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Figure 1: Geometry of a tubular helix winding around a MT. a) Sketch of the tube with radius r and
an imaginary cylinder of radius R depicted as a dashed circle containing the grey region. The radius
of this cylinder corresponds to the radius of the MT plus some extra space occupied by the motors.
We associate an orthonormal triad {t,n,b} at each point X(s, φ) on the surface of the helical tube.
The vector r(s) defines the position of the nanotube center at s, and the angle φ defines a point on
the tube surface. b) Helical tube forming a helical angle ζ with respect to the MT axis.
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Figure 2: Schematic description of the in silico model. a) Three different regions can be identified in
the tube region (A, B and C). In region A, motors are either strongly bound (state 1, black circles)
or weakly bound (state 2, grey circles) to the MT. They are excited and decay with average rates
ω?, ω respectively. In region B, motors are detached from the MT (state 0, white circles) and diffuse
freely outside the curved region of size r in the tip. Overlapping is allowed to account for the two-
dimensional diffusive motion of motors on the membrane. Motors detach from state 2 and attach from
state 0 with mean rates ω2, ωa respectively. Finally, in region C, detached motors feel a soft repulsive
potential V which prevents them to enter the curved region. b) Tube extracted from a GUV with
surface density of motors ρ∞. An influx J+ of motors enters the tube region at x(1) and an outflux
J− enters back to the GUV at x(0).
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Figure 3: Microscopic model for single-headed KIF1A in a 2D lattice. a) Two-dimensional oblique
Bravais lattice representing the MT surface with directions r1, r2, forming an angle θ. The lattice
unit is centered in each node. b) Lattice unit with lengths l1 and l2 and ratchet asymmetries a1, a2.
c) Schematic description of a two-state noise-driven ratchet for the i-th direction and its equivalent
description on a lattice. The transition p12 is not depicted in this case. Motors can diffuse with rates
ui, vi and advance with rates pi along the i-th direction. d) Two-dimensional diffusion on the lattice
in the weakly bound state. e) Possible transitions between the strongly bound state (black circles)
and the weakly bound state (grey circles) and its corresponding transition rates.
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Figure 4: SDS gel for fluorescently labeled (1) and unlabeled (2) KIF1A. From left to right: protein
lysate (L), first wash (W), elution (E) and Kaleidoscope marker (M). The two arrows correspond to
the ' 45 kDa band, corresponding to the KIF1A monomer molecular weight.
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Supplementary Table 1

Table 1: Parameters used in the in silico model

Parameter Value

MT periodicity length l = 8 nm
Motor size σ = 4.2 nm
Ratchet asymmetry a = 1.8 nm
Excitation window δ = 0.16 nm
Characteristic detachment length d = 3 nm
Ratchet potential maximum U = 10 kBT
Surface tension γ = 0.05 pN nm−1

Bending rigidity κ = 10 kBT
GUV surface motor density ρ∞ = 200− 1000 µm−2

Diffusion coefficient (MT) D = 20 nm2 ms−1

Diffusion coefficient (tube) Dt = 1 µm2 s−1

Excitation rate ω? = 33 s−1

Decay rate ω = 250 s−1

Detachment rate (zero load) ω0
2 = 1 s−1

Attachment rate ωa = 3 s−1
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Supplementary Note 1: Geometry and energetics of a tubular
helix

We consider a tubular helix of radius r (tube radius) winding on an imaginary cylinder of radius R (MT
radius plus some extra space occupied by the motors, depicted as a dashed circle in Supplementary
Fig. 1a, left), such that r+R is the distance between the center of the MT and the center of the tube.
The helix moves along the z-axis with an angular pitch p which is the distance the helix advances per
radian along the z-axis. Each point on the surface of the helix is determined by the vector X. We
can parametrize every point on the helix surface with two variables {s, φ}, where s is the arclength
following the path of the helix through its center and φ is an angle which determines at a given
arclength s the position of a point in the circle of radius r. If we call a the angle the helix moves per
arclength unit, the distance the helix advances along the z-axis after moving a distance s along the
helix will be pθ, where θ ≡ as. If we move an arclength unit, we are moving a distance ap in the z-axis
and a distance aR0 in the axis perpendicular to the z-axis, where R0 ≡ R + r. In this way we find
1 = a2(R2

0 + p2). On the other hand, the angle ζ the center of the helix forms respect to the z-axis
fulfills (see Supplementary Fig. 1b):

tan ζ =
R0

p
(S1)

The position of the center of the left-handed helix is r(s) = (R0 sin θ,R0 cos θ, pθ). We can parametrize
the surface of the tubular helix X(s, φ) as:

X(s, φ) = r(s) + r[n(s) cosφ+ b(s) sinφ] (S2)

with φ ∈ [0, 2π), using the orthonormal triad {t,n,b} such that t(s) = ∂sr
|∂sr| , n(s) = ∂st

|∂st| and b(s) =
t∧n
|t∧n| (see Supplementary Fig. 1a, right). The mean curvature of the surface H(φ) can be determined

through the first and second fundamental forms gµν(s, φ) = ∂µX · ∂νX and Πµν(s, φ) = ∂µνX · n,
µ, ν = s, φ; which in a matrix form read:

g =

(
E F
F G

)
Π =

(
L M
M N

)
(S3)

The mean curvature can be calculated through the expression H(φ) = EN−2FM+GL
2 det(g) [1, 2] which leads

to:

H(φ) =
1

2

[
1

r
+ rK(φ)

]
(S4)

where K(φ) = − C cosφ
r(1−rC cosφ) and C = R0

R2
0+p2

is the curvature of the helical spine curve of the tube.

We notice that for p→∞ the curvature tends to the one of a cylinder of radius r i.e. 1/2r. The total
surface of a tubular helix of lenght L and radius r is 2πrL, the same as for a cylinder. Consequently,
the surface energy is 2πrLγ, and it does not depend on the pitch. Let us define the small quantity
ε ≡ rC. This quantity is bounded below 1 in the experiments. Considering the first correction up to
fourth order in ε, the free energy of the system can be approximated as:

F ' πκL

r

(
1 +

1

2
ε2
)

+ 2πrLγ − FL (S5)

In the limit p→∞ (or ε→ 0), we recover the free energy of a cylindrical tube with extraction force
F = 2π

√
2κγ and diameter 2r =

√
κ/γ. Therefore, we conclude that the last two expressions for the

cylindrical case are accurate to second order in ε and yield good approximations to the actual values
for the helical tubes.
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Superhelical effect on the tube pitch

Let us consider a helical tube of pitch P growing around a MT which has superhelicity of pitch Psh.
The angle that the tube will advance per arclength unit will be:

a(p′) = a(p) + a(psh) = a(p)(1 + ξ) (S6)

where p′ is the angular pitch, p is the angular pitch for a 13pf MT and ξ is the relative increase in
angle which reads:

ξ =

√
1 + cot2 ζ

1 + cot2 ζsh
(S7)

where cot ζsh = psh/R0.

Estimation of the off-axis force exerted by the motors

Next we estimate the off-axis force exerted by the motors by using free energy arguments. From Eq.
S5 we find that a lower bound of the excess free energy ∆F associated to the winding of the tube
reads:

∆F ' πκL

2r
ε2 (S8)

This excess free energy is due to the work KIF1A motors perform in the off-axis direction Woff along
the tube. This work can be estimated to be:

Woff = 2πRMTNwFoff (S9)

where Foff is the total off-axis force exerted by the motors and Nw is the winding number. Actually,
the above expression underestimates the work by taking the radius of the displacement as that of the
microtubule, and not that of the point at the membrane where the force is exerted. The winding
number can be expressed in terms of the angle the helix moves per arclength unit a as Nw = La/2π.
Equating the last two expressions we obtain the total off-axis force:

Foff =
πκε3/2

2RMT

√
1 +

R

r
(S10)

In our experiments ε ' 0.04− 0.5. Which gives a lower bound of the total off-axis force in the range
Foff ' 0.04− 2 pN.
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Supplementary Note 2: In silico model for longitudinal tube
pulling

We illustrate the problem of tube-pulling for a tube of radius r and extraction force F , considering
N motors in the vesicle reservoir and assuming that motors use a single pf 1 extending the model
presented in Ref. [3]. We distinguish two main regions in the system: the tube region and the vesicle
region (Supplementary Fig. 2b).

Tube region

A subset of motors Nt ⊂ N are found in the tube region at time t. A motor i from this subset is
found in state ki(t) at time t, where ki is a discrete stochastic variable. Motors can be detached from
the MT (ki = 0), strongly bound to the MT (ki = 1) or weakly bound to the MT (ki = 2). In all
cases, motors are also bound to the tube considered as a soft cargo. The dynamics of each motor is
different depending on the region where it is found (A, B or C, see Supplementary Fig. 2a). Next we
describe the dynamics in each region:

Region A corresponds to the region in between the tube and the MT, were motors can be either
weakly or strongly bound to the MT (i.e. ki 6= 0). In this region the dynamics reads [3]:

λẋi = −U ′(xi, ki)−
∑
j∈S

W ′(xi − xj)− Fδxi,xmax
+ ζ

(D)
i (t) (S11)

where λ is the friction coefficient, such that the diffusion coefficient follows the Einstein relation
D = kBT/λ. U(xi, ki) is the potential motors feel depending on the state ki. In the strongly bound
state (ki = 1), motors feel a periodic saw-tooth potential of asymmetry a and periodicity l. The results
are not significantly affected by the particular form of the ratchet potential as shown in previous studies
where similar results are obtained in a lattice model [3, 4]. On the other hand, in the weakly bound
state (ki = 2) they feel a constant potential U(xi, 2) = U2. W accounts for the motor-motor interaction
potential and is taken as a truncated Lennard-Jones potential of hard-core size σ and energy minimum
ε, where the former corresponds to the motor size and the latter is taken large enough to ensure that the
interaction is effectively hardcore for motor-motor distances smaller than σ. The i-th motor interacts
only with a subset of motors S(t) at time t which are bound to the MT, i.e. S(t) = {j|j 6= i, kj(t) 6= 0}.
ζ(D)(t) is a Gaussian white noise with 〈ζ(D)

i (t)ζ
(D)
j (t′)〉 = 2kBTλδijδ(t− t′). Finally xmax corresponds

to the position of the foremost motor in the system.
In region B, motors are detached from the MT (ki = 0) and undergo free diffusion on the membrane

tube outside the curved region in the tip of size r. Defining ξi = xi − xtip as the relative distance
between the position of the i-th motor and the tip position xtip, the condition for a detached motor
to be in region B is |ξi| > r. The dynamics reads:

λtξ̇i = ζ
(Dt)
i (t) (S12)

where λt, Dt are the friction and diffusion coefficients on the membrane tube respectively. We notice
there is no interaction potential for the motors in this region since we allow overlapping to account
for the two-dimensional diffusive motion of motors on the tube. In this way, motors are no longer
ordered respect to their label i.

Region C corresponds to the curved region of the tip where |ξi| < r. In this case we neglect noise
and the dynamics simply read:

λtξ̇i = −V ′(ξi) (S13)

1The case of Np pf is done by simply scaling the extraction force F and the surface density of motors ρ∞ by Np.
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with a repulsive potential V in the form of a truncated Morse potential which is valid for |ξi| < r
and is zero otherwise. This is an ad hoc choice to simply prevent motors to enter in region C. We
adjust the Morse parameters to ensure a soft short-ranged repulsive potential preventing the detached
motors to enter the curved region. We associate the dynamics of the tube tip with the dynamics of the
foremost motor i.e. ẋtip = ẋmax. If the foremost motor detaches, the tube retracts with a retraction
velocity ẋtip = −F/λm until a new bound motor is found. λm is an effective friction parameter which
is inferred from the retraction velocity of motors vr ' 100 µm s−1 observed experimentally for F ' 20
pN [5]. Finally we estimate the number of bound motors in the tip over time by counting the number
of consecutive bound motors pulling on the tube, where we define two motors as consecutive if they
are at a distance less than δD =

√
4D/ω. Also, we estimate the density of bound motors from the

set of positions of the bound motors at each time step of the simulation using a smoothing technique.
We define the density of motors at each point as the number of bound motors in a characteristic
bandwidth divided by its length. The bandwidth size is taken ' 100 nm, which is similar to the
experimental spatial resolution.

Next we describe the state dynamics. All state transitions in the system are stochastic with dwell
times which are exponentially distributed. Motors are excited from state 1 to 2 from localized regions
of size δ near the minima of the ratchet potential with average rate ω?. On the other hand, decays
from state 2 to 1 are delocalized with average rate ω. Attachment events occur with average rate
ωa. However, they are not always possible due to excluded volume interactions in region A. Thus, we
say that a motor i will only attach if it can find a free site i.e.

∑
j∈SW

′(xi − xj) = 0. We include
exponentially dependent detachment kinetics on the force. In vitro experiments using single-headed
kinesin have shown that the detachment rate at zero load is much larger in the weakly bound state (∼
1 s−1) than in the strongly bound state (∼ 0.01 s−1) [6]. We choose to neglect detachment from state
1 for simplicity. The addition of detachment in state 1 leads to similar dynamics in the system. The
average detachment rate from state 2 of the i-th motor at time t, will depend on the passive forces
the i-th motor feels over time:

ω2(i, t) = ω0
2 exp

(
|F̃i(t)|d
kBT

)
(S14)

where ω0
2 is the detachment rate at zero load from state 2, F̃i(t) is local time-averaging of the noisy

signal of the passive forces Fi(t) = −
∑
j∈SW

′(xi − xj) − Fδxi,xmax
and d is a characteristic length

which is typically 2 to 4 nm for kinesin [6, 7, 8]. We used a simple smoothing technique by choosing
F̃i(t) as the time average of Fi in the region [t − τ, t], where τ is the window size. This is taken as
τ = 100 ms, which is big enough to average the passive forces a motor feels during a hydrolysis cycle
(∼ 10 ms), and smaller than the timescale of the tube motion (∼ 1 s). Variations of τ around this
value did not affect significantly the dynamics of the system.

Vesicle region

The vesicle region is described as a motor reservoir with surface density of motors ρ∞. Motors diffuse
on the vesicle and eventually they enter the tube region through the boundary x = x(0) (Supplementary
Fig. 2b, red line). Hence, in the boundary we have an influx of motors J+(t) which are bound to the
MT and to the tube. Experimental evidences show that it is feasible to neglect the influx of motors
only bound to the tube [9]. On the other hand, there is also a flux of motors leaving the tube J−(t)
by diffusion. Since KIF1A is able to make large backward excursions in the weakly bound state,
for practical reasons it is important to ensure motors will not fluctuate near the boundary x = x(0).
Hence, we let motors appear at x(1) = x(0) +δD, (Supplementary Fig. 2b, orange line) and let x = x(0)

act as an absorbing boundary condition for the motors that leave the tube region. The number of
motors in this region Nt(t) will depend on time through the flux balance:

dNt

dt
= J+ − J− (S15)
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Experimental evidences indicate that Eq. (S15) reaches a quasi-steady state [9]. Far from the tip, in
the quasi-steady state the density of motors bound to the tube in the mean-field limit reads [5]:

ρb = 2πrρ∞
ωa

ω0
d + ωa

(S16)

where in our case ω0
d = ω0

2/(1 + β) is the motor detachment rate at zero load and β = ω/ω?. There-
fore, at the boundary x(1), the average influx of motors will be 〈J+〉 = ρbV0. In our simulations, a
new motor will be introduced in the system stochastically every certain time taken from an expo-
nential distribution with mean dwell time 〈J+〉−1. Finally, motors crossing the boundary x(0) will be
incorporated in the vesicle reservoir.

Discussion on realistic parameters for the in silico model

The most determinant characteristic of single-headed KIF1A is that its movement relies on diffusion.
In vitro experiments have reported diffusion coefficients in the range of 20 to 40 nm2 ms−1 which
involve motor excursions much larger than the ratchet periodicity of 8 nm [10] . We will consider
20 nm2 ms−1 as a reasonable value. The asymmetry a of the ratchet is an adjustable parameter for
the model which is difficult to grasp from experiments. The asymmetry reduces the overall velocity
of the system and it can lead to non-trivial effects specially in the limit of weak noise [11]. For our
purposes, we adjust this parameter to 20 % of the periodicity length. Finally, the motor size σ is
carefully chosen to avoid possible commensurability effects [11, 12]. The characteristic rates ω and ω?

are found in the literature within the range of hundreds of Hz. Whereas ω is a parameter coming from
the affinity between the motor domain and the MT, ω? depends on ATP concentration in the solvent.
Experimental data suggest that ω? ≤ 250 s−1 and ω ' 250 s−1 [10, 13]. We choose β such that the
velocity of a single KIF1A at zero load is similar to the experimental gliding velocities ∼ 80 nm s−1

(see Methods). The resulting value is β ' 7.5. The detachment rate of KIF1A has been found to be
ωd ∼ 0.1 s−1. Using our value of β we get ω0

2 ' 1 s−1, which is in agreement with the results in Ref. [6].

The radius of the tube r and the threshold force to extract a tube F depend on the bending rigidity
κ and the surface tension of the membrane γ through the expressions r =

√
κ/(2γ) and F = 2π

√
2κγ

[14]. κ is assumed to be roughly constant in experiments whereas γ can vary substantially. Although
in principle the surface tension can be adjusted in vitro by changing the osmotic pressure difference
in the system, the statistical dispersion of γ from vesicle to vesicle is large and makes it difficult
to control this parameter. The typical range of γ implicitly obtained through our data analysis is
3× 10−4 − 10−1 pN nm−1. The density of motors in the vesicle can be obtained assuming that each
lipid occupies a surface of approximately 0.4 nm2. In the experiments we used different fractions of
biotinylated lipids, in the range 0.01-1 mol %. This range corresponds to ' 200− 20000 µm−2. The
diffusion coefficient on the tube is much larger than the diffusion coefficient in the weakly bound state
(Dt � D). Typically, Dt ' 1µm2 s−1 [9]. Finally, the allowed range of attachment rates is reported
to be 0.1 s−1 ≤ ωa ≤ 10 s−1 [13], and we will take an intermediate value. The Supplementary Table
1 shows a summary of the selected values for the different parameters.
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Supplementary Note 3: Lattice model for a single KIF1A motor

Here we present a phenomenological approach to describe the motion of a single-headed KIF1A motor
moving in a two-dimensional lattice under an external load by taking into account the presence of two
asymmetry parameters. In order to describe the motion of a single KIF1A motor on a 2D MT lattice,
we extend the lattice description in Ref. [3] by considering a 2D oblique Bravais lattice (Supplemen-
tary Fig. 3a) with directions r1 and r2 forming an angle θ. The vector r1 describes the on-axis motion
of kinesin reflecting the polarity of the MT. On the other hand, the vector r2 shows the off-axis motion
determined by the bias due to the interaction of the motor domain and the MT lattice. The mechanism
of motion can be understood by considering a properly generalized two-state model in two dimensions.

We define the state of the motor as k = 1, 2 depending on whether the motor is strongly bound
(k = 1) or weakly bound (k = 2) to the MT. In the strongly bound state, we consider the motor feels
a superposition of two asymmetric ratchet potentials forming an angle θ with asymmetries ai and
periodicities li (Supplementary Fig. 3b, c) where i = 1, 2 indicate the directions in the lattice. Each
node in the lattice indicates the landscape minima. A motor in the strongly bound state can be excited
with rate r = ω? to the weakly bound state in which it undergoes two-dimensional diffusion on the
lattice with rates ui, vi, i = 1, 2 (Supplementary Fig. 3d). These rates depend linearly on an external
force F = (F1, F2) as ui = (di/2)(1 − fi), vi = (di/2)(1 + fi), i = 1, 2, where fi = Fili/kBT is the
dimensionless force, di = D/l2i is the diffusion rate and D is the one-dimensional diffusion coefficient
in the weakly bound state. When the motor decays, it can fall in one of the four possible regions
depicted in Supplementary Fig. 3b. If the motor falls in the red region, it performs a q transition
binding strongly to the MT in the same node (Supplementary Figs. 3c and 3e.). However, if the motor
falls in one of the three green regions, it will move to a new node in the lattice. The motor will make
a p1 transition if it falls in the upper green region, a p2 transition if it falls in the left green region,
and a p12 transition if it falls in the dark green region. The latter probabilities are equal to the decay
rate ω times the probability of falling in a given region, which can be directly obtained calculating
the areas in Supplementary Fig. 3b. We define a given transition rate from state {k,R} to {k′,R′}
as Γ(k′,R′|k,R). The different transition rates read:

Γ(1,R + r1 + r2|2,R) = p12 =
ω

4
(1− 2ā1)(1− 2ā2)

Γ(1,R + r1|2,R) = p1 =
ω

4
(1− 2ā1)(1 + 2ā2)

Γ(1,R + r2|2,R) = p2 =
ω

4
(1 + 2ā1)(1− 2ā2)

Γ(1,R|2,R) = q =
ω

4
(1 + 2ā1)(1 + 2ā2)

Γ(2,R|1,R) = r = ω?

Γ(2,R + ri|2,R) = ui =
di
2

(1− fi)

Γ(2,R− ri|2,R) = vi =
di
2

(1 + fi) (S17)

where āi ≡ ai/li. The mean velocities in the r1 and r2 directions will be:

v1 = l1σ
ss
2 (p12 + p1 + u1 − v1)

v2 = l2σ
ss
2 (p12 + p2 + u2 − v2) (S18)

where σss
2 ≡ 1/(1 + β) is the steady state probability of the motor to be found in state k = 2 and

β ≡ ω/ω?. Substituting the form of the different rates, we can write the last expressions as:

vi =
vd
i

1 + β
(f s
i − fi); i = 1, 2 (S19)
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where vd
i ≡ lidi and f s

i = ω
2di

(1 − 2āi) is the dimensionless stall force in the direction ri. We notice
we recover the results for the one-dimensional case in each direction [3]. The last expression can be
rewritten in terms of the velocity at zero load vi(0) and stall force F s

i as:

vi(Fi) = vi(0)

(
1− Fi

F s
i

)
, i = 1, 2 (S20)

where vi(0) = (liω/2)(1− 2āi)/(1 + β) and F s
i = (kBTω/lidi)(1− 2āi). Using the KIF1A parameters

from the Supplementary Table 1, we get v1(0) ' 70 nm s−1 and F s
1 ' 0.1 pN.
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