

Supplementary Figure 1. Metabolic stress induced TRB3 mediates the cancer-promoting roles. (a) HepG2 cells were treated with insulin/IGF-1 (100 nM) for indicated times (upper) or treated with insulin/IGF-1 at different concentrations for 12 hours. The expression of TRB3 was detected with immunoblotting. Data are representative immunoblots of 5 independent assays. (b) HepG2 cells were treated with insulin (100 nM) or IGF-1 (100 nM) for 12 hours. RT-PCR analysis was carried out to determine the mRNA level of TRB3 and β -actin. Data are mean ± s.e.m. of 3 independent assays with triplicates. (c) HepG2 cells were transfected with pTRB3-luc plasmid for 24

hours. The cells were treated with insulin (100 nM) or IGF-1 (100 nM) for another 12 hours and the luciferase activity was measured. Data are mean ± s.e.m. of 5 independent assays with triplicates. (d) HCT-8 or A549 cells were treated with insulin (100 nM)/IGF-1 (100 nM) for 4 hours. The TRB3 levels were determined with immunoblot (n=5 independent assays). (e) HepG2 cells were treated with glucose deprivation (DG), high glucose (HG, 50 mM), $CoCl_2$ (200 μ M) and TNF α (50 ng ml⁻¹) for indicated time points respectively. TRB3 levels were determined with immunoblot analysis (*n*=5 independent assays). (f) TRB3 depletion suppressed insulin/IGF-1-induced ROS generation. ROS was determined with Dihydroethidium (DHE, 10 µM) staining followed with flow cytometry (n=5 independent assays). (g,h) TRB3 depletion attenuated insulin/IGF-1-induced DNA damage. The expression of yH2AX was evaluated with immunoblotting (g) or immuno-fluorescence staining (h), scale bar, 18.75 μ m, n=5 independent assays. (i) TRB3 depletion decreased the S-phase fraction and inhibited the insulin/IGF-induced prolongation of S-phase. Data are mean ± s.e.m. of 3 independent assays with triplicates. (i) TRB3 depletion increased sensitivity of cancer cells to hydrogen peroxide-induced apoptosis. Data are mean \pm s.e.m. of 3 independent assays with triplicates. (k) HepG2 cells were treated with or without IGF-1 for 30 min and expressions of indicated proteins were detected with immunoblotting (n=5 independent assays). (I) Depletion of TRB3 inhibited insulin/IGF-1-induced proliferation of cancer cells. Data are mean ± s.e.m. of 3 independent assays with triplicates.

Statistical significance was determined by Student's *t*-test; **P*<0.05; ***P*<0.01;

Supplementary Figure 2.TRB3 depletionin tumor cells displays much prominent antitumour effects in diabetic KK-Ay mice than that in C57BL/6 mice. (a) C57 BL/6 mice were s.c. inoculated with B16-F10 cells expressing control-shRNA or TRB3-shRNA (1.5×10^5). Data are representative bioluminescence images and tumours along with quantified tumour weight. The levels of TRB3 were also shown in B16-F10 cells expressing controlshRNA or TRB3-shRNA. Scale bar, 1.5 cm, *n*=8 per group. (b) C57 BL/6 mice were *i.v.* injected with B16-F10 cells expressing control-shRNA or TRB3shRNA (3×10^5). Data are bioluminescence images with total tumour volumes at multiple metastatic sites (mean ± s.e.m.; *n*=8 per group). (c) KK-Ay T2D mice were *s.c.* inoculated with B16-F10 cells expressing control-shRNA or

****P*<0.001.

TRB3-shRNA (1.5×10^5). Data are representative bioluminescence images and tumours along with quantified tumour weight. The levels of TRB3 were also shown in B16-F10 cells expressing control-shRNA or TRB3-shRNA. Scale bar, 1.5 cm, *n*=8 per group. (**d**) KK-Ay T2D mice were *i.v.* injected with B16-F10 cells expressing control-shRNA or TRB3-shRNA (3×10^5). Data are bioluminescence images with total tumour volumes at multiple metastatic sites (mean ± s.e.m.; *n*=8 per group). Statistical significance was determined with Student's *t*-test; **P*<0.05, ****P*<0.001.

Supplementary Figure 3. TRB3 depletion protects against tumour metastasis and growth. (a,b) BALB/c nude mice were *i.v.* injected with HepG2 cells expressing control-shRNA, TRB3-shRNA1 or TRB3-shRNA2

(3×10⁶). In vivo imaging system was used to detect tumour metastasis. Data are number of metastases in lungs (a). Representative graphs of lungs, H&E stained lung sections and bioluminescence imaging (b). Metastatic nodules were indicated by arrows. Scale bar, 5 μ m, *n*=10 per group. (c) Kaplan-Meier survival curve for mice harboring tumours expressing control-shRNA or one of the two shRNAs targeting TRB3 (*n*=20 per group). Statistical significance was determined by Kaplan-Meier log-rank test; ***P<0.001. (d) HepG2 cells expressing control-shRNA, TRB3-shRNA1 or TRB3-shRNA2 (1.5×10⁶) were s.c. injected into the right flank of the BALB/c nude mice. Data are mean volumes ± s.e.m. at indicated times and photographs of representative mice (n=10 per group). (e,f) Data are photographs of representative mice (e), and tumours along with quantified tumour weight (f). Scale bar, 1.5 cm, n=10 per group. (**g**,**h**) BALB/c nude mice were *i.v.* (3×10^6) or s.c. (1.5×10^6) injected with HCT-8 cells expressing control-shRNA or TRB3-shRNA1. In vivo imaging system was used to detect tumour metastasis and growth. Data are representative bio-photonic images of animals with metastasis (g) and growth (h) (*n*=6 per group). Statistical significance was determined by Student's *t*-test; ****P*<0.001.

Supplementary Figure 4. Metabolic stresses induce autophagy inhibition and tumour-promoting factor accumulation. (**a**) HepG2 cells were treated with the indicated stimulators for 12 hr and p62 expression was evaluated with an indirect immunofluorescence (*n*=3 independent assays). Scale bar, 7.5 μm. (**b**) HepG2, HCT-8 and A549 cells were treated with or without insulin/IGF-1 (100 nM) for 12 hours. The expressions of autophagy related proteins were evaluated with immunoblotting (*n*=5 independent assays). (**c**) The expression of soluble and insoluble p62 in liver, lung tissues and xenograf tumours were evaluated with immune-blotting in C57 BL/6, KK-Ay and KK-Ay/TRB3-KD mice. Data are representative immunoblots of 4 independent assays. (**d**) The cell-wide protein expression was evaluated with Human L-1000 Antibody Arrays in HepG2 cells expressing TRB3-shRNA1 or control-shRNA. Data are the summarized fold changes of proteins (controlshRNA/TRB3-shRNA1) (upper) and representative spots showing differentially expressed EGFR (framed) (lower). Data are representative of 2 independent assays. (e) The xenograft tumours express higher prometastasis and pro-EMT factors in KK-Ay mice than that in C57 BL/6 mice. Data are representative immunoblots of 4 independent assays. (f) The liver and lung tissues express higher pro-metastasis and pro-EMT factors in DMBA-treated KK-Ay mice than that in DMBA-treated C57 BL/6. Data are representative immunoblots of 4 independent assays. (g,h) Suppressing autophagy or UPS reverses the antitumour effect of TRB3 knockdown. TRB3 knockdown KK-Ay mice were s.c. injected with B16-F10 cells (1.5×10^5) or *i.v.* injected with B16-F10 cells (3×10⁵) after infection. The mice were treated with 3-MA (30 mg kg⁻¹ per day) or MG132 (2.5 mg kg⁻¹, twice a week) from day 7 after tumour inoculation. Data are mean \pm s.e.m. of tumour growth curve (g) and total tumour volumes in multiple metastatic sites (h) (n=6 per group). Statistical significance was determined by Student's t-test; *P<0.05, **P<0.01, ****P*<0.001.

Supplementary Figure 5. The interaction of TRB3/p62 is enhanced in human tumourtissues. (a) Expressions of autophagy molecules in HCC, colon and lung cancer tissues were evaluated with immunoblotting (*n*=5 cases). Normal tissue extracts were used as control (*n*=3 cases). Data are representative immunoblots of 3 independent assays. (b) Co-IP of endogenous TRB3 and p62 proteins from fresh normal human (*n*=3 cases) and tumour tissue (*n*=5 cases) samples. Tissue extracts were IP with anti-p62 Ab or rabbit IgG and blotted with anti-TRB3 Ab. (c) Human normal and cancer tissue array slides were double immunostained with anti-TRB3 (green) or anti-p62 (red) Ab. Double staining in yellow shows TRB3/p62co-localization. Scale

bar, 5 μ m. Each columnis representative of double-stain (*n*=10 cases).

Supplementary Figure 6. Pep2-A2 treatment increases the binding of p62 to TRAF6 and Keap1. (**a**) Domain structure of p62. (**b-e**) The extracts of HepG2 cells treated with Pep2-con or Pep2-A2 were IP with an anti-p62 Ab or normal rabbit IgG and blotted with anti-NBR1, anti-RIP1, anti-TRAF6 or anti-Keap1 Ab. Data are representative immunoblots of 3 independent assays. (**f**) The extracts of HepG2 cells treated with Pep2-con or Pep2-A2 were IP with an anti-TRB3 Ab or normal rabbit IgG and blotted with anti-AKT or anti-ATF4 Ab. Data are representative immunoblots of 3 independent assays. (**g**) Wound healing assay was conducted in A549 and HCT-8 cells treated with 5 μM of Pep2-A2 or Pep2-con at the indicated times. Data are representative of 3 independent assays.

Supplementary Figure 7. The Pep2-A2 treatment inhibits tumour development and progression. (a, b) Nude mice were *s.c.* or *i.v.* inoculated with HCT-8 cells into the right flank (1.5×10^6) or the lateral tail vein (3×10^6) . One week after tumour inoculation, mice were *i.v.* treated with the Pep2-A2 or Pep2-con (5 mg kg⁻¹) twice a week for 5 weeks. Data are representative bio-photonic images (*n*=6 per group). (c) Pep2-A2 inhibits primary recurrence and multi-organ metastasis. Nude mice were *s.c.* inoculated with HepG2 cells expressing control-shRNA1 (*n*=20) or TRB3-shRNA2 (*n*=10). When tumours reached a volume of 300 mm³, tumour resection was performed. The control-shRNA mice (n=10) were randomly selected for treating with Pep2-A2 for 2 months (5 mg kg⁻¹, *i.v.*, beginning 1 day post-resection). Data are representative bio-photonic images of animals with primary tumour recurrence.

Fig. 3a	Fig. 3b	Fig. 3e	Fig. 3f		Fig. 3g
79 K- p Ast 55 K- p = -	198 K- 190 K- PI3KC3	178 K	77 X	ток	ия к Ub - GFP ия к
79 K	78 K	199 К.— 78 К.— СОХ2	ык	ак- uk LC3	85 K — Actin 48 K — Actin
TRE POTOR	ак	854	nal 1984 — EGFR 1984 —	179 K	
179 K mTOR	70X- 60X- 952	25 K	10 K- 79 K- COX2	188 K	
18 K PUKC3	78 K	70 K	id K— id K— Shall	18 K	
78 K Beclin 1	55 K 49 K 199 TRB	3 100 K	26 K	Si K- II R- Ti - Tuist	
38 K- 19 K- LC3	88 K — Actin	19 К.— 55 к.— т= мт.мир	70 K Miller 51 K Miller	778	
79 K		19K−	100 К.—. ММР2 76 К.—. ММР2	100 K.—	
70 K- 50 K p42		88 K — Actin 40 K — Actin	79 к 8 к С.Мус	70к.— — Смус 66к.— — Смус	
ex 2 wyc			45 × TRO3	88 K. — TRB3	
55 K - TRB3			45 X Actin	ык.— нак.— — — Actin	
68 K 40 K - Actin					

Supplementary Figure 9. Uncropped blots used in Figure 3.

Fig. 4a	Fig. 4b	Fig. 4c		Fig. 4d	Fig. 4g	
48=	раз на — раз	70x p52	лк — p42	8× - 8× - Ub 0f P	IIIII EOFR	para terretarian Telet
#=	46 Actin	11 - Tres	м<	18 x —Action	лк	0 K- 5 K-10 M M M M C Myc
	29X	andActin	ax Actin	e **	579 77 K	811
	at - Actin	00 <u></u> ptr	716 — p42 855 — p42	55 x - Ac	MARY MARY	n s
	nk p62	сарт — — — х н — — — — — — — — — — — — — — — — — — —	ик — тява 4ж — Тява		50 x	N#- #x
	ax - Acta	MX - Actin	MXActin 4/X		8x	85 Actin

Supplementary Figure 10. Uncropped blots used in Figure 4.

Supplementary Figure 11. Uncropped blots used in Figure 5.

Supplementary Figure 12. Uncropped blots used in Figure 7a-f.

Supplementary Figure 13. Uncropped blots used in Figure 7h-j.

Supplementary Figure 14. Uncropped blots used in Figure 8.

Supplementary Figure 15. Uncropped blots used in Supplementary Figure 1a-f.

Fig. S1g	Fig. S1h	Fig. S1i	Fig. S1j	Fig. S1k	
XA280	65 К — — Ф К — — — — — — — — — — — — — — — — — —	TRB3	ык — — — тяз	mx- P #8-1	UR K- PphTOF
	ак — — — — — — — — — — — — — — — — — — —	83 #K TRB3	or Atin	09 K	UN K- mTOR
ex – TRB3	### 	Actin		102 K	яна –р-ЕКК
ак — Серет Тава	48K	Actin #8.5		нкк	56 K – ERK
55 x - Action				ик – РАКТ-5473 88 –	нк. — (на така) така нк. — (на така) така
65 K				лк — акт	66 K - Actin

Supplementary Figure 16. Uncropped blots used in Supplementary Figure 1g-k.

Supplementary Figure 17. Uncropped blots used in Supplementary Figure 2.

Fig. S4b

Supplementary Figure 18. Uncropped blots used in Supplementary Figure 4b.

Fig S4c	Liver	Lung	
^{70 К} р62	^{70 К.—} рб2	^{70 К—} р62	^{70 к}
70 K	2 70 К— — — — — — — — — — — — — — — — — — —	^{70 к} — — — — — — р62	70 К— 55 К— рб2
^{55 К.—} ————— Ас	40 κ— — — — — Actin	55 K— 40 K— — — — Actin	55 K— 40 K— Actin
	tumor		
70 K	р62 ^{70 К—} р62		
70 K.—	62 ^{70 К—} р62		
55 K— 40 K— — — — — — — — — — — — — — — — — — —	Actin 55 K— 40 K— Actin		

Supplementary Figure 19. Uncropped blots used in Supplementary Figure 4c.

Fig. S4e	Tumor		Fig. S4f	Live	r	Lung	<u> </u>
	EGFR 33 K	Snail			31 K - Snall	teora	ax-
100 K - () () () () () () () () () (COX2	Twist	100 K	сох2	75 K- 15 K-		ak
70 K	* MMP1 78K-	C-Myc	79 K	- MMQ1	78 K	79 K- 58 K- 59 K- 50 K 50 K- 50 K- 50 K- 50 K- 50 K- 50 K- 50 K- 50 K- 50 K- 50 K 50 K- 50	70 KC 4 My
100 K-	55K — 40K — MMP2	Actin	500 K 70 K	MMP2	88 Actin	ни к	asκ – Actin
70 K- 56 K-	MT-MMP		70 К— 45 К—	MT-	ммр	то с	

Supplementary Figure 20. Uncropped blots used in Supplementary Figure 4e-f.

Fig. S5a

Supplementary Figure 21. Uncropped blots used in Supplementary Figure 5a.

Fig. S5b					
SSK- TRB3	55 K- 49 K-	Six-	SK-TRB3	exTRB3	55 K
⁷⁹ K ⊌R → = p62	78 K	70 K - p62	74 K	79 K 66 K (Cara) p62	70 К— — — р62 55 К— — — р62
er - TRB3	8 K- 4 K- TRB3	55 K TRB3	81 K TRB3	ex	55 K
78 K- 85 K- == == p62	77 K 58 k 100 p62	лин- ви-	л к рб2 в к рб2	73 ×	^{70 к} р62
ex-	55 K	at x	85 x	55 K	^{55 K}

Supplementary Figure 22. Uncropped blots used in Supplementary Figure 5b.

Supplementary Figure 23. Uncropped blots used in Supplementary Figure 6.

Supplementary Table 1. Correlation between TRB3 and pIRS protein

	HCC <i>n</i> =71		Colon cancer <i>n</i> =69		Lung cancer <i>n</i> =65	
Protein expression	TRB3	pIRS	TRB3	pIRS	TRB3	pIRS
Pearson r	0.2	721	0.2	83	0.3	34
P value (two-tailed)	0.0217		0.023		0.004	
P value summary	*		*		**	r

expression levels in HCC, colon cancer and lung cancer.

Supplementary Table 2. Multiorgan metastasis of B16-F10 melanoma

cells injected intravenously in C57 BL/6 and diabetic KK-Ay mice.

	Tissue classes						
Group	Mesentery	Omentum	Lung	Axillary Lymph Node	Mediastinum	Kidney	
C57 BL/6	0.00%	0.00%	50.00%	0.00%	8.33%	0.00%	
KK-Ay	45.00%	18.00%	63.00%	36.00%	27.00%	9.09%	
KK-Ay/control	0.00%	1.25%	62.50%	25.00%	50.00%	12.50%	
KK-Ay/TRB3-KD	0.00%	0.00%	57.10%	0.00%	42.80%	0.00%	

*Each Value shows the percentage of multiorgan metastasis.

Supplementary Table 3. Global protein changes observed in HepG2 cells expressing control-shRNA versus HepG2 cells expressing TRB3-shRNA1.

Fold change>1.2					
Control-shRNA/TRB3-shRNA1					
Cancer-promoting factor	Cancer-inhibiting factor	Others			
EGFR/ErbB1	HADHA	CD30 Ligand/TNFSF8			
OSM	IL-9	CD30/TNFRSF8			
Glypican 5	CD40 Ligand / TNFSF5 /CD154	IL-4			
Frizzled-7	Dkk-3	Siglec-5/CD170			
IL-5	Granzyme A	HCR / CRAM-A/B			
IL-11	FADD	IL-2 R beta /CD122			
FGF-18	HSP60	RELM alpha			
Thrombopoietin (TPO)		IL-2 R gamma			
MMP-3		CD14			
CXCR4 (fusin)		DR6 / TNFRSF21			
GM-CSF		IFN-gamma			
BMP-5		HCC-4 / CCL16			
Frizzled-3		Prolactin			
EDG-1		IL-2			
Endothelin		IL-3			
6Ckine		NT-3			
S100A6		FGF-13 1B			
VEGF-D		IL-10 R alpha			
IL-17		ICAM-5			
Insulin		IL-18 R alpha /IL-1 R5			
GRO-a					
CCL28 / VIC					
p21					
GRO					
GDF5					
FGF-17					
FGF-5					
PTHLP					
GDF1					
HSP90					
Frizzled-4					
MCP-1					
LRG1					
Frizzled-1					

Supplementary Table 3a

GCSF	
GDF9	
Cathepsin B	
IL-1 sRI	
E-Selectin	
VEGF R3	
Angiopoietin-like Factor	

Supplementary Table 3b

Fold change < 0.8				
(Control shRNA / TRB3 shRNA1			
Cancer-promoting factor	Cancer-inhibiting factor	Others		
GATA-4	SIGIRR	CD36		
TRPM7	AMPKa1	OX40 Ligand / TNFSF4		
MMP-20	WIF-1	ApoE3		
Neuritin	Cadherin-13	Cytokeratin 8		
AFP	ADAMTS-1	IL-1 F8 / FIL1 eta		
APN	CRTAM	Calsyntenin-1		
ANGPTL3	TNF-beta	11b-HSD1		
CRP	Cytokeratin 18	ADAMTS-17		
CEA	Afamin	ApoB100		
Glut3	SSTR2	Serpin A8		
CD44	CNDP1	GPBB		
LPS	DEFA1/3	Neurokinin-A		
Ras	HOXA10	Alpha 1 AG		
FGF-11	FOXN3	2B4		
FSH	CBP	SMDF / NRG1Isoform		
GLP-1	Calreticulin	BAF57		
S100 A8/A9	APC	ESAM		
MMP-15	Alpha Lactalbumin	Apelin		
ASPH	FABP3	SDF-1 / CXCL12		
Factor XIII A	VWF	Thymopoietin		
FGFR1 alpha	LECT2	CTACK / CCL27		
Tie-1	S100A8	C-peptide		
GRP	Presenilin 1	GPR-39		
CD59	Clusterin	Amylin		
Aldolase A	FRK	VGF		
CA 125	KLF4	FoxP3		
Apex1	GADD45A	ADAMTS-15		
ADAM-9	PTPRD	Procalcitonin		
pro-MMP13	IL-29	C5/C5a		
SHBG	GDF3	ADAMTS-19		
CA 19-9	Chromogranin A	GPI		

Mesothelin	E-Cadherin	ADAMTS-18
hCGb	Defensin	cTnT
SPINK1	Thrombospondin-1	Fibrinopeptide A
ABL1	EXTL2	APCS
Aldolase C	Serpin A5	CXCR2 / IL-8 RB
EphA6	EphB3	Growth Hormone (GH)
EphA4	LTF	GMNN
Fyn	MTUS1	Uromodulin
EphA3	Caspase-8	BNP
Thymidine Kinase-1	IL-21	Cytokeratin 19
Kallikrein 10	IL-21 R	C9
CA 15-3	BAI-1	ССК
Desmin	VDUP-1	ApoC1
ALK	Vitamin D Receptor	MSHa
Layilin	Nesfatin	Ceruloplasmin
EphA7	Cystatin A	LYRIC
IL-19	TNK1	ApoA4
ENPP2	Serpin A1	NR3C3
Kallikrein 2		INSRR
ACK1		CD71
Gelsolin		Endorphin Beta
KCC3		BCAM
NAIP		C7
CHI3L1		hCG alpha
Kallikrein 14		MATK
SCG3		IL-12 p70
S-100b		Corticosteroid-binding globulin
NF1		EV15L
Pancreastatin		CK-MB
Calbindin		TRA-1-81
MINA		TSH
Lyn		CART
VE-Cadherin		PSP
HE4		Thyroglobulin
XIAP		TRAIL R1 / DR4 / TNFRSF10A
CA 9		Cystatin C
BMX		GST
PI 3Kinase p85 beta		LTK
FAK		LH
EphB2		ltk
FER		Troponin C
EphA5		C8B
TRA-1-60		FIH
VIP Receptor 2		gamma-Thrombin

uPAR	BD-1
Inhibin A	ProSAAS
EphA8	Creatinine
Endothelin Receptor A	SERPING1
Btk	POMC
Protein p65	Angiopoietin-like 2
Complement factor H	Marapsin
CD46	NPTX1
Calcitonin	NELL2
PSA-total	FGFR1
PAI-1	ТХК
GRP75	TPA
Fen 1	Tec
Somatotropin	pro-Glucagon
Hck	Thrombin
Nanog	GFR alpha-4
NET1	SRMS
HSP10	PPARg2
IGF-II R	TRPC6
Trappin-2	NRG3
SART1	
IL-1 R8	
Prohibitin	
Insulin R	
Omentin	
INSL3	
ZAP70	
PSA-Free	
Tyk2	
cIAP-2	
TYRO10	
HSP27	
Ferritin	
СОСО	
ROR2	
ACTH	
Kallikrein 11	
Mammaglobin A	
CD74	
MIF	
Erythropoietin R	
IL-13	
ROR1	
TRKB	
RYK	

FGFR2

(a) Proteins with expression downregulated when silencing TRB3 (Control-

shRNA/TRB3-shRNA1>1.2). (b)Proteins with expression upregulated when

silencing TRB3 (Control-shRNA/TRB3-shRNA1<0.8).

Supplementary Table 4. Summary of pathological information of human

Sample NO.	Age	Gender	Tissue Type	Diagnosis	TNM
1	27	Female	liver	Normal liver tissue	
2	30	Female	liver	Normal liver tissue	
3	35	Male	liver	Normal liver tissue	
4	45	Male	liver	Hepatocellular carcinoma, moderately differentiated	$T_2N_0M_0$
5	51	Male	liver	Hepatocellular carcinoma, poorly differentiated	$T_3N_0M_0$
6	62	Male	liver	Hepatocellular carcinoma, poorly differentiated	
7	59	Male	liver	Hepatocellular carcinoma, moderately differentiated	
8	66	Female	liver	Hepatocellular carcinoma, poorly differentiated	$T_4N_xM_x$
9	24	Male	Colon	Normal colon tissue	
10	25	Male	Colon	Normal colon tissue	
11	40	Female	Colon	Normal colon tissue	
12	75	Male	Colon	Adenocarcinoma, well or moderately differentiated	T ₃ N ₀ M _x
13	41	Male	Colon	Mucinous adenocarcinoma, poorly differentiated	T ₃ N _X M ₁
14	72	Male	Colon	Adenocarcinoma, moderately differentiated	T ₃ N ₀ M _x
15	61	Female	Colon	Adenocarcinoma, well or moderately differentiated	$T_1N_0M_0$
16	50	Male	Colon	Adenocarcinoma, moderately differentiated	T ₃ N ₀ M _x
17	28	Male	Lung	Normal lung tissue	
18	28	Male	Lung	Normal lung tissue	
19	25	Female	Lung	Normal lung tissue	
20	60	Female	Lung	Adenosquamous carcinoma	$T_3N_0M_0$
21	52	Female	Lung	Adenosquamous carcinoma	$T_4N_1M_0$
22	70	Male	Lung	Small cell carcinoma and squamous cell carcinoma	$T_4N_1M_X$
23	64	Male	Lung	Adenosquamous carcinoma, moderately differentiated	$T_4N_1M_1$
24	52	Female	Lung	Papillary mucinous adenocarcinoma	$T_4N_1M_X$

cancer specimens used for immunoblot analysis.

Tissues and pathological informations were obtained from Alenabio (Xian,

China)

Supplementary Table 5. Multiorgan metastasis of B16-F10 melanoma

			Tissue c	lasses		
Group	Mesentery	Omentum	Lung	Axillary Lymph Node	Mediastinum	Kidney
C57 BL/6 treated by Pep2-con	0.00%	0.00%	33.3%	0.00%	25.0%	0.00%
C57 BL/6 treated by Pep2-A2	0.00%	0.00%	16.7%	0.00%	25.00%	0.00%
KK-Ay treated by Pep2-con	27.2%	27.2%	54.5%	27.2%	9.09%	9.09%
KK-Ay treated by Pep2-A2	18.1%	9.09%	0.00%	0.00%	0.00%	0.00%

cells injected intravenously in C57 BL/6 and diabetic KK-Ay mice.

*Each Value shows the percentage of multiorgan metastasis.

Supplementary Table 6. All primary antibodies against the indicated

Antibody	Provider	Host	Dilution
HA-tag	MBL (561)	Rabbit	1:1000 WB
DDK-tag	MBL (PM020, M185-3)	Mouse/Rabbit	1:1000 WB
Myc-tag	MBL (M047-3)	Mouse	1:1000 WB
GFP-tag	MBL (M048-3)	Mouse	1:1000 WB
LC3	Sigma (L7543)	Mouse	1:100 IF
TRB3	OriGene (TA303408)	Rabbit	1:1000 WB 1:100 IHC
TRB3	Abcam (ab88332)	Mouse	1:100 IF
p62	Sigma (P0067)	Rabbit	1:5000 WB
p62	Abcam (ab56416)	Rabbit	1:500 IF
actin	Cell Signaling Technology (12262)	Mouse	1:1000 WB
beclin 1	Cell Signaling Technology (3495)	Rabbit	1:1000 WB
p-Akt	Cell Signaling Technology (9271)	Rabbit	1:1000 WB
Akt	Cell Signaling Technology (4691)	Rabbit	1:1000 WB
mTOR	Cell Signaling Technology (2972)	Rabbit	1:1000 WB
p-mTOR	Cell Signaling Technology (2971)	Rabbit	1:1000 WB
PI3K p85	Santa Cruz (sc-1637)	Rabbit	1:1000 WB
pPI3K p85	Cell Signaling Technology (4228)	Rabbit	1:1000 WB
ERK	Cell Signaling Technology (4695)	Rabbit	1:1000 WB
pERK	Cell Signaling Technology (4370)	Rabbit	1:1000 WB
vH2AX	Cell Signaling Technology	Rabbit	1:1000 WB

proteins used in the present study are listed.

	(2577)		
HIF-1α□	Cell Signaling Technology (3716)	Rabbit	1:1000 WB
PI3KC3	Cell Signaling Technology (4263)	Rabbit	1:1000 WB
С-Мус	Cell Signaling Technology (sc-40)	Rabbit	1:1000 WB
COX2	Cell Signaling Technology (12282)	Rabbit	1:1000 WB
EGFR	Cell Signaling Technology (4267)	Rabbit	1:1000 WB
MMP1	Abcam (ab38929)	Rabbit	1:1000 WB
MMP2	Abcam (ab110186)	Rabbit	1:1000 WB
MT-MMP	Abcam (ab53712)	Rabbit	1:1000 WB
Ub	Cell Signaling Technology (3936)	Mouse	1:250 IF
pTyr-100	Cell Signaling Technology (9411)	Mouse	1:1000 WB
Snail	Cell Signaling Technology (3879)	Rabbit	1:1000 WB
Twist	Abcam (ab49254)	Rabbit	1:1000 WB
pIRS-1	Santa Cruz (sc-17196)	goat	1:500 WB 1:100 IHC
IRS-1	Cell Signaling Technology (2382)	Rabbit	1:1000 WB