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Supplementary Figures 
 

 
Supplementary Figure 1. Apparatus for measuring solvated electrons using optical absorption.  A 
schematic representation of the plasma electrochemical cell where the plasma is formed between a 
sharpened capillary and aqueous electrolyte solution with a submerged, grounded platinum (Pt) electrode 
in an argon (Ar) environment at atmospheric pressure. 
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Supplementary Figure 2. Representative raw signal during an absorption measurement. An 
example of raw data collected from the lock-in amplifier using a 670 nm diode laser and a 163 mM 
solution of NaClO4.  The raw signal for the “Laser on, Plasma on” portion of the data is later averaged and 
normalized by the total detector voltage for the incident laser, I0 ≈ 5 V. 
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Supplementary Figure 3. Effect of plasma carrier frequency on the measured signal. The 
experiment is performed using a 670 nm diode laser in a solution containing 150 mM NaClO4 and 490 
mM H2O2 as an electron scavenger.  With such a high scavenger concentration, the signal due to optical 
absorption by solvated electrons vanishes, and only the spurious signal due to surface vibrations 
remains.  The red solid line indicates our solvated electron absorption signal when operating at 20 kHz 
(e.g., plasma on, laser on in Supplementary Fig. 2) and the blue solid line indicates our noise level at 20 
kHz (e.g., plasma on, laser off in Supplementary Fig. 2). At low frequencies, the spurious signal due to 
electromechanical vibrations is greater than the true absorption signal, but driving the plasma with an 
ultrasonic carrier frequency > 10 kHz eliminates this effect. 
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Supplementary Figure 4. Images of plasma at plasma-solution interface. A 10 mA DC argon plasma 
operated with NaClO4 solutions of varying conductivity (a, 0.24 mS cm-1, b, 2.4 mS cm-1, 
c, 15.9 mS cm-1), illustrating the variation in the plasma radius, which influences the calculation of the 
current density. 

 
Supplementary Figure 5. Radial laser and plasma intensity profiles. The differential intensity profile 
of the laser beam measured using a knife-edge method along both axes (a, x-axis, b, y-axis) in the 
horizontal plane compared to the intensity profile of the plasma obtained from digital photographs.  
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Supplementary Tables 
 

Supplementary Table 1. Measured plasma radii and current densities for various solutions. 
*The conductivity of this solution was beyond the range of our probe. 

 
Solution 

Conductivity 
(mS cm-1) 

σp 
(mm)

jON 
(A m-2) 

jOFF 
(A m-2) 

0.01 M NaOH + 0.330 M NaNO2 N/A* 0.31±0.02 36100±5400 18500±2700
0.01 M NaOH + 0.118 M NaNO3 14.9±0.2 0.36±0.02 26800±3600 13800±1800

0.02 M NaClO4 2.3±0.1 0.46±0.05 16400±3800 8400±1900 
0.163 M NaClO4 15.5±0.2 0.40±0.02 21700±2700 11100±1400

 
 
Supplementary Note 1 Data Reduction 
 
 The detector voltage corresponding to the incident laser intensity, I0, is used to normalize 
the amplitude of the recorded signal. For a given experiment, the amplitudes measured in all 
trials were averaged together and the standard deviation was used to estimate the uncertainty in 
the optical absorption intensity.  For every data point presented in the main manuscript, the 
experiment was repeated at least six times and the error bars arise from standard uncertainty 
propagation at 90% confidence. 
 
Supplementary Note 2 Reaction Model 
 
 In order to analyze the data and extrapolate physical parameters such as the average 
penetration depth, we developed a reaction model for the system. Assuming the electrons quickly 
localize within the first few layers of water, the concentration of solvated electrons as a function 
of depth n(x) is governed be the reaction-drift-diffusion equation 
 

    D d 2n
dx2

− vd

dn
dx

= kS S[ ] + 2k2n( )n ,    (1) 

 
where D is diffusivity, vd is a drift velocity induced by the local electric field, [S] is the 
scavenger concentration, kS is the rate constant for the scavenging reaction, and k2 is the rate 
constant for 2nd order recombination.  Note that this equation is nonlinear because of the nature 
of the 2nd order recombination reaction.  Additionally, it is coupled nonlinearly to a similar 
equation for S(x).  Solving the fully coupled, nonlinear system is difficult and beyond the scope 
of this work.  To simplify things, we assume that the local scavenger concentration S(x) is 
constant and equal to the bulk concentration [(S)aq]. We also make a linear approximation for the 
second order recombination term, yielding 
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    D d 2n
dx2

− vd

dn
dx

= kS S[ ] + 2k2n0( )n ,    (2) 

 
where n0 is the concentration at the average depth of localization, which we set as x = 0.  Note 
that this model effectively neglects the first few monolayers of water in which the ballistic 
electrons become localized.  Additionally, the linear approximation overestimates the rate of 2nd 
order recombination. Imposing the boundary condition that n → 0 as x → ∞, we obtain the 
solution 
 

    n(x) = n0 exp − x
l

 
 
 

 
 
 ,      (3) 

 
where l is the average penetration depth.  Substituting Supplementary Equation. (3) into 
Supplementary Equation (2) yields the following equation for l 
    

    vd + D
l = kS S[ ] + 2k2n0( ) l .     (4) 

 
 We then impose a flux boundary condition at x = 0 
 

    
j

qNA

= vn(x = 0)− D dn
dx x=0

= (vd + D
l )n0 ,  (5) 

 
where Fick’s law has been invoked for the diffusive flux.  Combining Supplementary Equations. 
(4) and (5), yields  
 

    
j

qNAl
= kS S[ ] + 2k2n0( )n0 ,     (6) 

 
which is essentially a volumetric rate balance, where electrons are created at a rate proportional 
to j and reacted away by scavenging and 2nd order recombination. Note that, if there are no 
scavengers present, [S] = 0 and we arrive at Eq. (3) of the main manuscript.   
 To determine the total optical absorbance, we insert Supplementary Equation (3) into 
Beer’s Law and integrate over the depth, x 
 

    
I
I0

= 2ε
sinθ

n0 exp − x
l

 
 
 

 
 
 dx =

0

∞

 2εl
sinθ

n0    (7) 
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where I0 is the incident laser intensity, θ is the angle of incidence relative to the liquid surface, 
and ε is the extinction coefficient, yielding Eq. (1) of the main manuscript.  The end result, given 
by Supplementary Equations (6) and (7), allows us to treat the interfacial region as a film of 
thickness, l, with a uniform concentration [(e–)aq] = n0  along the x-axis.  For the remainder of 
this document, we will utilize this treatment and denote the concentrations n0 as [(e–)aq] and [S] 
as [(S)aq].   

It is important to note that Supplementary Equation (2) overestimates the rate of 2nd order 
recombination, so the electrons should penetrate slightly further than suggested by this model.  
Additionally, this model neglects the first few monolayers of water in which the ~1 eV electrons 
become localized.  Overall, the model underestimates the average penetration depth l. 
 
Supplementary Note 3 Plasma/Laser Gaussian Overlap Corrections 
 
 Ideally, the laser should be focused to a spot size much less than the plasma radius. 
However, due to geometric constraints of the system, the laser could only be focused to a spot 
slightly smaller than the plasma radius as shown in Supplementary Fig. 5. Thus, it becomes 
necessary to perform a correction for the Gaussian overlap of the two. Additionally, there is 
considerable uncertainty in the plasma radius and beam spot size and performing this correction 
is necessary to show how the uncertainty in overlap propagates to the extrapolated parameters. 
We begin by writing Beer’s law, Eq. (1), as an overlap integral of the form 
 

I = 2εl
sinθ

′I (x, y) (e− )aq
 (x, y)dx dy

ℜ2

 .     (8) 

 
where I’(x,y) is the incident laser intensity profile in units of detector voltage per unit area and 
[(e–)aq](x,y) is the concentration of solvated electron at a given position on the plasma-solution 
interface. As shown in Supplementary Fig. 5, the laser profiles projected on the interface and the 
plasma emission intensity profile appear to be approximately Gaussian. Thus, we have 
 

    I ' (x, y) = I 0

πσ xσ y

exp − x 2

σ
x

2 − y 2

σ
y

2



 
 
 





,    (9) 

 
for the laser intensity profile projected onto the liquid surface, and 
 

    j(x, y) = i
πσ

p

2
exp − x2

σ
p

2
− y2

σ
p

2











 ,    (10) 
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for the current density profile where the Gaussian radii of the beam spot σx and σy and the plasma 
radius σp can be obtained by curve fitting the data in Supplementary Fig. 5. Note that 
Supplementary Equations (9) and (10) have been properly normalized such that integrating over 
the entire x-y plane yields the total incident intensity I0 and current i, respectively. 
 
Supplementary Note 4 Uncertainty in the Optical Absorption 
 
To estimate the equilibrium concentration of solvated electrons [(e–)aq] at the interface for a pure  
NaClO4 solution (i.e., in the absence of scavengers) we assume a simple, steady-state model that 
balances the rate at which solvated electrons are created by the plasma with the rate at which 
they are destroyed via second order recombination, Eq. (2). Combining Eq. (3) with 
Supplementary Equation (10), we obtain the following relationship  
 

(e− )aq
 (x, y) = i

πσ
p

2qlNAk2

exp − x2

2σ
p

2
− y2

2σ
p

2











 .    (11)

 

 
From this relationship, we can calculate the optical absorbance by substituting Supplementary 
Equations (9) and (11) into Supplementary Equation (8) and evaluating the integral to yield 
 

I
I0

= 2ε
sinθ

il

qNAk2πσ
p

2 1+ σ x
2

2σ
p
2( ) 1+ σ y

2

2σ p
2( )

.    (12)
 

 
The lock-in amplifier measures the modulated amplitude of the signal ΔI, which is essentially the 
difference in absorption between the high and low states of the plasma or 
 

ΔI
I0

= 2ε l
sinθ

ihigh − ilow

qNAk2πσ
p

2 1+ σ x
2

2σ
p
2( ) 1+ σ y

2

2σ
p
2( )

.    (13) 
 

 
 As a series of individual diode lasers were used to map the optical absorption spectrum 
shown in Fig. 1b, the laser diode and optical filter had to be swapped out for each data point, 
which introduces a systematic error in the radii of the beam spot σx and σy, as the different lasers 
will have different focal properties (i.e. beam divergence, beam waist, and focal length) and the 
system as a whole will not be aligned exactly as before. To correct for this systematic effect and 
quantify the uncertainty, we rearrange Supplementary Equation (13) and obtain 
 

ε λ( ) ∝ ΔI(λ)

I0

sinθ
σ p 1+ σ x

2

2σ
p
2( ) 1+ σ y

2

2σ
p
2( )

ihigh − ilow

,    (14)  
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which effectively gives the wavelength dependent extinction coefficient in arbitrary units as a 
function of measurable quantities. Thus, the data shown in Fig. 1b of the manuscript has been 
corrected according to the right hand side of Supplementary Equation (14) using the measured 
parameters for each wavelength and normalized to have an amplitude of unity. The overlaid (red) 
error bars in Fig. 1b are then calculated as the projection of the uncertainties in each measured 
parameter ΔI/I0, σx, σy, σp, ihigh, ilow, and θ onto the right hand side of Supplementary Equation  
(14).  
 
Supplementary Note 5 Calculation of the Average Penetration Depth 
 
The average penetration depth, l, can be determined by rearranging Supplementary Equation  
(13) as 
 

l = ΔI
I0











sinθ
2ε

qNAk2πσ
p

2 1+ σ x
2

2σ
p
2( ) 1+ σ y

2

2σ
p
2( )

ihigh − ilow

,    (15) 

 
and using measured values of ΔI/I0, σx, σy, σp, ihigh, ilow, and θ.  Using the absorption intensity at a 
wavelength of 670 nm, we obtain a value of l = 2.5 nm. By using the average radius of the 
plasma, as discussed above, and standard uncertainty propagation, we obtain an uncertainty 

value of ±1.0 nm.  However, as previously noted, the radius of the plasma σp increases slightly 
with current in the static limit, and it is unclear to what extent it changes on the 20 kHz timescale 
of switching. We have estimated this effect and found that it can produce as much as 100% 

variation in the uncertainty in l, up to ±2.0 nm. Therefore, our estimation of the penetration depth 
is inherently limited by our ability to accurately determine the current density. This remains an 
opportunity for future improvements in this measurement technique.   

 
Supplementary Note 6 Extrapolation of Rate Constants 

 
 Solvated electrons can reduce a wide variety of cations, anions, and neutral species in 
aqueous solution. In this work, we will refer to these reactions as scavenging reactions, and the 
species that is reduced by the electron will be referred to as an electron scavenger. To estimate 
the equilibrium concentration of solvated electrons [(e–)aq] in the presence of a scavenger, we 
employ Supplementary Equation  (16) 
 

j
lqNA

= 2k2 (e− )aq
 

2
+ kS (S)aq

  (e− )aq
 ,     (16)  
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where [(S)aq] is the scavenger concentration and kS is the associated rate constant. Supplementary 
Equation (S16) can easily be solved using the quadratic formula to obtain 
 

(e− )aq
 =

kS (S)aq
 
4k2

1+ 8k2 j

lqNA kS (S)aq
 ( )2 −1














.    (17)  

 
For large scavenger concentrations, second order recombination becomes negligible, and in the 

limit that kS (S)aq
 ( )2

>> 8k2 j
lqNA

along with accounting for Gaussian overlap corrections, we 

rewrite Supplementary Equation (17) as 
 

(e− )aq
 (x, y) = i

πσ
p

2qlNAkS[(S)aq ]
exp − x2

σ
p

2
− y2

σ
p

2











 .   (18)  

 
 
Combining Supplementary Equation (18) with Beer’s law thus produces the normalized optical 
absorption signal 
 

    I
I0

= 2ε
sinθ








1

qNAkS[(S)aq ]

i

πσ
p

2 1+ σ x
2

σ p
2( ) 1+ σ y

2

σ p
2( )

.   (19)  

 
Thus, the normalized optical absorption signal I/I0 is inversely proportional to scavenger 
concentration [(S)aq].  As before, the lock-in amplifier measures the difference in absorption 
between the high and low states of the plasma 
 

ΔI
I0

= 2ε
sinθ








1

qNAk
S
[(S)aq ]

ihigh − ilow

πσ
p

2 1+ σ x
2

σ
p
2( ) 1+ σ y

2

σ
p
2( )

.  (20) 

 
Thus, plotting the measured absorption signal ΔI/I0 as a function of 1/[(S)aq] yields a straight line 
as shown in Fig. 2 of the main manuscript. Using a linear regression analysis to determine the 
slope m allows us to extrapolate the rate constant  
 

kS = 2ε
sinθ








1

qNAm
ihigh − ilow

πσ
p

2 1+ σ x
2

σ
p
2( ) 1+ σ y

2

σ
p
2( )

.   (21) 
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Note that this calculation for the rate constant does not account for any variations in the ionic 
strength of the solution.  Our solutions are at fairly high ionic strength IS and thus in order to 
compare them to published rate constants from the literature, we apply an ionic strength 
correction to the published values as  
 

log10

kS,corr

kS









=

1.02ZS IS

1+ IS

.    (22)   

 
Supplementary Note 7 Modeling for Acidic Solutions 
 
 Sulfuric acid was used to provide the cationic scavenger H+. Sulfuric acid has a large 
equilibrium dissociation constant and essentially completely dissociates into H+ and HSO4

– in 
aqueous solution.  The anion HSO4

– can then further dissociate into H+ and SO4
2– with a pKa 

value of 1.92.  To calculate the concentration of H+ in the bulk from the concentration of H2SO4, 
we apply the equilibrium relationship 

 

   (HBULK
+ )aq

 =10−1.92
(HSO4

− )aq
 

(SO4
2− )aq

 
,     (23) 

 
where the concentration of HSO4

– and SO4
2– can be determined from  

   
   (HSO4

− )aq
 + (SO4

2− )aq
 = (H2SO4 )aq

 ,    (24) 

 
which is a statement of the conservation of (SO4

2–)aq, and 
 
   (HSO4

− )aq
 + (HBULK

+ )aq
 = 2 (H2SO4 )aq

 ,    (25) 

 
which is a statement of the conservation of (HBULK

+ )aq . Combining Supplementary Equations (23)-

(25), yields a quadratic equation for (HBULK
+ )aq

 , which can be easily solved yielding 

  

(HBULK
+ )aq

 = 1
2 (H2SO4 )aq
 − KA + (H2SO4 )aq

 
2

+ KA
2 + 6KA (H2SO4 )aq

 






, (26) 

 
where KA = 10-1.92 M. Supplementary Equation (26) was used to determine the bulk 
concentration of H+ from the concentration of H2SO4. 

Under acidic conditions, electrons will react with H+ ions via the scavenging reaction 
 

    (H+)aq + (e–)aq → (H)aq.     (27) 
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However, the H radical produced by reaction Supplementary Equation (27) also serves as an 
electron scavenger via the reaction 
 

 (e–)aq + (H)aq → H2 + (OH–)aq.   (28) 
 
Further, OH– produced by second order recombination neutralizes the acid at the interface via 
reaction (6) in the main manuscript or  

 
(OH–)aq + (H+)aq → H2O.    (29) 
 

Generally, reaction Supplementary Equation (29) has a rate constant that is nearly an order of 
magnitude greater than reaction Supplementary Equation (27) such that nearly all of the acid at 
the interface will be neutralized for low acid concentrations, effectively shifting the acid 
scavenger data to the right as observed in Fig. 3. 
 To account for this phenomenon, it is necessary to have rate balance equations for (e–)aq, 
H+, OH–, and H. For electrons, the rate balance is 
 

j
lqNA

= 2k2 (e− )aq
 

2
+ k20 (H+ )aq

  (e− )aq
 + k21 (H•)aq

  (e− )aq
  ,  (30) 

 

where the creation of electrons by the plasma has been balanced with second order reaction rates 
for reactions (2), Supplementary Equation (27), and Supplementary Equation (28). For protons 
H+, the rate balance is 
 

1

τ H

(H+ )aq
 − (HBULK

+ )aq
 ( ) = k22 (H+ )aq

  (OH− )aq
 + k20 (H+ )aq

  (e− )aq
 ,  (31)

 
 

 
where local depletion of H+ by reactions Supplementary Equation (27) and Supplementary 
Equation (29) is balanced by diffusion of H+ from the bulk into the interfacial reaction zone. 
Note that the zero dimensional form used for diffusion is analogous to Newton’s law of cooling, 
where τH is the time constant associated with the diffusion of H+. For the hydroxide ion OH–, we 
have 
 

2k2 (e− )aq
 

2
+ k21 (H•)aq

  (e− )aq
 = k22 (H+ )aq

  (OH−)aq
 + 1

τ OH

(OH− )aq
 ,  (32) 

 
where the creation of OH– by reactions (2) and Supplementary Equation (28) is balanced by the 
acid-base neutralization reaction Supplementary Equation (29) and the diffusion of OH– out of 
the interfacial region. As before, a form for diffusion analogous to Newton’s law of cooling has 



 13

been used, where τOH is the time constant associated with diffusion of OH–. Lastly, assuming all 
the H radicals produced by Supplementary Equation (27) quickly react via Supplementary 
Equation (28) before diffusing out of the interfacial region, we have the simple rate balance 
 

k20 (H+ )aq
  (e− )aq

 = k21 (H•)aq
  (e− )aq

 .    (33) 

 
 Overall, we seek to find the local concentration of solvated electrons as a function of the 
bulk acid concentration (HBULK

+ )aq
 . We begin by substituting Supplementary Equation (33) into 

Supplementary Equations (30) and (32) to obtain 
j

lqNA

= 2k2 (e− )aq
 

2
+ 2k20 (H+ )aq

  (e− )aq
 ,   (34) 

 
and 
 

2k2 (e− )aq
 

2
+ k20 (H+ )aq

  (e− )aq
 = k22 (H+ )aq

  (OH− )aq
 + 1

τOH

(OH− )aq
 .   (35) 

 
Supplementary Equation (34) can be solved using the quadratic formula to obtain 
 

(e− )aq
 =

k20 (H+ )aq
 
2k2

1+ 8k2 j

lqNA 2k20 (H+ )aq
 ( )2 −1
















.   (36)  

 
yielding the local electron concentration as a function of the local H+ concentration. However, in 
the experiments, we measure [(e–)aq] as a function of the bulk concentration of H+. Thus, it is 
necessary to obtain the local concentration [(H+)aq] in terms of the bulk concentration (HBULK

+ )aq
 .  

Combining Supplementary Equations (31), (34), and (35), the system reduces to a 4th order 
polynomial for [(H+)aq], which has been omitted for brevity. Solving this polynomial numerically 
using a root finder, we obtain a result that matches the data rather well using τH ~ τOH ~ 10-6 s as 
a fitting parameter, as shown in Fig. 3 of the main manuscript.  
 Overall, we observe the same scaling as before, where the optical absorption scales 
inversely with scavenger concentration for high concentrations. However, the decay region of the 
curve has been shifted significantly to the right. We can analytically explain this by making one 
simple approximation. For large acid concentrations, we assume all the hydroxide is neutralized 
before it diffuses out of the interfacial region. Thus, Supplementary Equation (35) becomes 
 

 
2k2 (e− )aq

 
2

= k22 (H+ )aq
  (OH− )aq

 − k20 (H+ )aq
  (e− )aq

 .    (37) 
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Combining this expression with Supplementary Equations (31) and (34) yields 
 

1

τ H

(H+ )aq
 − (HBULK

+ )aq
 ( ) = j

qlNA

.    (38) 

 
Rearranging Supplementary Equation (38) produces an effective local H+ concentration as 
affected by acid neutralization at the interface or  
 

(H+ )aq
 = (HBULK

+ )aq
 − jτ H

qlNA

.     (39) 

 
Thus, the curve given by Supplementary Equation (36) and the data in Fig. 3 are shifted to the 
right by an amount jτ H qlNA

 
for high concentrations of acid. The raw data appears to be shifted 

by an amount of about 0.03 M, and using measured values for l, we found that values of τH ~ 10-6 
s and j ~ 103 A m-2 fit the data well.  Note that this model is overly simplistic and requires τH as a 
fitting parameter as well as a current density, j, to match the magnitude of the spectrum.  More 
detailed modeling is required to match the data without any fitting parameters.  
 
 
Supplementary Methods 
 
Plasma Source 
  Supplementary Fig. 1 shows a schematic of the experimental set-up for generating 
solvated electrons with an atmospheric-pressure plasma at the surface of an aqueous solution, 
which adopts a configuration similar to a conventional electrochemical cell1. A direct current 
(DC), atmospheric-pressure microplasma is formed with a sharpened stainless steel capillary 
tube (180 μm inner diameter, 5 cm length, Restek Corp.) as the cathode, suspended 1–2 mm 
above the liquid surface. A submerged piece of platinum (Pt) foil serves as the counter-electrode, 
i.e., anode. The headspace of the vessel is continuously purged with argon (Ar) at a flow rate of 
300 sccm, controlled and measured using a rotameter (1.4 SLM air/20 SCCM water, Omega 
Engineering Inc.), so that the reactor vessel is filled with pure Ar. This prevents the formation of 
reactive plasma species that typically form in atmospheric air, such as NOx and O3, which readily 
dissolve into solution and alter its chemical composition1. 
 The plasma is generated by applying a negative DC bias (-2.5 kV) to the sharpened 
capillary using a high voltage power supply (PS325, Stanford Research Systems) with the Pt 
anode connected to an earth ground. As discussed in the ensuing sections, for the purposes of 
lock-in amplification, the plasma current is modulated between a high (ihigh) and low (ilow) state 
at a known carrier frequency. In order to monitor the plasma current, the voltage drop across a 
8.1 kΩ resistor connected in series with the cathode was measured with a high voltage 
differential probe (THPD0100, Tektronix) and an oscilloscope (DPO 2024B, Tektronix).  The 
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measured values were ihigh = 10.9±0.8 mA and ilow = 5.6±0.4 mA. 
 
Optical Setup 
 Solvated electrons were detected using optical absorption spectroscopy in a total internal 
reflection geometry. A diode laser is mounted in line with an iris and 50 mm lens in an optical 
cage system. The entire optical assembly is fixed to a goniometer, so it may be rotated to a 
desired angle. The laser beam enters through one of the angled windows shown in 
Supplementary Fig. 1, reflects off the solution surface beneath the gas interface, exits through the 
opposing angled window, and hits a photodetector. For all experiments, the optical assembly was 
fixed at an angle of 17° ± 1° relative to the surface of the solution. Because the angle is less than 
the critical angle for total internal reflection, the laser beam does not propagate into the 
headspace of the reactor and is entirely reflected toward the detector, excluding the small amount 
of light absorbed by solvated electrons at the interface. The total internal reflection conditions 
ensure that the entire measured signal is due only to absorbance by solvated electrons, as 
opposed to other spurious (e.g. random reflection) losses.  This approach produces a very low 
background noise floor with the plasma off so that we can detect absorbance with a high signal-
to-noise ratio. The detector and reactor vessel are attached to kinematic mounts for alignment. 
The entire setup is mounted to an optical table to minimize the effects of vibration. 
 
Lock-in Amplification 
 Because the solvated electrons form in such a thin layer at the interface (~nm), the optical 
path is short, and the absorbance is weak.  Thus, it is necessary to use lock-in amplification to 
obtain a signal-to-noise ratio sufficiently high to resolve their absorbance.  To achieve this, we 
used an amplitude modulation strategy whereby the plasma current was modulated between high 
(ihigh) and low (ilow) values using a solid-state relay circuit.  Modulating the current also 
modulates the concentration of solvated electrons at the interface, which in turn modulates the 
amount of optical absorption. In short, an insulated gate bipolar junction transistor (IGBT, 
IXGH10N300, IXYS Corp.) is used to rapidly switch the flow of current through an additional 
ballast resistor. The rate of switching—or carrier frequency—is set by a grounded function 
generator (B8085, Protek), which is coupled to the IGBT using an optical isolator (TLP250, 
Toshiba). Output from the photodetector is fed into a lock-in amplifier (SR830, Stanford 
Research Systems), which filters out all noises sources that are not at the carrier frequency.  The 
TTL output from the function generator driving the plasma switching circuit was used as the 
reference signal for the lock-in amplifier to determine the detection frequency.  The lock-in 
amplifier was set to have a time constant of 3 s, and the carrier frequency was 20 kHz, which is 
discussed in detail in the following section. 
 A time series of the amplitude and phase of the optical absorption signal from the lock-in 
amplifier were recorded remotely on a computer using LabView software.  Data was collected 
for 1 min with the laser on and the plasma off to ensure the noise floor of the laser was sufficient. 
The plasma was then turned on yielding a signal due to optical absorption.  After approximately 
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3 min, the laser was turned off to ensure the signal was not due to any electromagnetic noise 
from the plasma.  A representative example of the raw data from the lock-in amplifier is shown 
in Supplementary Fig. 2. 
 The true signal due to optical absorption by solvated electrons can be seen in the portion 
of Supplementary Fig. 2 labeled “Laser on, Plasma on”.  This signal consistently has a phase 
between -75° and -100°.  In the “Laser on, Plasma off” portion of Supplementary Fig. 2, the 
incident laser intensity I0 is shown to have an inherent noise signal between 10-7 to 10-6.  This 
noise does not have a definite phase and can be averaged out.  For samples containing a 
sufficiently large concentration of electron scavengers, the optical signal in the “Plasma on, 
Laser on” portion of Fig. 2 should theoretically vanish.  In practice, the signal drops by an order 
of magnitude to 1 part in 106, and the phase becomes incoherent, implying that the true noise 
floor of the measurement is near 10-6. 
 
Spurious Signals and Noise Sources 

The lock-in amplifier is ineffective at filtering noise sources at the 20 kHz carrier 
frequency.  For example, modulating the current at 20 kHz also modulates the optical emission 
of the plasma, which can be picked up by the optical detector.  This spurious signal is not filtered 
by the lock-in.  A simple remedy for this is to mount an optical band-pass filter corresponding to 
the laser diode over the detector.  Additionally, the modulated plasma behaves like an antenna, 
emitting electromagnetic (EM) radiation at 20 kHz, which gets picked up by the detector circuit.  
By Mounting the detector in a thick aluminum box and using double-walled coaxial cables, we 
suppressed the spurious signal due to EM pick-up to less than 10-6.  The signal due to EM 
interference can be seen in the “Laser off, Plasma on” portion of Supplementary Fig. 2.  Because 
it has a definite phase, the EM signal can be subtracted off from the data if necessary. 

Another spurious signal arises from the electromechanical vibration of the liquid surface 
due to electromagnetic Maxwell stresses induced by the plasma.  Modulating the plasma current 
between the high and low states effectively modulates the amount of electrical charge on the 
liquid surface, causing it to vibrate up and down and act as a lens, scattering the incident laser at 
the carrier frequency.  It was ultimately discovered that modulating the plasma at a frequency 
faster than the inertial response of surface capillary waves sufficiently eliminated this problem.  
To demonstrate this, the experiment was performed with a 670 nm laser in a solution containing 
150 mM NaClO4 and 490 mM H2O2 as an electron scavenger.  With such a high scavenger 
concentration, the concentration of solvated electrons drops below any optically detectable limit, 
leaving behind only the spurious signal and noise.  As shown in Supplementary Fig. 3, the 
spurious signal due to electromechanical vibrations of the liquid surface quickly falls off near 10 
kHz.  By operating at 20 kHz, we ensured that spurious signals due to electromechanical 
vibration did not ultimately impact our findings. 
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Current Density Measurement 
 Obtaining an accurate value of the current density, j, at the interface is critical for making 
extrapolations from measured data in this experiment. Assuming the current density is simply the 
current, i, divided by the area of the plasma-solution interface πσp

2, it becomes necessary to 
measure both the current, i, and the effective plasma radius, σp. We note that these measurements 
are inherently difficult, and as such the calculation of the current density is the largest source of 
uncertainty in our analysis of the penetration depth and the reaction rate constants.  
 To measure the effective plasma radius, σp, a series of at least 10 images were taken of 
the plasma while switching at 20 kHz using a digital camera (Canon EOS Rebel T3i) at a shutter 
speed of 1/160 s. Radial intensity profiles were extracted from these images, and the effective 
radius of the plasma was then determined by applying a Gaussian curve fit to the intensity 
profile.  

The conductivity of the solution greatly affects the plasma radius and the overall stability 
of the plasma. If the conductivity of the solution is too low, the interface becomes charged and 
begins to vibrate at the carrier frequency, resulting in a spurious signal. Additionally, for a fixed 
current, i, increasing the conductivity of the solution decreases the radius of the plasma.  This 
causes the current density, j, to increase such that, higher solution conductivity results in a higher 
flux of electrons at the interface, causing the overall optical absorption to increase.  
Supplementary Fig. 4 shows representative images of the plasma for different conductivity 
solutions, and Supplementary Fig. 5 shows a typical intensity profile. Measured values of σp and 
subsequent calculated values for jhigh, and jlow are listed in Supplementary Table 1 for the various 
solutions used in these experiments. Solution conductivity was measured using a conductivity 
probe (ECTestr 11 dual-range, pin-style pocket conductivity tester, Oakton), and as noted above, 
the measured currents were ihigh = 10.9±0.8 mA and ilow = 5.6±0.4 mA for every case studied. 

We note that it is common for the plasma radius to increase with current in the static 
limit2. However, it is unclear to what extent it changes on the 20 kHz timescale of switching as 
we lack the high speed imaging equipment to temporally resolve the fast switching rate. 
Essentially, the images taken of the plasma while switching provide an average radius of the 
plasma. Using this average radius instead of the transient radii of the plasma in its high and low 
states is the main source of error in the extrapolated values of the average penetration depth, l, 
and the effective rate constants. Also, it is unclear how well the emission intensity profile of the 
plasma corresponds to its current density profile.  
 
Laser Spot Size 
 In order to analyze the optical absorption data, it is ultimately necessary to know the 
overlap between the plasma and the laser.  To assess this overlap, we measured the laser spot 
size and profile. The laser is focused onto the interface with a 50 mm lens (LA1131, Thorlabs for 
visible wavelengths and AC254-050-B, Thorlabs for near infrared). The intensity profile of the 
spot incident on the interface was measured using a knife-edge method3. In short, the reaction 
chamber was replaced with a razor blade mounted coplanar with the usual location of the liquid 
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surface. The kinematic mounts were used to “eclipse” the laser spot with the edge of the razor. 
Measuring the detector voltage as a function of razor position yields the integral of the beam 
intensity profile. Thus, numerically differentiating this data yields a good estimate of the light 
intensity profile. Intensity profiles along both axes are shown in Supplementary Fig. 5 as well as 
a representative measurement of the optical emission profile of the plasma.  
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