
Terminal PEGylated DNA-Gold Nanoparticle Conjugates Offering High Resistance to Nuclease Degradation and Efficient Intracellular Delivery of DNA Binding Agents

Lei Song,[†] Yuan Guo,[†] Deborah Roebuck, [‡] Chun Chen,[§] Min Yang, ^φ Zhongqiang Yang,[§] Sreejesh Sreedharan,^ξ Caroline Glover,^ξ Jim A. Thomas,^ξ Dongsheng Liu,[§] Shengrong Guo,^{†,*} Rongjun Chen,^{‡,*} and Dejian Zhou^{†,*}

- ^{*†*} School of Chemistry and Astbury Structure for Molecular Biology, University of Leeds, Leeds LS2 9JT, UK. Email: <u>s.guo@leeds.ac.uk</u> (S.G.) or <u>d.zhou@leeds.ac.uk</u> (D.Z.)
- [‡] Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Email: <u>rongjun.chen@imperial.co.uk</u> (R.C.)
- § Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- [¢] UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.

 ξ Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.

Figure S1. Representative TEM images of the citrate stabilised gold nanoparticle (mean diameter ~14 nm) used in this study under low (**a**) and high (**b**) magnifications.

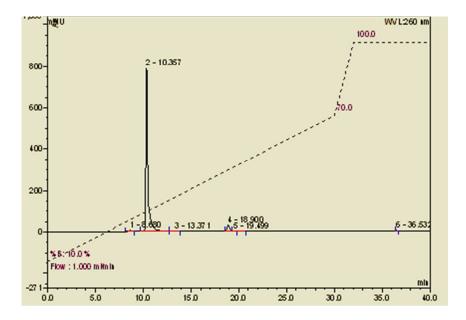
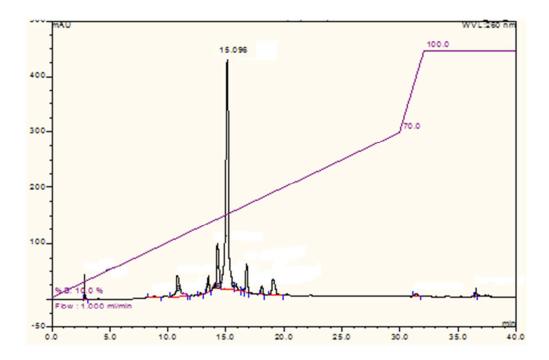
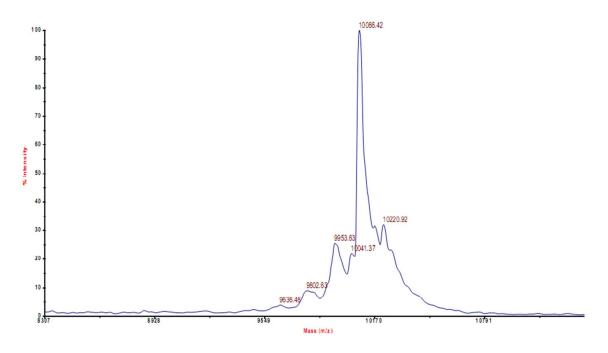




Figure S2. A typical HPLC eluting profile of the MC2-SH.

Figure S3. A typical HPLC eluting profile of the prepared $MC2(EG_{12})_3$ before purification. The dominate peak with a retention time of 15.096 min is found to be the desired $MC2(EG_{12})_3$ product, confirming a high conversion rate of the MC2-SH into the desired product.

Figure S4. MALDI-TOF MS spectrum of the purified MC2(EG₁₂)₃. The main peak 10086 (10041 + $2Na^+$ - H) matches the expected molecular weight of the desired MC2(EG₁₂)₃ (10041) product.