
 

Supplementary Figure 1: Tracking of sperm head from individual holograms. (a)  A frame 

of raw holographic data; the sperm head can be seen as the fainter series of concentric diffraction 

fringes at the centre of the image. (b) A frame of background-corrected holographic data (see 

methods).  The centroid of the circular diffraction pattern provides the x-y position of the head. 

From background-corrected holograms, a refocused image stack was created. (c) Section through 

the refocused stack at a fixed y-position. The position is indicated by the red dashed line in (b). 

The z-coordinate of the sperm head is derived from the steepest intensity gradient along z (the 

point of contrast inversion is indicated by yellow arrows). (d)  A portion of the refocused stack 

around the cell was extracted and a gradient filter was applied to highlight axial intensity 

gradients. This gradient stack was projected along the z-direction, retaining the maximum 

intensity value at each x-y position. A faint image of the flagellum becomes visible. 



 

Supplementary Figure 2: Characterization of the chemoattractant release. (a) Normalized 

profile of UV light used for release of resact (top). The UV profile was measured by exciting 

fluorescein sheets distributed at different z-positions along the optical axis of the microscope. 

The focal plane of the objective corresponds to z = 0 µm. Individual sections were fitted to a 

Gaussian function (bottom). (b) Fitted width of the UV light profile at different heights along the 

optical axis (data in points yellow with black outline; thin black error bars lay within the points). 

The width of the light at different z-positions resembles a Gaussian beam (equation, and 

corresponding fit shown as a thick black line). (c) Molar extinction coefficient of caged resact in 

ASW. 



 

Supplementary Figure 3: Sperm steering in a 3D gradient. (a, d) representative swimming 

paths of sperm in the gradient shown in Figure 3a. (b, e) Corresponding stimulus encountered by 

sperm while swimming in the gradient. (c, f) Relative changes of the stimulus baseline and 

alignment of the helical path. 



Supplementary Figure 4: Exemplary simulation 

of sperm chemotaxis when chemoreceptors are 

located along the flagellum. (a) Computed path of 

a cell navigating in a chemoattractant gradient (grey 

shades), where K0 is dynamically adjusted by a 

simple feedback. The chemoattractant sensors have 

been assumed to be distributed uniformly along the 

flagellar surface (see Supplementary Note). 

Regardless of the chemoreceptor location (head 

versus flagellum) the navigation behaviour is 

analogous (see Fig. 6. and Supplementary Note). (b) 

Mean flagellar curvature in time K0 for the simulated 

path shown in panel a. During swimming up the 

gradient, K0 modulations are small. Swimming 

down the gradient triggers a large modulation of the 

mean flagellar curvature and results in a large 

correction of the swimming direction. (c) Relative 

change in baseline stimulus and alignment rate (γ1) 

for the simulated path shown in panel a. 
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Theoretical description of steering along helical paths 

This SI text presents a theoretical analysis of our mathematical model of sperm chemotaxis 

along helical paths. We first summarize symbols and equations used. Second, we characterize 

the input-output transfer function of the signaling module for three prototypical stimulus 

functions s(t). We then review the kinematics of swimming along perfect helical paths, as well 

as steering along bent helices by oscillating path curvature and path torsion. We specifically 

address on and off steering responses. We discuss the role of phase lags – both due to signaling 

latency as well as due to the dynamics of swimming – between stimulus and motor response. 

 

List of symbols used: 

t:   time 

x:   space coordinates 

r(t):   averaged swimming path of the sperm cell 

c(x,t):  chemoattractant concentration-field 

s(t):   concentration stimulus sampled by the cell along its path 

R(t):  centerline of helical swimming path r(t) 

h(t):  unit vector pointing along the helical axis of a helical swimming path r(t) 

( ) :c t   chemical gradient at r(t) 

( ) :c t   component of the gradient parallel to h(t) 



( , )c t x :  component of the gradient perpendicular to h(t) 

g1(t):  unit vector parallel ( )c t  

g2(t):  unit vector perpendicular to h(t) and g1(t) 

1(t):  alignment rate of the helix vector h(t) towards g1(t)  

2(t):  alignment rate of the helix vector h(t) towards g2(t)  

p(t):   dynamic sensitivity of signaling system  

a(t):   signaling output variable 

µ:   signaling time-scale 

(t):  steering feedback strength 

on:   steering feedback strength during on resonse 

off:  steering feedback strength during off response 

q(t):  trigger variable  that monitors changes of the stimulus baseline 

:  trigger threshold for off responses 

:  time-scale of stimulus filtering 

v(t):  swimming speed 

p(t):  path curvature of swimming path r(t) 

p(t):  path torsion of swimming path r(t) 

t(t):  tangent vector of the Frenet frame along the swimming path r(t) 

n(t):  normal vector of the Frenet frame along the swimming path r(t) 

b(t):  binormal vector of the Frenet frame along the swimming path r(t) 

r0:  helix radius 

p0, 2h0: helix pitch 



:  angular frequency of helical swimming 

K0(t):   mean flagellar curvature 

Kb:  mean flagellar curvature in the absence of stimulation  

l:  arc-length coordinate along the flagellum 

rf(l,t):  position of the flagellar centerline 

f(l,t):  flagellar curvature 

f:  flagellar twist 

0:  angular flagellar beat frequency 

:  wavelength of flagellar bending wave 

e1(l,t):  normal vector of the Cosserat frame along the flagellum 

e2(l,t):  binormal vector of the Cosserat frame along the flagellum 

e3(l,t):  tangent vector of the Cosserat frame along the flagellum 

 

List of equations: 

Helix bending: 

          (1) 

(dot denotes time-derivative) 

 

Flagellar wave form dynamics: 
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Signalling dynamics: 
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Characterisation of the adapation module 

We discuss the input-output characteristic of the adaptation module in equations (5.1) and (5.2) 

for three prototypical stimuli s(t).  

 

Constant stimulus  

For a constant stimulus of the form s(t) = s0, the output a(t) is always constant, a(t) = 1.  

 

Oscillatory stimulus 

An oscillating stimulus 0 1( ) cos( )s t s s t   with frequency  and (small) amplitude s1 will 

elicit oscillations of the output variable around its rest value, a 1 a( ) 1 cos( )a t s t     , with 

amplitude gain a and phase-lag a. Here,  
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denotes the so-called complex susceptibility of the signaling system.  Note that the phase-lag a 

between s(t) and a(t) is independent of the base-level 0s . The oscillation amplitude as1 scales 

as s1/s0, and thus, the output variable a(t) displays adaptation because it responds to relative 

changes of the input stimulus. 

Of note, the trigger variable q(t) (see equation 7) oscillates only weakly in this case with an 

amplitude that is attenuated by a factor |1+i|
-1

 as compared to a(t). 

 



Exponential stimulus 

We consider a stimulus baseline s(t) = s0 exp( t) that changes in time at a rate thatcan be 

either positive (increasing stimulus) or negative (decreasing stimulus). In this case the output is 

detuned from its rest-value:  

 ( ) 1a t   . (S2) 

The amount of detuning is set by a competition between the time-scale of adaptation () and the 

time-scale on which the stimulus changes (|-1). Thus, the condition q > on the trigger 

variable q(t) is equivalent to the rate  to exceed a threshold: 
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The stimuli sampled by swimming cells can be approximated as a superposition of fast 

oscillations and a slowly changing baseline, and thus represent a superposition of these 

idealized cases.  

 

A theory of steering along helical paths  

The Frenet frame; curvature and torsion 

The bending and twisting of a swimming path r(t) is characterized by its signed curvature p(t) 

and torsion p(t). These quantities describe the dynamics of an orthonormal coordinate system 

that moves along r(t), consisting of the tangent vector / vt r , the normal vector n t t , and 

the binormal vector  b t n . This so-called Frenet frame rotates along the path according to 

the Frenet-Serret formulas: 

 p p p p,  ,  ,  v v v v v         r t t n n t b b b   (S4) 

Note that the signed curvature is only defined up to a global choice of sign. The sign of p

distinguishes right-handed helices ( p 0  ) and left-handed helices ( p 0  ). 

 



Swimming along perfect helices 

Flagellar propulsion with an asymmetric, nonplanar beat pattern that is perfectly periodic in 

time implies an averaged swimming path r(t) that is a perfect helix with constant curvature κp 

and torsion τp. The vector (t) = v[p t(t) - p b(t)] can be shown to be an invariant of this 

motion. In fact, 0 | |  Ω  is the angular frequency of helical swimming, while the helix vector 

h = /0 points along the centerline of the helix. The vector  characterizes rotations of the 

Frenet frame, e.g.  t Ω t . Thus, the tangent vector t performs a precession motion around the 

helix vector h with a constant rotation rate 0. We note the useful formulas pv Ω t  and 

pv  Ω t . The radius and pitch of the helix can be computed as 
2 2

0 p p p/ ( )r      and 

2 2

0 p p p2 2π / ( )h     , respectively. Note that planar circular paths (Fig. 2a) and twisted 

ribbons (Fig. 2b) can be considered as degenerate cases of helical swimming characterized by 

p= 0 and p= 0, respectively. 

 

Sampling a concentration gradient along helical paths 

We now consider the idealized case of a cell moving along a perfect helical path r(t) inside a 

linear concentration field 0( ) ·c c c x x . Relative to the helix vector h, the concentration 

gradient vector ∇c can be decomposed as 

 c c c     (S5) 

with (i) a component parallel to the helix vector, ( · )c c   h h , and (ii) a component 

perpendicular to the helix vector, c c c   , see Fig. 3c in the main text. While 

swimming along a helical path, the cell samples a concentration stimulus s(t) = c(r(t)) from the 

concentration field that comprises (i) a slow change of the stimulus baseline resulting from a 

net motion along the direction h and (ii) a fast oscillation with the frequency  of helical 

swimming. For an appropriate choice of coordinate system, we find 

 0 0 0 0 0( ) ( ) cos( )s t c c h t c r t       h . (S6) 

 



Chemotaxis by phase-locked oscillations of path curvature and torsion 

The time-dependent concentration stimulus sampled by a sperm cell along its path serves as 

input for a signaling system that controls the shape of the flagellar beat, and thus changes 

curvature κp(t) and torsion p(t) of the swimming path. Generally, an oscillatory concentration 

stimulus as in equation (S6) will elicit phase-locked oscillations of path curvature and torsion. 

We consider an idealized case of perfect curvature and torsion oscillations with the frequency 

0  of helical swimming  

 p 0 1 0( ) cos( ),t t          (S7) 

and analogously, p 0 1 0( ) cos( )t t        . Here, we explicitly account for a phase-shift   

between oscillations of s(t) and κp(t), which characterizes latency times of chemotactic signal 

processing. Oscillating curvature and torsion yield bent helices: Using a theory put forward 

previously
1-3

, we can compute the bending rates 1  and 2  of helical paths defined in the 

Methods section equation (1) 
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Thus, a sufficient condition for optimal alignment of the helix axis with respect to the 

concentration gradient characterized by 1 0   and 2 0   is given by π   and 0  , 

implying that curvature oscillations would be anti-phase to stimulus oscillations, while torsion 

oscillations would be in-phase. These results pertain also in more realistic cases of slightly 

nonlinear concentration fields, and concentration stimuli sampled along helical paths that are 

perturbed by steering feedback, as long as the feedback is weak (characterized by 

0 1a c r  ). 

 

The“off response” 



Whether the helical path is directed up the concentration gradient ( 0)c  h  or down the 

concentration gradient ( 0)c  h  is reflected by a slow increase or decrease of the stimulus 

baseline, respectively. From Equations (S6) and (7), we find for the trigger variable q(t) 
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Thus, an off response is triggered in our simulations whenever the relative gradient strength in 

the direction of the helix axis falls below the critical value: 
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For the parameters used, we have 3 1

0 0( 1) / ( ) 1.2 10 mh         or about 6%  over one 

helix pitch 02 50 mh  . During an off response, the helix axis rotates rapidly as a result of 

large-amplitude oscillations of path curvature and torsion. While the geometric principle is 

fully analogous to the case of on responses, equations (S8) and (S9) will only hold in an 

approximate sense and the directional precision of these vigorous steering responses might be 

reduced as compared to the case of on responses.   

 

Phase-lags in simulations 

In our simulations, path curvature κp(t) and torsion p(t) are regulated only indirectly by 

dynamically adjusting the mean flagellar curvature K0, see equation (6). For the parameters 

chosen, we observe an additional phase-lag 
0K between oscillations of K0 and κp, where 

0
π 3K  . This phase-lag depends on the oscillation frequency  and vanishes if we impose 

adiabatically slow oscillations of mean flagellar curvature. The effective phase-lag   that 

governs the bending rate in equation (S8) is the sum of (i) the phase-lag a due to signaling 

latency and (ii) the phase-lag 
0K arising from the dynamic regulation of the beat pattern, 



 
0a K    .  (S12)  

For the parameters chosen, we find 2π / 3a   according to equation (S1). Thus, π  . 

Similarly, 0  . From equation (S8) and (S9), we find 1 0   and 2 0  , corresponding to 

positive chemotaxis with the helix axis bending in the direction of the concentration gradient. 

 

Location of stimulus receptor 

The minimal theory presented above assumed for simplicity that stimulus concentration s(t) is 

measured at the position r(t) of the sperm head, see equation (4). However, chemoattractant 

molecules bind to surface receptors distributed along the flagellar length 
4
. We can account for 

this by defining a flagellar stimulus sw(t) that represents a weighted average of the local 

stimulus concentration along the flagellum  

 
0

( ) ( ( , ), t) ( )d

L

ws t c l t w l l  fr .      (S13) 

Here, ( , )l tfr  denotes the centerline of the flagellum parametrized by arc-length l and w(l) is a 

normalized density of receptors as a function of l. For the special case of a -distribution 

located at the head position, we recover the previous definition. We also define the trajectory of 

the weighted “center of mass” rw(t) of the receptor ensemble 

   
0

( ) ( , ) ( )d

L

w t l t w l l  fr r        (S14) 

as well as the corresponding path curvature w(t) of its averaged path. We can use the stimulus 

sw(t) instead of the head stimulus s(t) as input for the adaptation module given in equation (5). 

Simulation results are largely independent of the choice of w(l), provided the delay time of the 

adaptation module is adjusted accordingly. Generally, there is a phase lag f between the 

flagellar stimulus sw(t) and the head stimulus s(t) such that, sw(t)  s(t + 0
-1f). This additional 

phase lag can be compensated by changing the delay time of the adaptation module to ensure 

that the effective phase lag 
0a f K       between oscillations of head stimulus s(t) and 

oscillations of head path curvature (t) still sum up to . For the case of uniformly distributed 

receptors along the flagellum (w(l) = 1/L), we find e.g. π / 2f  . Choosing = 60 ms in 



simulations, yielded a  5/3 and thus positive chemotaxis with  . Note that equations 

(S8) and (S9) governing the direction of helix bending generalize to the case of an arbitrary 

receptor distribution w(l), provided  is replaced by the phase lag between oscillations of 

flagellar stimulus sw(t) and oscillations of the weighted flagellar path curvature w(t). As 

anticipated, simulations accounting for a uniform receptor distribution along the flagellum do 

not qualitatively differ to the minimal model considered in the main text, where the stimulus 

concentration is measured at the position of the sperm head (see Supplementary Fig. 4). 
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