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SI Figures 
 

 

Figure S1 Enrichment and depletion analysis of differentially expressed (DE) genes in eight adaptively evolved strains (1). (A) Proportion 

of core genes that are differentially and non-differentially expressed. Genes were considered differentially expressed if they were 

commonly up- or down-regulated in six or more strains, as in (1). (B) A p-value cutoff of 0.05 (below the horizontal lines) was used to 

determine significant depletion. 
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Figure S2 Correlation coefficients of proteomics data between MG1655 (2) and four strains of BW25113 (3). Correlation coefficients were 
calculated using Z scores of the log2-transformed proteomics data sets. Diamonds correspond to the mean coefficient across strains, 
while circles correspond to the correlation coefficient for each strain. 
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Figure S3 Transcriptional and post-transcriptional regulation of core vs. non-core genes of E. coli. (A) Transcription start sites (TSSs) per 
gene in core (blue) and non-core (red) proteomes. (B) Sigma factor binding patterns of core (blue) and non-core (red) proteomes. (C) 5’ 
UTR length of genes in the core (left) and non-core (right) proteomes. We used published TSS (4) and sigma factor binding (5) datasets for 
the analyses. 

 

 

 

Figure S4 Transcriptional and post-transcriptional regulation of core vs. non-core genes of K. pneumoniae. (A) Transcription start sites 
(TSSs) per gene in core (blue) and non-core (red) proteomes. (B) 5’ UTR length of genes in the core (left) and non-core (right) proteomes. 
We used published TSS datasets (4) for this analysis. 
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Figure S5 Sequence conservation of genomic regions surrounding translation start sites between E. coli and K. pneumoniae. Overall, 
genes in core proteome have higher level of sequence conservation than genes not in core proteome in all nucleotides for which 
nucleotide conservation level was measured. This difference in conservation level is implicated in the level of protein similarity of genes 
in the core proteome and genes not in the core proteome. When conservation level of 1st, 2nd, and 3rd nucleotides in each codon of 
coding region was compared, the 2nd nucleotide showed the least difference between genes in core proteome and genes not in core 
proteome, and the 3rd nucleotide showed the largest difference in comparison between two groups of genes. Published TSS datasets (4) 
were used for the analysis. 
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Figure S6 Characteristics of the orthologs of the E. coli core proteome in B. aphidicola. (A) Pearson coefficient of determination for core 
and non-core genes. (B) Spearman rank correlation for core and non-core genes. (C) Based on proteomics data (6), the ME model 
accounts for 80% of the orthologous genes in B. aphidicola. (D) Based on the same proteomics dataset, the model-based core proteome 
and two minimal genomes account for 56%, 50%, and 47% of the B. aphidicola orthologous proteome, respectively. Core genes showed 
higher Pearson and Spearman rank correlations than non-core genes, although these correlations were not statistically significant based 
on Fisher’s Z-transform and Zou’s confidence interval methods (7) and a permutation test. 

 

 

Figure S7 Overlap of the core proteome genes with two minimal organisms. (A) ROC plot for both B. aphidicola and M. genitalium. (B) 
ROC curve for B. aphidicola only. (C) ROC curve for M. genitalium only. The ‘cutoff’ was chosen to maximize the sum of sensitivity and 
specificity. 
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Figure S8 Expression of core and non-core genes, grouped by COG across 444 transcriptomics profiles (see Methods). The p-values are 
calculated from one-sided Wilcoxon rank-sum tests, with the alternate hypothesis that core gene have higher expression 

 

Figure S9 Comparisons of rich media ME model simulations with the computationally derived core proteome. A: The rich media 

simulation shows a large overlap with the core proteome, and around 50% of both the core and rich media simulations are composed of 

E (expression) genes(8). Most of the discrepancy between the core proteome and rich media genes are due to differences in M 

(metabolic) genes. This indicates that the expression machinery is consistent even under rich media environments where the cell can 

uptake all necessary metabolites. B and C: Comparison between rich media simulation, core proteome, and the paleomes defined in Gil 

et al. and Mushegian et al. The rich media simulations only marginally improve overlap with either of the paleomes. This indicates that 

many of the paleome genes are already accounted for by the core proteome, while those unaccounted for by the core proteome are 

currently outside the scope of the ME model (e.g. replication) 

https://paperpile.com/c/QP0pQg/kDMp


7 

 
 
Figure S10 Enrichment and depletion of core genes in low-, mid-, and high-variation gene sets identified in the EcoMAC microarray 

compendium. (A) Distribution of the coefficient of variation (CV) of genes across arrays in EcoMAC. (B-C) The fraction of core genes that 

are in the low (<25th percentile), mid (between 25th and 75th percentiles) and high (above 75th percentile) variation gene sets for core 

and non-core genes. (D-E) Enrichment and depletion P-values of core proteome genes in low-, mid-, and high-variation gene sets. 

Significant enrichment or depletion (P-value < 0.01) is indicated in bold. Low, mid, and high variation sets were defined as genes with CV 

below the 25th, between 25th and 75th, and above the 75th percentiles, respectively, similar to Mar et al. (2011). Core genes showed 

higher fraction of low-CV, and lower fraction of high-CV genes than non-core; both results were statistically significant (permutation test, 

P-value < 0.0001). 
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Figure S11 Variation in core proteome size (i.e., number of genes in the core set) with the number of conditions required for a gene to be 

expressed in ME simulations. The arrows point to notable reductions in core proteome size where # of conditions expressed are 314 and 

329. At the first arrow (x=314), 29 genes are dropped from the core because they are expressed in 313 conditions but not in 314. 

Accordingly, the 37 conditions in which these dropped genes are not expressed are listed in the figure. Similarly, at x=329, 32 genes are 

dropped--the 25 conditions in which these genes are not expressed are listed in the figure. Prefixes C_, N_, P_, S_ indicate that the listed 

nutrient is an alternate carbon, nitrogen, phosphorous, or sulfur source, respectively. 
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Figure S12 Fraction of simulations in which genes were expressed, for 300 random perturbations. Each randomly perturbed simulation 

corresponds to a ME simulation where effective rate constants were randomly perturbed. under (A) glucose minimal medium and (B) rich 

medium conditions. For glucose minimal media, the median percentage of samples where a core gene was expressed 100%, and the 

mean was 95%; non-core genes had median 0% and mean of 13%. For rich media, the percent expressed for core genes was 100% 

(median) and 72% (mean); non-core genes were expressed 0.67% (median) and 10% (mean). 

 

 
 
Figure S13 PCA plot of the EcoMAC compendium, transformed to log2-fold-change, relative to three reference samples (glucose M9 

aerobic-grown MG1655). Colors correspond to biclusters that were significantly enriched for both KEGG pathways and the core 

proteome. Grey colored dots indicate genes that were not members of these doubly-enriched biclusters. 
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Figure S14 Size and overlap of biclusters that were significantly enriched for both KEGG pathways and the core proteome. Diagonals show 

the number of genes (rows) and conditions (columns) of a bicluster. Lower triangular values show row overlap, while upper triangular 

values show column overlap. Biclusters numbers are consistent with those in Figure 3 in the main manuscript. 

 

SI Tables 
Dataset S1 List of genes in the E. coli core proteomes (ME model, Gil, Mushegian) 

(Dataset_S1_core_rich_genes_supp_1.xlsx) 

Dataset S2 Simulated translation fluxes using the ME model under 333 minimal media, rich medium, glucose minimal with 300 randomly 

sampled effective rate constants, and rich medium with 300 randomly sampled rate constants 

(Dataset_S2_sims_and_sens_analysis.xlsx) 

Dataset S3 Core proteome enrichment and depletion analysis of commonly up/down-regulated genes in adaptively evolved strains. 

(Dataset_S3_ALE_enrichment.csv) 

Dataset S4 Clustering results for 333 simulated growth conditions 

(Dataset_S4_clsutering.csv) 
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Dataset S5 Tn-seq gene essentiality results 

(Dataset_S5_tnseq.csv) 

Dataset S6 Core proteome genes that were not expressed in the Lewis et al. (2009) microarray compendium.  The rich media gene set 

included an additional 10 non-expressed genes (Dataset S6): 9 transport activities and 1 phosphate acetyltransferase activity (eutD).  

(Dataset_S6_SI_Table_core_off_in_ecoli2_clean.csv) 

Dataset S7 Biclusters identified using cMonkey 

(Dataset_S7_cmonkey_no_motifs1.xlsx) 

Dataset S8 DAVID functional annotation clustering and enrichment results 

(Dataset_S8_DAVID_clustering_supp_8.xlsx) 

 

SI Methods 
RNA-seq data preparation For RNA-seq measurements in three carbon sources (glucose, fructose, and acetate), 

HTSeq (9) was used to count reads, while DESeq2 (10) was used to obtain normalized counts and to identify 

differentially expressed genes. Wald significance tests were used in DESeq2 to test for differential expression. 

The p-values across multiple conditions were combined using Stouffer’s method (11). We finally applied 

Benjamini-Hochberg correction for multiple testing (12), resulting in a single, combined and adjusted p-value per 

gene. In preparing RNA-Seq data for hierarchical clustering, we converted RNA-Seq data into Z scores after log2-

transformation.  

Correlation between transcriptomics or proteomics data Spearman rank and Pearson correlation coefficients 

were calculated between pairs of transcriptomics or pairs of proteomics data sets using the R function 

cor.test() (13). Genes not expressed in either experiment were excluded to avoid biasing the correlation 

toward unexpressed genes. Statistical tests of difference between Pearson correlation coefficients was 

performed using Fisher’s Z-transform method and Zou’s confidence interval method (14). Both methods were 

performed using the cocor R package (7). If both methods were consistent, only the Z-transform p-value was 

reported in the text. Statistical test of difference between Spearman rank correlations was performed using a 

permutation test with 10,000 permutations. 

Multivariate analysis and clustering of simulated and measured expression profiles Affinity propagation (15) 

was used to cluster simulated translation flux profiles using the R package APCluster (16). The default q = 0.5 

resulted in 18 clusters across 333 nutrients.  

Enrichment and depletion analysis Enrichment and depletion analysis was performed using hypergeometric p-

values, with the Benjamini-Hochberg correction for multiple testing (12). 

Identification of expressed and non-expressed genes from microarrays From the normalized microarray 

compendium from (17), we removed two conditions that did not include a replicate, yielding a total of 69 

conditions. This compendium was used to identify expressed and non-expressed genes across the conditions. A 

hypergeometric test of replicate samples of each probe against 21 Affymetrix control probes was conducted, as 

described in (17). Thus, 1987 genes were found to always be expressed across the 69 conditions 

(hypergeometric test, p-value < 0.05 compared against 21 Affymetrix control probes). The core proteome 

https://paperpile.com/c/QP0pQg/sttAD
https://paperpile.com/c/QP0pQg/jqdP1
https://paperpile.com/c/QP0pQg/rld73
https://paperpile.com/c/QP0pQg/hLmgV
https://paperpile.com/c/QP0pQg/0rIzy
https://paperpile.com/c/QP0pQg/hNjqH
https://paperpile.com/c/QP0pQg/i6vyI
https://paperpile.com/c/QP0pQg/9Xzsh
https://paperpile.com/c/QP0pQg/NytG5
https://paperpile.com/c/QP0pQg/hLmgV
https://paperpile.com/c/QP0pQg/7BppW
https://paperpile.com/c/QP0pQg/7BppW
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included 305 (86% of core proteome) always-expressed genes, which was a significant enrichment 

(hypergeometric test, p-value = 8.0 × 10-28). The core proteome also included 5 genes that were never expressed 

(Dataset S6). Two (ompN and IptG) coded transport activities, one (cynT) was an isozyme for carbonic anhydrase 

activity, and two coded ribosomal RNA methylation or processing (rlmC and rluC). These few inconsistencies are 

explained by the known tendency of ME models to choose the most efficient enzymes due to a total proteome 

mass constraint (18). Improved determination of effective rate constants for enzymes is expected to improve 

these inconsistencies in the future.  

 

Comparison of B. subtilis and the E. coli core proteome B. subtilis growth simulations were run using the iYO844 

genome-scale model (19)for 95 carbon (viable in 81), 52 nitrogen, 26 phosphorous, and 12 sulfur sources. Of the 

B. subtilis genes in the iYO844 genome-scale model, we identified 225 functional homologs with E. coli using the 

SEED (E-value < 1e-5). Homologs that were in the core proteome, as defined using the E. coli ME model, showed 

significantly higher predicted frequency of utilization across 171 simulations (Wilcoxon rank-sum test, p-value = 

5.2 × 10-7). The median percentage of B. subtilis simulation conditions where core genes were predicted to be 

expressed was 84%. Finally, we identified 20 homologous core genes that were predicted to not be expressed in 

B. subtilis. Of these, 8 genes are essential in B. subtilis (20), while 11 are essential in either B. subtilis or E. coli 

(21). The remaining 9 consisted of cytochrome oxidase, leucine, histidine, and glycogen biosynthesis genes.  

We also compared the B. subtilis model with Gil and Mushegian gene sets. First, we found that the limited scope 

of the B. subtilis metabolic model resulted in a small overlap with these gene sets. Specifically, Gil et al. 

identified 178 B. subtilis homologous genes in their paleome, of which only 16 were present in the iYO844. In 

part, this is largely due to the fact that many of the core genes (200/356), as well as paleome genes from Gil et 

al. and Mushegian et al. have functions related to the transcription and translation machinery, and thus are 

found in the E (expression) portion of the ME model.  

 

ROC curves for genome overlap with B. aphidicola and M. genitalium ROC curves were constructed in R using 

the pROC package (22). The 564 E. coli orthologs of B. aphidicola APS were obtained from BuchneraBase (23).  

ME simulation across 333 growth conditions Simulations were carried out using iOL1554-ME, the genome-scale 

model of E. coli K-12 MG1655 metabolism and expression (24). A total of 333 ME-model simulations were 

performed for a base media of glucose/M9-minimal media. In each simulation, the main carbon, nitrogen, 

phosphate or sulfate source in the medium was changed, with the other three nutrient sources held constant. In 

total, 180 different carbon sources, 49 phosphorus sources, 93 nitrogen sources, and 11 sulfur sources were 

tested. 

Sensitivity analysis of core proteome and rich media ME simulations We tested the robustness of the core 

proteome, and rich media-based gene set, to ME model parameter uncertainties (Dataset S2). To this end, ME 

simulations were run with 300 randomly sampled effective rate constants (SBO:0000611). For the core 

proteome, simulations were run on glucose minimal medium; and rich medium for the rich medium gene set. 

For glucose minimal media, the median percentage of samples where a core gene was expressed 100%, and the 

mean was 95%; non-core genes had median 0% and mean of 13% (Fig. S12A). For rich media, the percent 

expressed for core genes was 100% (median) and 72% (mean); non-core genes were expressed 0.67% (median) 

and 10% (mean) (Fig. S12B).  

https://paperpile.com/c/QP0pQg/cHe3P
https://paperpile.com/c/QP0pQg/ftNjV
https://paperpile.com/c/QP0pQg/pZmaP
https://paperpile.com/c/QP0pQg/RCEwW
https://paperpile.com/c/QP0pQg/Y9DC2
https://paperpile.com/c/QP0pQg/VbCr2
https://paperpile.com/c/QP0pQg/YED7O
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Furthermore, out of 300 random samples in glucose minimal medium, cytochrome bo oxidase, bd-I oxidase, and 

bd-II oxidase were used 45%, 23%, and 56% of the time (Dataset S7). Therefore, although with fixed parameters, 

cytochrome bo oxidase was selected 100% of the time across 333 conditions, all three cytochrome oxidases 

might be considered as a set, when parameter uncertainty is considered.  

Comparison of E. coli, M. genitalium, and B. subtilis functional annotations The 564 E. coli orthologs of B. 

aphidicola APS were obtained from BuchneraBase (23). Functional overlaps between E. coli and M. genitalium 

were compared using RAST annotated FIGfams (25–27). RAST (25, 26) annotations of E. coli K-12 MG1655 

[RASTID: 511145.6] and M. genitalium [RASTID: 243273.1] were obtained using the SEED servers and RAST API 

(27). Functional overlaps were compared using RAST annotated FIGfams. FIGfams are assigned based on 

grouping of proteins that can reliably be asserted to implement identical function. Therefore FIGfams serve as a 

consistent way to compare overlapping functions between different organisms, even those as distantly related 

as E. coli and M. genitalium. A similar procedure was followed to obtain overlapping functions between E. coli 

and B. subtilis str. 168 [RASTID: 224308.1]. 

Selection and preparation of microarray compendium The EcoMAC microarray compendium (28) was used for 

clustering and enrichment analysis. We included only a relevant subset of all conditions. Thus, we excluded 

regulatory rewiring samples, as they would not represent the naturally-evolved expression patterns; we 

removed microgravity and magnetic treatment conditions; we kept only strains labeled as K12, MG1655, 

BW25113, and W3110; we removed time-dependent samples (i.e., kept arrays with Time labeled blank, WT, 

exponential, mid log phase, and mid-log phase. Finally, we had 444 relevant conditions. 

Biclustering data preparation and analysis Biclustering was performed using cMonkey (29). The data was 

provided as log2 fold-change of each expression profile, relative to a set of reference profiles. The reference 

profiles were chosen to be three MG1655 samples, all in aerobic, glucose M9 medium. cMonkey uses a Markov 

chain modeling process to determine the probability of each gene and column being in a specific bicluster based 

on a predetermined scoring algorithm. By default, the scoring algorithm weights for the presence of cis-

regulatory motifs and network association which might bias the biclustering results. To account for this, four 

separate runs were performed with two different scoring algorithm parameters (i.e., default parameters, and 

zero motif and network scoring), each in replicate, to eliminate biclusters sensitive to algorithm parameters. 

Each run was then tested for enrichment for KEGG pathways, as well as for the core proteome. Bicluster sizes 

ranged between 8 to 39 genes (median=19) by 210 to 235 conditions (median=219) (SI Dataset S). Upon filtering 

out biclusters not enriched for either gene set, we identified six KEGG pathways that were significantly enriched 

in all runs of cMonkey. These were Ribosome; Valine, leucine and isoleucine biosynthesis; C5-Branched dibasic 

acid metabolism; Thiamine metabolism; Histidine metabolism; and Phenylalanine, tyrosine and tryptophan 

metabolism.  

Determining gene essentiality from Tn-seq Genes were considered essential if the FDR-adjusted p-value was < 

0.05 and the log2 ratio of (normalized) measured-over-expected number of reads per gene was below the 

optimal cutoff as predicted by ESSENTIALS (30). 

Tn-seq 
Bacterial strains 

Tn-seq experiments were performed using the ΔhsdR strain of E. coli K-12 BW25113 obtained from the KEIO 

collection (31). Note that BW25113 has a well-defined pedigree and is closely related to MG1655 (21). Random 

https://paperpile.com/c/QP0pQg/VbCr2
https://paperpile.com/c/QP0pQg/0PGwR+awncU+Ap433
https://paperpile.com/c/QP0pQg/0PGwR+awncU
https://paperpile.com/c/QP0pQg/Ap433
https://paperpile.com/c/QP0pQg/mnDBa
https://paperpile.com/c/QP0pQg/iMYYI
https://paperpile.com/c/QP0pQg/Aqto9
https://paperpile.com/c/QP0pQg/gAQKN
https://paperpile.com/c/QP0pQg/RCEwW
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transposon mutagenesis yields in strain BW25113 were higher than that of wild-type E. coli K-12 MG1655, partly 

due to the inactivation of hsdR. Because hsdR is a non-essential, non-metabolic, and non-regulatory gene, 

deleting the gene is expected to have minimal effect on metabolism and expression machinery. Note also that 

the parental BW25113 strain already has a frameshift mutation, inactivating hsdR (32); therefore, the full 

deletion of the gene will likewise have little effect. 

Transposon library construction 

E. coli was grown overnight in LB media (3 mL). For each transposome reaction, 20 LB Kan plates were prepared. 

For each transposome reaction, three 50 mL aliquots of sterile 10% glycerol were prepared in 50 mL Falcon 

tubes and stored at 4 °C. Cells were harvested at an OD600 of 0.6, and electroporated (Eppendorf Eporator at 

2500 V; Bio-Rad electroporation cuvettes, 0.1 cm gap). Immediately after electroporation, the cells were 

incubated in 800 mL SOC medium at 37 °C. Cells were then plated onto LB Kan plates and incubated at 37 °C 

overnight. Colonies ranged between 60,000 - 90,000 colonies per library. The pooled libraries were scraped of 

the LB plates and washed 3 times with 50 mL PBS (phosphate buffered saline) to reduce nutrient carryover from 

the LB plates. They were then further incubated with shaking at 37 °C for 12 hours in M9 glucose media with 

Kan. The pooled libraries were then passaged three times, centrifuged and frozen. 

Subsequently, TruSeq (Illumina) DNA libraries were prepared by first fragmenting DNA using 350 bp insert size 

Covaris settings (5% DF, 175 W PIP, 200 cycles/burst, 50 seconds), followed by clean-up. End repair and size 

selection was then performed using settings for 350 bp insert size. The 3’ ends were then adenlyated, followed 

by ligating of the adaptors to the transposons. 

Tn-specific PCR (for primers, see Sequences of primers and library intermediates) was performed to enrich the 
library for sequences containing the transposon-chromosome junction. The following reaction was set up in a 
low-profile optical lid PCR tube: a) TruSeq gDNA library (25 ng), b) Phusion HS buffer, 5x (10 µL), c) 10 mM dNTPs 
(2.5 µL), d) 10x SYBR Green (1 µL), e) Tn primer (10 µM) (2.5 uL), f) Tn indexed primer (10 µM) (2.5 uL), g) 
Phusion (1 uL), h) H2O filled to a final volume of 50 uL. These tubes were placed in the qPCR machine and run at 
95 oC for 2 minutes, and 25 cycles 95 oC for 15 seconds, 60 oC for 30 seconds, and 72 oC for 30 seconds. Note that 
reactions were stopped ~3-5 cycles after PCR reached log amplification (~15 to 20 cycles), and tubes were 
transferred to another PCR machine for 10 minutes of final extension at 72 oC. A standard clean-up protocol was 
followed using sample purification beads (TruSeq kit). Specifically, the bead to DNA ratio was 50 µL SPB to 50 µL 
PCR reaction, and the final elution from the beads was 30 µL of water. Finally, ~30 uL of the Tn-seq library was 
recovered. The final library concentration was measured using Qubit, while fragment size distribution was 
characterized on an Agilent Bioanalyzer with an HS DNA chip. Average sizes for each library ranged between 400 
and 600 bp. Lastly, libraries were sequenced on a MiSeq using a custom sequencing primer for Read 1: 
GCATGCAAGCTTCAGGGTTGAGATGTGTATAAG. 

 

Sequences of primers and library intermediates 

https://paperpile.com/c/QP0pQg/INydX
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