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Details on Experimental Assay.
Experimental settings.

Protein preparation. G-actin solutions were prepared by dis-
solving lyophilized G-actin in deionized water and dialyzing
against fresh G-buffer (2 mM Tris, 0.2 mM ATP, 0.2 mM CaCl2,
0.2 mM DTT, and 0.005% NaN3) overnight at 4 °C. Polymeri-
zation of actin was initiated by adding 10% of the sample volume
of a 10-fold concentrated F-buffer (20 mM Tris, 20 mM MgCl2,
2 mM DTT, and 1 M KCl). For fluorescence microscopy, fluo-
rescently labeled filaments stabilized with Alexa Fluor 488 phal-
loidin (Invitrogen) were used. HMM is prepared from myosin II
obtained from rabbit skeletal muscle following a standardized
protocol.

Sample preparation. Flow chambers that consist of coverslips
(Carl Roth) fixed to microscope slides (Carl Roth) by parafilm
were prepared. The coverslips were coated with a 0.1% nitro-
cellulose solution, which was made by diluting a 2% (vol/vol)
solution (Electron Microscopy Sciences) in amyl acetate (Roth),
and were left to dry overnight before constructing the flow
chambers. The chamber has a volume of ∼30 μL, and its size is
typically three orders of magnitude larger than the length of a
single filament to prevent boundary effects. Before an experi-
ment, both actin and HMM were diluted in assay buffer (25 mM
imidazolhydrochloride, pH 7.4, 25 mM KCl, 4 mMMgCl2, 1 mM
EGTA, and 1 mM DTT). The flow chamber is incubated with
the HMM dilution, and the surfaces are passivated with a BSA
solution [10 mg/mL BSA (Sigma) dissolved in assay buffer],
before the insertion of the actin dilution. To initiate the exper-
iment, 2 mM of ATP dissolved in assay buffer is inserted into the
flow chamber along with a standard antioxidant buffer supple-
ment GOC [2 mg glucose-oxidase (Sigma) and 0.5 mg Catalase
(Fluka)] to prevent oxidation of the fluorophore. After adding
all components, the flow chamber was sealed with vacuum grease
(Bayer Silicones).

Image acquisition and preprocessing.All of the data are acquired on
a Leica DMI 6000B inverted microscope with a 100× oil objective
(numerical aperture: 1.4). Images (resolution: 1,344 × 1,024 pixels)
were captured with a CCD camera (C4742-95; Hamamatsu) via a
1.0 camera mount. The image processing software OpenBox was
used to acquire and store images. Image processing was carried out
before the curvature analysis with ImageJ. A time overlay of the
images was subtracted from each image to neglect nonmoving fil-
aments. Then, background subtraction and conversion to binary
image were performed.

Video analysis: obtaining coordinates. Filaments are identified by
labeling connected components in the binary images and then are
skeletonized using Matlab. A cubic spline fit is applied to the
skeletonized filaments to obtain subpixel resolution of the fila-
ment contour coordinates (Movies S1–S3). The coordinates are
used to determine the curvature of segments along the filament
contour (Materials and Methods).
Impact of segment length and spline fit on curvature distribution.

Impact of segment length for active case. For a thermal filament,
the curvature distribution strongly depends on the segment length
Δs (35). In stark contrast, an active filament does not show any
dependence, as can be seen in Fig. S1. Note that this statement
only applies if Δs is much smaller than the filament length L;
otherwise, any Δs dependence can be traced back to a too rough
discretization of the spline contour.

Impact of spline fit. Unlike in the simulation, where every seg-
ment of the filament is regarded as a bead with a well-defined

coordinate, the precise coordinates of the actin contour cannot be
obtained in the experiments due to resolution of the images used.
Note that even with an image with infinite resolution would not
help in obtaining the precise coordinates for the experiment
because the actin filament image is constituted by an intensity
distribution instead of well-defined bead coordinates. For this
reason, as mentioned in the previous section, the image of flu-
orescently labeled actin filaments are converted into binary im-
ages which are then skeletonized. This procedure refers to the
removal of pixels on the boundaries of objects until the objects
become a line without it breaking apart. To this end, we used
Matlab with a standard library “bwmorph” (37). Here, the
skeletonized coordinates give rise to false curvatures due to its
pixel resolution; hence, a spline fit is necessary. The coordinates
obtained from the skeletonized image are spline fitted to extract
the contour coordinates in subpixel resolution.
Evidently, the contour coordinates depend on the manner in

which the spline fit is applied, namely the number of interpolating
points used for the spline fit (Nsp). Especially when dealing with
active filaments where large curvatures can emerge, the impact
of Nsp on the resulting contour coordinates is not negligible, and
thus the curvature is sensitive to Nsp.
Here, the effect of Nsp on the curvature distribution for active

actin filaments is investigated, as can be seen in Fig. S2. Also, the
obtained contour coordinates are visually scrutinized by plotting
them on the actual image of the actin filament (Fig. S2). This pro-
cedure was implemented to minimize the curvature noise generated
by the spline fitting. For Nsp = 1,2 the images show zigzagged wrig-
gles of the contour (reconstructed from the spline fit coordinates),
which are obviously artificial.Most importantly, these wiggles have a
strong impact on the curvature distribution. The same applies to
Nsp = 10,20. In this case, too many points are being used that the
filament; thereby, the contours are not appropriately reproduced,
resulting effectively in a stiffer filament. As for Nsp = 4, wriggles still
exist, and for Nsp = 7, large curvatures are gradually cut off; there-
fore, we used Nsp = 5 for all results present throughout this work.
The validity of the visually obtain value Nsp = 5 is further ex-

amined by investigating the effect of Nsp for the case of thermal
actin filaments (Fig. S3). Only for Nsp around 5, rescaling the
curvature by κ→ κ

ffiffiffiffiffiffiffiffiffi
ℓpΔs

p
(ℓp, persistence length; Δs, segment

length) leads to a collapse of the curvature distributions on a
single curve (35). For Nsp below 5, the contours are zigzagged
and therefore easily seen to be inadequate (Fig. S2, Upper Left).
Also, increasing Nsp above 5 artificially stiffens the contour, and
again large curvatures are being lost in the spline fit process.
Therefore, for Nsp = 7,10, the collapse is absent because larger
curvatures are being lost during the spline fit process. Finally,
for Nsp = 5, we find a value of the persistence length of about
14.7 μm, which is consistent with the literature (31).
We would like to emphasize that we checked all choices for Nsp

to minimize artifacts in the data analysis. In the case of active
filaments, this was done by overlapping the spline fitting curve
onto the contour for many filament. We believe there is no other
way in which one can choose the optimal Nsp. Recall that even
with infinite resolution, the true coordinates cannot be obtained
in the experiments, unlike in the simulations. The spline fitting
method therefore aims to minimize analysis artifacts to enable
the capture of curvature values at the length scales comparable
to the resolution (≈ 0.06 μm) to a tolerable degree. Thus, at
lengths significantly smaller than 0.06 μm, this method may fail.

Tangent-tangent correlations. We also analyzed the tangent-tan-
gent correlations along the filament contour for the active and the
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thermal case (see Fig. S4). Active actin filaments driven by HMM
show a stronger decay of tangent correlations compared with the
thermal case. Moreover, the decrease seems to be inconsistent
with an exponential decay, whereas the tangent-tangent correla-
tions for the thermal case agree with an exponential decay on a
characteristic length scale given by the thermal persistent length ℓp.
The finding for the active case seems to be in qualitative agreement
with the decay of the correlation function predicted in ref. 33.

Details on the Computational and Kinetic Model.
Stochastic computational model.The computational model treats the
polymer as N discretized beads of size d, which are coupled by
harmonic springs for tangential stretching and bending. For
bending forces along the polymer contour, we use the well-
established Worm-like Chain model (25, 36), with the bending
force at bead i given by

Fbend
i =

E
d
 
∂
∂xi

X
j

Tj ·Tj+1, [S1]

where TiðtÞ denotes the tangent of the ith bead, defined as
Ti = xi − xi−1=jxi − xi−1j, and E (energy × length) is the bending
rigidity. Each bead is exposed to uncorrelated thermal fluctua-
tions ξðtÞ

�
ξiðtÞξj

�
t′
��

= 2μkbTδ
�
t− t′

�
δij, [S2]

where μ denotes the hydrodynamic mobility of the bead. We
neglect filament stretching by choosing the corresponding spring
constant Kc much larger than E=d2; thereby, the only quantities
characterizing the thermal filament dynamics are the persistence
length ℓp = E=kbT and the longest relaxation time (31, 38)

τ0 =
ζ

ℓpkBT
ðL=4.73Þ4, [S3]

where L=Nd is the filament length, and ζ denotes the friction
coefficient of the considered rod segment. Note that the factor
4.73 arises from analytic calculations (38). We chose the param-
eters according to experimental measurements for actin (31),
with ℓp = 16  μm and τ0 ≈ 0.5  s for L= 6  μm.
We simplify the interactions between the filament and the 2D

motor lawn to a process of stochastic and independent binding
events of motors along the filament contour. (We find similar
results when explicitly modeling the 2Dmotor lawn. However, the
simplification to stochastic binding event along the filament
contour essentially reduced the CPU time and thereby allows the
acquisition of a sufficient amount of statistics. Moreover, this
assumption helps to simplify the picture concerning what is
necessary for the anomalous curvature buildup.) A motor begins
its cycle with the cross-linking phase by binding randomly at bead i
(with coordinates xi) with probability 1=N, independent of the
bead’s binding history or state occupancy. After attaching to the
filament, say at time t= 0, the motor attains the spatial co-
ordinates of the randomly selected bead. The motor stays in this
configuration, called the cross-linking phase, for a time period
τ×. During this time period the motor provides a rigid link be-
tween substrate and filament for displacements beyond the
capture length lc (Fig. 2 A–C). Specifically, the corresponding
restoring force is zero for jxið0Þ− xiðtÞj< lc, and proportional to
K× for jxið0Þ− xiðtÞj≥ lc [harmonic force F×

i pointing parallel to
xið0Þ− xiðtÞ, and with K× ≈Kc]. After the cross-linking phase, the
subsequent pushing phase includes the power stroke of the
molecular motor. It is modeled as a spring that is connected to
the filament, which exerts a force Fs

i on the filament while
moving with a velocity Δxs=τs (Δxs denotes the stroke length)
within the stroke time τs along its contour. For simplicity, we use

a linear spring with a constant Ks ≈Kc. A typical filament in the
experiment is about 6 μm in length, and the stroke displacement
has been estimated by measurements to be about 5 nm (28).
Moreover, we matched the time scales characterizing the mo-
lecular motor, i.e., τ× = 0.001 s and τs=τ× = 0.1 (28), with the
thermal relaxation time τ0 : τ0=τ× ≈ 5 · 102.
Finally, we checked that fluctuations of the number of bound

motors in time do not have any qualitative impact on the ensuing
filament dynamics; therefore, we kept the number of bound
motors, denoted as mb, constant. Apart from thermal fluctua-
tions, the only (please note that motors do not act synchronously
in our computational model; initial starting times of the binding
cycle are randomized) stochastic element in our model is where
(at which bead) the motor binds to the filament.
To check the results obtained by our simulation model for

robustness against changes in the motor-filament interaction, we
also simulated the filament dynamics in the extreme case where
cross-links were absent. As shown in Fig. S5, this also results in an
exponential tail.
By means of the model, we can address the role of the cross-

linking (or holding) on the dynamics of the driven actin filament.
To this end, we calculated the mean filament velocity v (Fig.
S6A). In the absence of holding, i.e., motors just push, the mean
velocity increases linear as a function of the number of bound
motors mb, with a slope given by Δxs=τ× (τ×, time of cross-linking
phase; Δxs, displacement of power-stroke). In the presence of
holding, we observe a saturation with mb, consistent with former
experimental investigations (24, 39–45). We conclude that holding
constitutes an essential determinant for the dynamics of the driven
actin filaments. Regarding our model, the plateau value of v for
large motor densities increases with the capture length lc.
Additionally, we used the model to investigate the impact of

holding on the short-time scaling coefficient α [δR2 ∝ tα (main
text); Fig. S6B]. In the absence of holding, α= 1, independent of
the number of bound motors mb. In contrast, when motors push
and cross link, α increases gradually with motor density mb
and capture length lc. However, in the regime of reasonable
parameters for the experimental system, e.g., mb ∼ 5− 20 and
lc ∼ 20− 40 nm, the scaling coefficient α seems to be quite robust
and close to 1. The existing deviation of α in the aforementioned
parameter regime could not be distinguished experimentally.

Force and active motor size distribution. We also determined the
cluster size of motors performing a power stroke along the fil-
ament contour. The cluster size scl of active motors is defined as
the number of motors performing a power stroke that are in the
direct neighborhood along the filament. The result for the cor-
responding probability distribution PðsclÞ is shown in Fig. S7. We
find that the distribution of active motors decays exponentially.
This exponential decay is a direct result of the model definition,
where motors are assumed to attach randomly and independently
along the filament contour, which immediately implies an exponen-
tial distribution of sizes of bound motor clusters along the filament.
Moreover, because the stroke phase is a subphase of the bound state,
the distribution of active motors decays exponentially as well.
We cannot exclude that the exponential distribution of active

motor clusters (Fig. S7) is related to the exponential curvature
distribution (Fig. 1C). To make this connection, one needs to
develop a microscopic theory for the mechanical forces gener-
ated by the active motor clusters and how those affect (on a
coarse-grained level) the filament’s curvature distribution. It
would need to account for the subtle interplay between local
forces generated by molecular motors and stress propagation
along the filament. We could envision that such a theory would
need to generalize earlier works on stress propagation along
semiflexible polymers (32, 46–50).
Furthermore, we computed the distribution of forces longitu-

dinal to the filament contour.We find that the longitudinal forces are
distributed according to a Gaussian (Fig. S8).

Weber et al. www.pnas.org/cgi/content/short/1421322112 2 of 7

www.pnas.org/cgi/content/short/1421322112


Kinetic description.
Analytic solution. The kinetic equation for the curvature PDF

0=Dκ∂2κPðκÞ+
λ

η
Pðκ=ηÞ− λPðκÞ, [S4]

has an analytic solution in Fourier space (21, 22, 51)

P̂ðkÞ=
Z∞

−∞

dκ   eikκPðκÞ=
Y∞
m=0

�
1+ k2η2m

�−1
, [S5]

where we rescaled Eq. S4 by κ→ κ=
ffiffiffiffiffiffiffiffiffiffiffiffi
Dκλ

−1
p

. After choosing the
coefficients as mentioned in the main text, back-transformation
leads to the red solid line depicted in Fig. 1C.

The limits η→ 0 and η→ 1. The following explanations for the limits
has been essentially shown in refs. 20–22. Here, we concisely sum-
marize the arguments allowing understanding of which distribution
emerges in each of the two limiting cases, i.e., η→ 0 and η→ 1.
The moments Mn =

R
dκκnPðκÞ can be computed from the

recursion relation

Mn = nðn− 1Þð1− ηnÞ−1Mn−2, [S6]

leading toM2n = ð2nÞ!Qn
k=1½1− η2k�−1. From this equation, the limit

η→ 0 can be easily performed, leading to all even moments

M2n = ð2nÞ!, which are equal to those of an exponential function
in κ∈ ½0,∞Þ. In particular, the kurtosis yields κ4 : = hκ4i=hκ2i2 = 6.
In the limit η→ 1, the procedure is a bit more intricate. The

even moments, given by M2n = ð2n− 1Þ!!ð1− ηÞ−n, diverge in this
case. Note that the double factorial is defined as ð2n− 1Þ!!=Qn

m=1ð2m− 1Þ. Even though not directly obvious from Eq. S4, the
singularity encountered in the moments explains why setting η= 1 in
Eq. S4 is not well defined. However, the limit η→ 1 can be accom-
plished by expanding the term ð1=1− eÞP½κ=ð1− eÞ� into a Taylor
series around e= 1− η= 0, yielding PðκÞ+ ½PðκÞ+ κP′ðκÞ�e+Oðe3Þ.
Plugging this series into Eq. S4 leads to a Gaussian distribution
as a solution, PðκÞ∝ expð−eκ2=2Þ, with κ denoting the rescaled
curvature κ→ κ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Dκλ

−1
p

.
The Gaussian limit for η→ 1 also becomes obvious when

considering the kurtosis as a function of η, which is given by
κ4 = 6=ð1+ η2Þ. For η→ 1, κ4 = 3, which is exactly the value ex-
pected for a Gaussian distribution. Taken together, η→ 0 lead to
an exponential curvature distribution, whereas the limit η→ 1
corresponds to a Gaussian.
It is worth noting that the coefficient η in the kinetic model also

determines the amount of energy dissipated relative to the en-
ergy input set by the curvature diffusion constant Dκ. Because
the elastic energy of the filament scales as ∝ κ2 and κ→ ηκ, the
elastic energy as a function of η also scales as ∝ η2. Therefore,
1− η2 is the ratio of energy that is dissipated.
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Fig. S1. Curvature distribution PðκÞ for different segment length Δs for the active actin filaments of length L in the range 4− 10 μm. For the segment length
values Δs investigated, there is no dependence of the distribution on Δs. Parameters: c=1.5 · 103 μm−2, Nsp = 5.
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Fig. S2. Impact of the number of interpolating points Nsp on the curvature distribution (Lower Right); for each value of Nsp, a representative snapshot of the
spline fit is depicted with the value indicated on the Lower Left of each snapshot. For Nsp < 5, zigzagged contours appear due to the lack of interpolating
points. These zigzagged contours are inappropriate for the curvature analysis of active filaments. Increasing Nsp above 5 gradually cuts off the large curvatures
that are crucial in the active filament case. This gradual elimination of large curvatures can also be seen in the curvature distribution. [Scale bars, 2 μm (1 μm for
zoomed-in image).] Parameters: c = 1.5 · 103μm−2.

A B C

Fig. S3. Dependence of segment length Δs on the curvature distribution of thermal actin filaments for interpolation points for the spline fit (A) Nsp =5,
(B) Nsp = 7, and (C) Nsp = 10. For thermally fluctuating filaments, rescaling the curvature as κ→ κ ·

ffiffiffiffiffiffiffiffiffiffi
ℓpΔs

p
resulted in the curvature distributions to collapse on a

single curve (35), as shown in A. The collapse is not obtained for larger values of Nsp ; see B and C. The Inset in each graph shows the contour obtained from the
spline fit, with the Nsp value indicated at the Lower Left of each snapshot. For Nsp = 7,10, large local curvatures are being ignored because too many in-
terpolating points are being used. Using too many interpolating points causes the rescaling to fail. (Scale bar, 5 μm.) Filament length L= 10.9 μm. Black squares,
Δs= 0.0835 μm; gray circles, Δs= 0.1670 μm; red triangles, Δs= 0.2505 μm.
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Fig. S4. Tangent-tangent correlations along the filament contour, parametrized by the contour s, are shown for active actin filaments moving in the motility
assay (black) and a passive (thermal) actin filament (blue).

Fig. S5. Curvature PDF of the simulation model with motors acting as cross-links (blue dots) and in the absence of cross-linking activity (black squares). In both
cases, the curvature distribution decays exponentially with only minor quantitative differences. Parameters: mb = 20.

Fig. S6. (A) Results from the computational model for the mean filament velocity v (rescaled by Δxs=τ× ; τ× time of cross-linking phase, displacement of power-
stroke Δxs = 5 nm) (28) against bound motors mb. Only in the presence of cross-linking forces, a saturation is observed, with larger plateau values for larger lc
(from bottom to top: lc = f4,6,8,10,12g ·Δxs). Otherwise, v ≈ ðΔxs=τ×Þmb (black dashed line). (B) Scaling coefficient α as a function of motor density mb and for
various values of the capture length łc (obtained by computational model). Whereas α is independent of mb in the absence of cross-linking (for the mb values
investigated), α increases gradually with motor density mb and capture length lc when modeling the motor with pushing and the cross-linking phase. However,
for a reasonable choice of parameters for the gliding assay, e.g., mb ∼ 5− 20 and lc ∼ 20− 40 nm, the scaling coefficient α is close to 1. Please note that these
weak deviations to α= 1 in the aforementioned parameter regime could not be distinguished experimentally.
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Fig. S7. Probability distribution PðsclÞ of motors performing a power stroke that are in the direct neighborhood along the filament. PðsclÞ decays expo-
nentially. Parameters: mb = 22.

Fig. S8. Probability distribution Pð~νÞ of the velocity parallel to the filament contour, ~ν= ν=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðνÞp

, where VarðνÞ denotes the variance. Forces longitudinal to
the filament contour, which are proportional to the longitudinal velocity ~ν in our stochastic computer simulation, are distributed according to a Gaussian (see
dotted line). Note that average velocity is not zero because the filament moves. Parameters: mb =22.

Movie S1. This movie depicts a representative filament dynamics, with Upper Left corresponding to the microscope images, Upper Right showing an ad-
ditional spline fit to filament contour, Lower Left depicting the local curvature κ (1=μm2) in color, and Lower Right showing the local velocity v (μ=s). Pa-
rameters: c= 1.5 ·103 μm−2, L= 8.6 μm. (Scale bars, 2 μm.)

Movie S1
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Movie S2. Several examples of large and anomalous curvature events found in the experiments. Parameters: c= 1.5 · 103 μm−2, L= 4− 11 μm. (Scale bars, 2 μm.)

Movie S2

Movie S3. Representative dynamics of the filament given by the stochastic model. In the beginning, the filament performs solely Brownian fluctuation with
L= ℓp=3. Then, the motor-filament interaction is switched on, leading to the emergence of anomalous curvature events, as observed in the gliding assay ex-
periments. Parameters: L= ℓp=3, lc = 40 nm, mb = 20.

Movie S3
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