects of the mechanisms at play in the real system.

To gauge the local log-likelihood distribution at higher resolution than our initial grid sam-
pling, we ran a Metropolis-Hastings algorithm starting at the previously identified global maxi-
mum. The jump sizes are taken to be uniformly distributed within ±ε, where ε is the resolution
of the mesh used in the grid sampling (see right above). The associated random walk samples
the immediate neighbourhood of our best estimate (10000 steps for each data set). The results
shown as box plots in Fig 5 confirm the presence of strong local maxima.

With the obtained parameters, the size of the loop, namely τ1 in our notations, will be of the
order of 0.05/0.95 × 102kb ∼ 5kb at the far 100kb end of the Chi site range in X (the Chi sites
most distant from the DSB), while τ2, the other component of the length of the single strand is
independent of the site of recognition and of the order of 1/pstop ∼ 10kb. The resected segment
will take a range of values which is bounded below by τ1. As the efficiency of the search for an
homologous sequence for repair depends on the length of the segment, the τ1-“loop” might have
a determinant role to play. In addition, the loop also plays a role in the loading of RecA, and
therefore efficient loading might also depend on τ1.

The values predicted for pstop and vB/vD = p− are stable across the 6 different data sets, as
they should, as these values are meant to capture mechanistic parameters that are independent
of the conditions of the experiments. On the other hand, the value of the recognition probability
varies from one data set to the next: there is a decrease in the predicted pχ as the number of Chi
sites in the initial array increases. The Chi sites in the array are separated by only 10bp. The
trend which we observe in pχ is likely due to them being placed too close in the array for the
Chi recognition subunit, RecC, to work independently on each site. This means in turn that the
most robust estimate of pχ is likely to be found in the case of the array containing 1 Chi site.
We will focus on this data set below.

3.4 Model comparison

Estimates of vB/vD using our initial model (referred to below as the basic model) are close to 1
and substantially higher than reported in the literature [9]. This raises the question as to whether
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Figure 5. Boxplots describing the likelihood of the three model parameters pstop (top),
p− = vB/vD (middle), and pχ (bottom) in the neighbourhood of the optimal values for each of
the six strains (enumerated from 1 to 6 on the x-axis). The local distribution is obtained by a
Markov Chain Monte Carlo exploration of the neighbourhood starting at the optimum. The
boxplots centre lines show the medians; box limits indicate the 25th and 75th percentiles;
whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers
are represented by dots.
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the signal in the data is strong enough to allow a correct estimation of vB/vD or whether the
model would fit the data equally well if vB/vD was simply fixed to 1. In that case, the actual
vB/vD may still be different from 1 as observed in vitro, but this would suggest that the data
do not allow its correct estimation. To compare the performance of the basic model when fixing
vB/vD to 1 or estimating it from the data, we used a BIC (Bayesian Information Criterion [8],
[6]) score. BIC takes into account the log-likelihood (L) of the data but penalises models with
higher complexity (i. e. a larger number of independent parameters (q)) to a greater extent than
conventional log-likelihood ratio tests. The BIC score is defined as follows:

BIC = −2L+ 2q log n (10)

where n stands for the total number of observations n =
∑
x nx. Note that we use the objective

function defined in Eq.9 instead of the true log-likelihood L to calculate the BIC score in Eq.10.
The objective function differs from the true log-likelihood by a function dependent on the data
only (logC(n) in Eq.8) but not on the parameters of the model. This is a convenient strategy
since the part of the log-likelihood function independent of the parameters is not necessary to
compare the models. Table 1 shows the BIC scores of the models where vB/vD is either fixed to
1 or estimated. In all cases except the data set with an array of 6 Chi sites, the model where
vB/vD is estimated from the data is strongly preferred, indicating that vB/vD is important to
explain the data. In the case of the 6 Chi array, most of the signal is concentrated at the array
and there is little signal away from the DSB. The estimation of vB/vD is directly dependent on
τ1, and τ1 is linearly dependent on the distance from the DSB and is better estimated if there
is enough signal away from the DSB. It is therefore not surprising that in that dataset vB/vD
cannot be estimated reliably.

Table 1. BIC scores computed for both models under consideration and all 6 strains with
different number of Chi sites

.
N Chi BIC(vB/vD = 1) BIC(vB/vD < 1, estimated from data) Best Model

1 92145 92087 vB/vD estimated (very strong)
2 188849 188701 vB/vD estimated (very strong)
3 111294 111197 vB/vD estimated (very strong)
4 90378 90319 vB/vD estimated (very strong)
5 80722 80652 vB/vD estimated (very strong)
6 86471 86481 vB/vD fixed (strong)

3.5 Mixture model

So far, our model is assuming a constant immutable ratio between the velocities of the two motors
in RecBCD. But, recent in vitro experiments [7] demonstrate that, in fact, RecBCD operates (at
the single molecule level) with a bimodal distribution of velocities. It is tempting to investigate
whether a mixture between two modes described by different sets of parameters would explain
the data better. The new model can be described as follows:

Pr′(x | r,P1,P2) = r · Pr(x | P1) + (1− r) · Pr(x | P2) (11)

where r is the probability of choosing the first set of parameters P1 and 1−r is the probability
of choosing P2 accordingly.
To estimate this best set of parameters, we follow a simple strategy and sample the [0, 1]6 interval
in two rounds as follows:
Step 1:
- [0, 1] with step size 10−1 for p1− = v1B/v

1
D,

- [0, 1] with step size 10−1 for p1χ,
- [0, 1] with step size 10−1 for p2− = v2B/v

2
D,

- [0, 1] with step size 10−1 for p2χ,
- [0.8× 10−4, 1.44× 10−4] with step size 4× 10−6 for pstop.
- [0.5, 1] with step size 10−1 for r
Step 2:
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- [0.8, 1] with step size 2× 10−2 for p1− = v1B/v
1
D,

- [0.2, 0.4] with step size 2× 10−2 for p1χ,
- [0.4, 0.6] with step size 2× 10−2 for p2− = v2B/v

2
D,

- [0.7, 1] with step size 2× 10−2 for p2χ,
- [0.8× 10−4, 1.2× 10−4] with step size 4× 10−6 for pstop.
- [0.5, 0.6] with step size 2× 10−2 for r

We find that the optimal mixture is driven by r = 54% for the first set of parameters:
p1χ = 0.26, v1B/v

1
D = 0.86, and 1 − r = 46% for the second one: p2χ = 0.86, v2B/v

2
D = 0.58 and

pstop=1.04× 10−4.
Fig. 6 shows the induced split in the space of parameters. The first thing to notice is that this

is a ‘real’ mixture, in the sense that the two modes are very distinct, and their respective weights
are similar. In particular, the recognition probabilities become very different in both modes, and
different from the initial model and the in vitro estimates [4, 11,12].

0.44,0.95

0.26,0.86

0.86,0.58

0.1

0.5

0.6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

v B
/v
D

0.7

0.8

0.9

pChi

54%
mixed model

low recognition
high speed ratio

46%
mixed model
high recognition
low speed ratio

initial model
optimum

0.4,0.6

in vitro
estimates

Figure 6. The two parameter sets in the mixture model compared to the optimal parameters
of the initial model. Percentages indicate the probabilities of the low-recognition/high-ratio
mode (46%), and of the high-recognition/low-ratio mode (54%).

Fig. 7 shows the marked improvement on fitting for the first peak (at the position of the first
Chi). The improvement is noticeable both in the proximal region, where the high-recognition
mode allows the model to fit better the initial peak (solid line), and compares well with the
initial fit (dotted line); and, at the far end, where the low-recognition mode delineates the finer
details of the data better as well (one sees the presence of the two Chi sites clearly in the
prediction). This is confirmed by the BIC scores (see Table 2) that indicate a strong preference
for the mixture model.

It is instructive to compare the predicted mean values of τ1 for all four parameter sets (in-
cluding the one coming from in vitro estimates [12]. If we compare these mean values at 60kb we
get:

in vitro estimates: 60 4
6 ∼ 40kb

initial model: 60 5
95 ∼ 3kb

mixture model:
- low recognition mode 60 14

86 ∼ 9kb
- high recognition mode 60 42

58 ∼ 43kb
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Figure 7. Comparison of the 1 Chi data set and the predictions of the optimal mixed model
(solid line, pstop = 1.04× 10−4, p1χ = 0.26, v1B/v

1
D = 0.86, p2χ = 0.86, v2B/v

2
D = 0.58, r = 54%),

and the optimal basic one (dotted line, pstop = 1.12× 10−4, pχ = 0.44, v1B/vD = 0.95). The Chi
sites are depicted by green circles except for the position of the Chi array which is in red. The
grey line shows the raw data binned into 250 bp bins. The red curve represent the smoothed
data with a ’loess’ filter (bandwith 5700, span 0.057).

At first, the prediction for the high recognition mode of the mixed model (45kb) seems im-
probably long. However, it is important to note that this model predicts a very high probability
of Chi recognition. Given that Chi sites are present on average every 5kb on the chromosome [13],
in this mode RecBCD would very rarely travel such a large distance before Chi recognition. One
can calculate the mean τ1 over all Chi sites, assuming a Chi site every 5kb and taking into account
the probability of Chi recognition: both the high and low recognition modes of the mixed model
have a mean τ1 of the same order of magnitude (5 14

86
100
26 ∼ 3.1kb and 5 42

58
100
86 ∼ 4.2kb). This value

is significantly higher than that predicted from the initial model (5 5
95

100
44 ∼ 0.6kb). It might be

that a minimal loop size is important to ensure efficient loading of RecA at Chi which could be
reflected in the predictions of the mixed model.

Table 2. Comparison of the mixture model and the basic model for the data set with 1 Chi
site in the Chi-array. The BIC scores have been computed using Eq. 10

BIC basic model(vB/vD estimated) BIC mixture model Preferred model
92087 91735 mixture model (very strong)

As all molecular systems, the double-strand break repair system is faced with trade-offs. The
density of Chi sites found on the chromosome together with the imperfect recognition thereof
could be interpreted as a sign that recognition accuracy is traded off against some additional
desirable properties. Such properties could be: speed of execution of the resection, optimisation
of the length of the segment on which RecA will be loaded and the search for homology will
be based [5], control of the variance of this length. Taking these new quantitative insights into
account, and insofar as the model captures well the general features of the hit counts, and their
dependency on the variations of the Chi distributions, one can use it as a quantitative tool in
the investigation of the reasons for the genomic distribution of Chi sites [13]. Specifically, one

11



can ask whether this distribution is judiciously adjusted to the generation of a resected single
strand which optimises the performance of the RecA-based homology search and hence of the
entire DSB repair process. The hypothetic single molecule in vivo bimodal behaviour, which our
data-driven model suggests, would avail the cell with a larger palette of repair options, and thus
should be integral to this investigation.
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