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Figure S1 Individual gene examples showing effects of K. lactis CHD1 orthologue on nucleosome
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positioning. Six individual genes from the dataset shown in Figure 2, including examples with evident nucleosome

shifts as well as genes with no discernable effects of the CHD1 swap.
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Figure S2
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BY4741 168 334 495 655 815 971
—8—S.cer Chd1 (integrated)| 168 333 495 656 816 972
(0.25) | (0.96) | (0.52) | (0.26) | (0.31) | (0.89)
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S.cer Chd1 (integrated)2 | 169 332 495 658 819 975

—e—K.lac Chd1 (integrated)2 | 170 336 502 665 825 983
(0.069) | (8.8E-7) |(1.8E-12)|(5.8E-11)| (2.3E-8) | (1.9E-7)

S.cer Chd1 (plasmid) 170 336 501 666 828 991

—e—K.lac Chd1 (plasmid) 175 | 344 512 | 679 843 | 1007
(2.2E-7) |(6.3E-12)|(2.8E-15)|(1.2E-17)|(2.7E-19)|(8.9E-15)

S.cer Chd1 (plasmid)2 172 338 505 669 833 999

—e—K.lac Chd1 (plasmid)2 177 345 514 682 849 1019
(1.1E-7) |(8.5E-14)|(3.8E-16)|(5.3E-23)|(9.0E-29)|(4.0E-30)
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Figure S2 The K. lactis CHD1 orthologue can direct wider spacing of S. cerevisiae nucleosomes from both
plasmid and endogenous expression. Plot of shifts in -1 to +7 nucleosome positions between S. cerevisiae and K.
lactis CHD1 swap strains, as in Figure 2B-C. In each case, top panel shows distances between equivalent
nucleosomes for the pair of strains indicated, while bottom panel shows the average distance of genic nucleosomes
from the +1 nucleosome, along with corresponding p-values for the swap strains. (A) shows that this metric is
specific, as no significant changes are found between wild-type yeast and a “pseudo wild-type” with a genomic chd14
deletion covered by a plasmid-borne CHD1 gene. (B) shows that effects of K. lactis CHD1 on nucleosome spacing
are reproducible both for genomically-integrated swap strains as well as plasmid-borne CHD1 swaps.
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Figure S3
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Figure S3 Distribution of nucleosome spacing changes in CHD1 swap strains. Quantitation of internucleosome
distances in the three strains detailed in Figure 2A. For each nucleosome mapping dataset, nucleosome positions
were called as in (WEINER et al. 2010). Left panels show distances from all ORF +1 nucleosomes to the
corresponding +3 nucleosome, while right panels show +3 to +5 nucleosome distances. Top panels show the
histogram of all such distances for the three strains, color-coded as in (A), while bottom panels show the same data
as cumulative distribution plots. A replicate for these integrated strains as well as 2 replicates for plasmid-borne
CHDL1 strains are shown in Supplemental Figure S2.
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Figure S4
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Figure S4 Differences between S. cerevisiae and K. lactis Chd1 that affect nucleosome spacing are
distributed throughout the protein. (A) Genome-wide nucleosome mapping data are shown for strains carrying
both species’ CHD1 orthologs, and for a strain carrying a chimaeric CHD1 with only the N-terminal portion of the K.
lactis ortholog. (B-C) Cumulative distribution plots of internucleosome distances for the indicated chimaeric CHD1
strains.
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Figure S5
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Figure S5 Genome-wide data for N-terminal swaps. Averaged TSS-aligned genome-wide nucleosome mapping
data for the strains shown in Figure 5.
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Figure S6

- ScerCHD1

= Klac N1-340

— Klac N1-194

50 Klac N1-176
Klac N195-340
Klac N177-340

~—KlacCHD1

wm
(=]

Cumulative % of genes

0
140 150 160 170 180 190 200 140 150 160 170 180 190 200
Average internucleosome spacing (bp) Average internucleosome spacing (bp)

Figure S6 Distribution of nucleosome position changes in N-terminal swaps. Cumulative distribution data for
internucleosome distances for Chd1 swaps affecting the indicated domains. Note the significant effect of swaps
affecting the unstructured N-terminal 180 amino acids (A), and the lack of effect of swaps altering the
chromodomains (B).
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Figure S7
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Figure S7 Chdl abundance is unaffected by K. lactis sequence. Lysates of HA-tagged Chd1 strains were
blotted for HA and a-tubulin (control), showing no correlation between Chd1 protein abundance and in vivo

nucleosome spacing activity.
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Figure S8

Figure S8 Example MNase digestions. Four representative experiments, with top panel showing a wide MNase
titration for four strains — yellow arrows indicate the MNase level chosen for purification of mononucleosomal DNA.
For the remaining three panels, MNase level was titrated more closely around a target concentration, resulting in
more similar laddering for each titration step.
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