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Supplementary Methods 

 

S1. Lentivirus production and stem cell transduction 

An infectious viral supernatant was generated by transiently co-transfecting 12 µg of the 

lentiviral vector containing the gene of interest pHIV-EF-1α-IRES-Luciferase (Addgene), and 6 

µg of the packaging vector (pPGKΔR8.2 DVPR), into HEK293T cells. The viral supernatant was 

collected at 48, 72, and 96 h post transfection, and was then pooled and concentrated using an 

Amicon Ultra-15 100K cutoff filter (Millipore Billerica). The viral titer was then determined 

using a p24 ELISA kit (Cell Biolabs Inc.), to detect the HIV-p24 core protein of the vector. 

Following this, human mesenchymal stem cells were transduced for 24 h with the lentiviral 

vector, at a multiplicity of infection of 2, using 0.1% polybrene (Sigma-Aldrich) in mesenchymal 

stem cell growth media (MSCGM), without antibiotics.  

To evaluate the correlation between the number of viable cells and the BLI radiance, 

luciferase-expressing cells were seeded in 10 cm dishes, at a cell density of 5 x 103 cells/cm2, 

and grown to 85% confluency. The cells were then harvested, counted, and varying numbers, 

ranging from 5 x 103 to 4 x 104 cells, were placed in eight-well chamber slides. One hour later, 

15 µg/mL of luciferin (PerkinElmer) was added to each well and the plate was read 30 min after 

luciferin addition (Supplementary Fig. S2). 
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S2. Assessment of cognitive decline using the signaled fear conditioning paradigm 

All procedures were conducted in standard mice operant conditioning chambers (Med Associates 

Inc.) in accordance with the Johns Hopkins Behavioral Core protocol with a few modifications. 

Behavioral studies were done in a series of five sessions: an acclimatization session; a 

conditioning session; a short-term contextual fear memory assessment session; a long-term 

contextual fear memory assessment session; and a pre-cued and cued testing session.  

Briefly, mice were initially placed in the conditioning chambers for five minutes and then 

returned to their cages. One hour following acclimatization, the mice were returned to the 

conditioning chambers where a tone (2000 Hz) was played three minutes post placement for 30 

s. This was immediately followed by a foot-shock using scrambled alternating current delivered 

through the grid floor by a constant current shock source (5 mA) for two seconds. The mice were 

returned to their cages after a total of five minutes. One hour following the conditioning session, 

the short-term contextual fear memory of the mice was assessed. During this session, the mice 

were returned to the conditioning chambers for five minutes during which neither tones nor 

shocks were administered. This was repeated, twenty-four hours following the conditioning 

session, to assess the long-term contextual fear memory of the mice. One hour following this, the 

cued fear memory was assessed by re-exposing the mice to the tone (2000 Hz, for three minutes) 

in a new context and in the absence of a shock. The freezing behavior of the mice during each 

session was then analyzed. 
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S3. Black Pixel Analyses  

Black pixel analysis was performed, with a few modifications from that described in previous 

reports. These modifications made the method more robust and reduced the variability observed 

when calculated using the method described in previous reports.  

Briefly, a 2D Z-projection of the minimum signal intensity was generated from the slices 

of stem cell implantation. Two regions of interest (ROIs) were manually drawn over the 

ipsilateral hemisphere of stem cell implantation, and the contralateral hemisphere 

(Supplementary Fig. S7a). Pixel intensity histograms were created for each ROI and a low signal 

intensity pixel at the base of the distribution of the histogram (ipsilateral hemisphere of stem cell 

transplantation) was chosen as a threshold (Supplementary Fig. S7b). This threshold 

corresponded to the pixel intensity of the area around the site of stem cell implantation. The ratio 

of the number of low signal intensity pixels below the threshold in both hemispheres was then 

calculated. The value calculated at the first time-point was assigned an arbitrary 0 %. The values 

calculated at subsequent time-points were normalized relative to the first time-point and reported 

relative to this value (Supplementary Fig. S7c).   
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S4. Bright Pixel Analyses  

Bright pixel intensity calculations were performed as follows: All slices were analyzed and the 

slice adjacent to that of stem cell implantation was chosen. Two regions of interest (ROIs) were 

manually drawn over the ipsilateral hemisphere of stem cell implantation and the contralateral 

hemisphere (Supplementary Fig. S10a). Pixel intensity histograms were generated for each ROI 

in ImageJ (Supplementary Fig. S10b).  A high signal intensity pixel at the crest of the normal 

distribution of the histogram (of the contralateral hemisphere of stem cell transplantation) was 

chosen as a threshold (Supplementary Fig. S10c). This threshold represented the maximum 

signal intensity in the absence of cell death. The ratio of the number of pixel intensities below the 

threshold in both hemispheres was then calculated. The value calculated at the first time-point 

was assigned an arbitrary 0 %. The values calculated at subsequent time-points were normalized 

relative to the first time-point and reported relative to this value (Supplementary Fig. S10c).   
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