

Supplementary Figure 1. Excavation of the Phillip Tobias Korongo (PTK) site by The Olduvai Paleoanthropology and Paleoecology Project (TOPPP). Informal view to the west side of the site in 2013.

	Geology		Archaeology		
			Leakey, 1971	TOPPP 2008-2014	
	· ; ; ; ·	Tuff 1C	Sites: FLK, FLK-N, FLK-NN, FLK-NW	Sites: FLK, PTK, DS	
	()	[.] clay	Level 22 (Zinj), (Eqv. FLKNN-1)	Levels 1 and 2	
	c b a	Chapati tuff	(Eqv. FLKNN-2)	Level 3	
		tuffaceous clay	(Eqv. FLKNN-3)	Level 4	
cm 100− _Π	7	_clay tuff			
80-		Tuff 1B			
40-	÷_*7.	bentonitic clay			
20		- basalt			

Supplementary Figure 2. Stratigraphic section of Lower and Middle Bed I (Olduvai Formation, Tanzania) and location of the PTK site. Archaeological level 3, which yielded the new OH 86 hominin proximal phalanx fossil, is situated stratigraphically in Layer C of the Chapati Tuff.

Supplementary Figure 3. Discriminant analysis of human proximal phalanges II and V from the *Homo sapiens* sample compared to the OH 86 fossil. OH 86 most probably belongs to ray V. The histogram shows the discriminant function scores of an analysis carried out on the original (seven) measurements, which yielded better results than size-adjusting the data. Ninety-four per cent of the original cases are correctly classified, and 91.8% of the cross-validated cases are correctly classified. OH 86 is classified as belonging to ray V, with a much higher probability than belonging to ray II (0.953 vs. 0.047 respectively; using Fisher classification coefficients, also in all cases below). The other isolated fossil hominin specimens included in the analyses were also classified as fifth proximal phalanges with the following probabilities (V vs. II): AL333-62 (p = 0.972 vs. p = 0.028), StW 28 (p = 0.999 vs. p = 0.001), ATE9-2 (p = 0.9 vs. p = 0.1). The modern human sample includes 40 individuals (for both rays).

Supplementary Figure 4. Size and Mosimann shape ratios of proximal phalanges of ray V. Boxes represent 25th and 75th percentiles, centerline is the median, whiskers represent non-outlier range, dots are outliers, and asterisks are extreme outliers. The position of OH 86 is extended onto the remaining taxa (red line) to facilitate comparisons. The plesiomorphic Miocene great ape, *Pierolapithecus catalaunicus* (IPS21350; ~12 Ma), is included in all analyses to give a sense of evolutionary polarity. Extant samples for each boxplot are *Homo sapiens* (n = 40), *Pan* (n = 82), *Gorilla* (n = 108), *Papio* (n = 34), and *Macaca* (n = 18). Fossil proveniences are indicated in Supplementary Table 2.

Supplementary Figure 5. Phalangeal curvature in extant and fossil hominoids (**pooling rays II-V**). Included angle values (in degrees) in modern and fossil samples of proximal phalanges. The position of OH 86 is extended onto the remaining taxa (red line) to facilitate comparisons. Even though pooling the curvature of rays II to V increases the overlapping ranges between each taxa, OH 86 is still within the modern human variation (distinct from australopiths) and the lowermost range of gorillas. Boxes represent 25th and 75th percentiles, centerline is the median, whiskers represent non-outlier range, and the dots are outliers. Extant samples for each boxplot are *Homo sapiens* (n = 146), *Pan paniscus* (n = 38), *Pan troglodytes* (n = 63), *Gorilla* (n = 88), *Pongo* (n = 68), and Hylobatidae (n = 88). Fossil proveniences are indicated in Supplementary Table 4.

Supplementary Table 1. Measurements of OH 86. All linear dimensions refer to maximum diameters (in mm) and the included angle is in degrees.

Maximum Length	35.9
Dorsopalmar Trochlea	6.7
Mediolateral Trochlea	10.1
Dorsopalmar Midshaft	5.1
Mediolateral Midshaft	10.2
Dorsopalmar Base	10.4
Mediolateral Base	14.0
Included Angle	29.1

		Ν
Homo	sapiens ^a	40
Pan	troglodytes ^b	62
	paniscus ^c	20
Gorilla	gorilla ^d	48
	beringei ^e	40
	unknown ^f	20
Papio	hamadryas ^g	34
Macaca	fascicularis ^h	3
	fuscata ^h	2
	maura ^h	1
	nemestrina ⁱ	5
	nigra ^h	2
	silenus ^h	2
	<i>sinica</i> ^h	1
	sylvanus ^h	2
Total sa	mple	282

Supplementary Table 2. Extant sample for the shape analyses (discriminant function, Mosimann ratios and principal components analysis).

Superscripts indicate the collection provenience for each taxon. (a) UAB, CMNH, SBU, Naturalis; (b) AMNH, RMCA, USNM, MCZ, Naturalis, SBU; (c) RMCA, AMNH, MCZ, SBU; (d) AMNH, RMCA, CMNH, MCZ, Naturalis; (e) RMCA, AMNH, USNM, MCZ; (f) AMNH; (g) AMNH, Naturalis, SBU; (h) Naturalis; (i) Naturalis, MCZ. Abbreviations: UAB (Universitat Autònoma de Barcelona), CMNH (Cleveland Museum of Natural History), SBU (Stony Brook University), Naturalis (Naturalis Biodiversity Center), AMNH (American Museum of Natural History), RMCA (Royal Museum of Central Africa), USNM (National Museum of Natural History), MCZ (Museum of Comparative Zoology).

		II	III	IV	V
Homo	sapiens	36	37	37	36
Pan	troglodytes	15	16	16	16
	paniscus	10	10	10	8
Gorilla	sp.	22	22	22	22
Pongo	sp.	17	18	17	16
Symphalangus	syndactylus	5	5	5	5
Hylobates	sp.	17	17	17	17
Total samples		122	125	124	120

Supplementary Table 3. Extant sample for included angle per ray (total phalanges in sample = 491).

The original curvature data were kindly provided by Jack Stern and Randy Susman, details on the sample composition and provenience are provided in ref. 6.

Supplementary Table 4. Fossil specimens, that have been attributed to the fifth ray, included in this study.

	species	data source
IPS21350.15	Pierolapithecus catalaunicus	Almécija et al., 2009 ¹
AL333-62	Australopithecus afarensis	Bush et al., 1982 ²
Stw 28	Australopithecus sp.	Lorenzo et al., 2015 ³
UW88-121	Australopithecus sediba	Kivell et al., 2011 ⁴
ATE9-2	Homo sp.	Lorenzo et al., 2015 ³
OH86	Homo sp.	this study
Kebara 2	Homo neanderthalensis	this study
Qafzeh 8	early Homo sapiens	this study
Qafzeh 9	early Homo sapiens	this study

Supplementary Table 5. Results of the principal components analysis of phalangeal form.

	Principal Component 1	Principal Component 2
% variance	77.229	12.876
Maximum Length / GM	-0.72	0.628
Dorsopalmar Trochlea / GM	-0.042	0.731
Mediolateral Trochlea / GM	-0.203	-0.521
Dorsopalmar Midshaft / GM	0.442	0.317
Mediolateral Midshaft / GM	0.804	-0.457
Dorsopalmar Base / GM	-0.032	0.511
Mediolateral Base / GM	-0.417	-0.777
GM (geometric mean)	0.992	0.100

Each variable was size log-transformed (using natural logarithm) prior to inclusion into the analysis. Absolute loading ≥ 0.5 are marked in bold. Only the two first axes provided meaningful discrimination among extant group.

Supplementary References

- Almécija, S., Alba, D. M. & Moyà-Solà, S. *Pierolapithecus* and the functional morphology of Miocene ape hand phalanges: paleobiological and evolutionary implications. *J. Hum. Evol.* 57, 284-297, (2009).
- Bush, M. E., Lovejoy, C. O., Johanson, D. C. & Coppens, Y. Hominid carpal, metacarpal, and phalangeal bones recovered from the Hadar Formation: 1974-1977 collections. *Am. J. Phys. Anthropol.* 57, 651-677, (1982).
- 3 Lorenzo, C. *et al.* Early Pleistocene human hand phalanx from the Sima del Elefante (TE) cave site in Sierra de Atapuerca (Spain). *J. Hum. Evol.* **78**, 114-121, (2015).
- Kivell, T. L., Kibii, J. M., Churchill, S. E., Schmid, P. & Berger, L. R.
 Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. *Science* 333, 1411-1417, (2011).