SUPPLEMENTARY MATERIALS

Interleukin 18 function requires both interleukin 18 receptor and Na-CI co-transporter

Jing Wang,^{1,2*} Chongxiu Sun,^{1*} Norbert Gerdes,^{1,3} Conglin Liu,^{1,4} Mengyang Liao,^{1,5} Jian Liu,¹ Michael A. Shi,¹ Aina He,¹ Yi Zhou,¹ Galina K. Sukhova,¹ Huimei Chen,¹ Xianwu Cheng,⁶ Masafumi Kuzuya,⁶ Toyoaki Murohara,⁶ Jie Zhang,¹ Xiang Cheng,^{1,5} Mengmeng Jiang,⁷ Gary E. Shull,⁷ Shaunessy Rogers,⁸ Chao-Ling Yang,⁸ Qiang Ke,¹ Sabina Jelen,⁹ René Bindels,⁹ David H. Ellison,⁸ Petr Jarolim,¹⁰ Peter Libby,¹ and Guo-Ping Shi¹

- 1. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Tsinghua University, Beijing 100005, China
- 3. Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Pettenkoferstrasse 9, 80336 Munich, Germany
- 4. Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- 5. Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- 6. Departments of Cardiology and Geriatrics, Graduate School of Medicine, Nagoya University, Japan
- 7. Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- 8. Division of Nephrology and Hypertension, Oregon Health and Science University, and VA Medical Center, Portland, OR 97201, USA
- 9. Department of Physiology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- 10. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA

Corresponding Author:

Guo-Ping Shi, D.Sc. Cardiovascular Medicine 77 Avenue Louis Pasteur, NRB-7 Boston, MA 02115 Email: gshi@rics.bwh.harvard.edu

Supplementary Figure 1. RT-PCR to detect NCC mRNA levels in mouse kidney, heart, lung, and liver. Data are mean ± SEM from three to six independent experiments.

Supplementary Figure 2. Immunostaining of human carotid artery fatty streak frozen sections with antibodies against NCC (1:60, Millipore, Billerica, MA), IL18 receptor (1:100, R&D Systems, Minneapolis, MN), and CD68 (1:900, Dako, Carpinteria, CA). Bar: 200 μm.

Supplementary Figure 3. Immunostaining of NCC on frozen kidney sections from $Apoe^{-/-}$ mice and $Apoe^{-/-}$ mice with rabbit anti-NCC polyclonal antibody (1:60, Millipore, Billerica, MA). Anti-NCC antibody from our prior study (*J Am Soc Nephrol.* 1998;9:1347) yielded the exact same immunostaining pattern (data not shown). Bar: 500 µm, Insert bar: 200 µm.

Supplementary Figure 4. Immunoblot analysis to detect NCC in NCC/pcDNA3.1- and pcDNA3.1-transfected COS-7 cells.

Supplementary Figure 5. Aortic root atherosclerotic lesion area, macrophage, $CD4^+T$ cell and MHC-II contents in mice treated with hydrochlorothiazide (3 months) (**a**) and mouse recombinant IL18 (4 weeks) (**b**) in different mice as indicated. Data are mean \pm SEM, n=8-10 per experimental group.

Supplementary Figure 6. Plasma levels of total cholesterol, HDL, triglyceride, and LDL from *Apoe^{-/-}*, *Apoe^{-/-}*, *Apoe^{-/-}Ncc^{-/-}*, *Apoe^{-/-}Ncc^{-/-}* mice, and *Apoe^{-/-}Ncc^{-/-} IL18r^{-/-}* mice received BMT. Data are mean ± SEM, n=7-11 per experimental group.

Supplementary Figure 7. Plasma levels of Mg²⁺, K⁺, and pH from *Apoe^{-/-}*, *Apoe^{-/-}Il18r^{-/-}*, *Apoe^{-/-}Ncc^{-/-}*, *Apoe^{-/-}Ncc^{-/-}IL18r^{-/-}* mice, and *Apoe^{-/-}Ncc^{-/-}IL18r^{-/-}* mice received BMT. Data are mean ± SEM, n=6-10 per experimental group. Samples with gross hemolysis were excluded.

Supplementary Figure 8. RT-PCR determined IL6, INF- γ , and MCP-1 mRNA levels in IL18-treated and untreated macrophages from different mice, as indicated. Data are mean ± SEM from three to six independent experiments.

Supplementary Figure 9. Cell volume and intracellular Cl⁻ concentrations in COS-7 cells transfected with NCC/pcDNA3.1 or vector alone. Data are mean ± SEM from three to six independent experiments.

Supplementary Figure 10. NCC and IL18rap expression and co-immunoprecipitation from COS-7 cells. COS-7 cells were transfected with both NCC/pcDNA3.1 and Flag-IL18rap/pcDNA3.1. After 48 hours, cells were treated with or without IL18 for 15 minutes and then lysed in RIPA buffer and immunoprecipitated with anti-Flag antibody, followed by immunoblot analysis with either rabbit anti-mouse NCC polyclonal antibody (panel 1) or anti-Flag antibody (panel 3). The same cell lysates were used for immunoblot analysis to detect NCC (panel 2) and Flag-IL18rap (panel 4) expressions. Actin blots in panels 2 and 4 were used to ensure equal protein loading. IP: immunoprecipitation; IB: immunoblot.