

Supplementary Figure 1 | A figure of merit of information thermodynamics: Step function. The parameters are chosen as the same as in Fig. 4a in the main text.

Supplementary Figure 2 | A figure of merit of information thermodynamics: Sinusoidal function. The parameters are chosen as the same as in Fig. 4b in the main text.

Supplementary Figure 3 | A figure of merit of information thermodynamics: Linear function. The parameters are chosen as the same as in Fig. 4c in the main text.

Exponential decay. The parameters are chosen as the same as in Fig. 4d in the main text.

Supplementary Figure 5 | A figure of merit of information thermodynamics: Square wave. The parameters are chosen as the same as in Fig. 4e in the main text.

Supplementary Figure 6 | A figure of merit of information thermodynamics: Triangle wave. The parameters are chosen as the same as in Fig. 4f in the main text.

Supplementary Figure 7 | A Bayesian network corresponding to Eq. (22) in Supplementary note 3. This Bayesian network gives the joint probability Eq. (2), where a node represents a random variable and an edge represents a causal relationship. Due to a general framework of information thermodynamics⁴, information of initial correlation I_{ini} is characterized by the mutual information between a_t and m_t , the information of final correlation I_{fin} is characterized by the mutual information between a_{t+dt} and $\{m_t, m_{t+dt}\}$, and the transfer entropy I_{tr} from the subsystem a to the other system $\mathcal C$ is characterized by the conditional mutual information between a_t and m_{t+dt} under the condition of m_t . These information quantities I_{ini} , I_{fin} , and I_{tr} give a lower bound of the entropy production in the subsystem a .

Supplementary note 1 | Explicit expression of the information-thermodynamic dissipation.

We consider the coupled Langevin equations (2) in the main text,

$$
\dot{a}_t = -\frac{1}{\tau^a} \left[a_t - \bar{a}_t(m_t, l_t) \right] + \xi_t^a,\tag{1}
$$

$$
\dot{m}_t = -\frac{1}{\tau^m} a_t + \xi_t^m,\tag{2}
$$

where ξ_t^x $(x = a, m)$ is a white Gaussian noise with the variance T_t^x : $\langle \xi_t^x \rangle = 0$, and $\langle \xi_t^x \xi_{t'}^{x'} \rangle = 2T_{t'}^{x'} \delta_{xx'} \delta(t-t')$. In the model of *E. coli* bacterial chemotaxis given by Eqs. (1) and (2) with $\bar{a}_t(m_t, l_t) = \alpha m_t - \beta l_t$, we can analytically calculate the information-thermodynamic dissipation in the stationary state:

$$
dI_t^{\text{tr}} - \frac{J_t^a}{T_t^a} dt
$$

=
$$
\frac{[(a_t^2) - \langle a_t \rangle^2][1 - (\rho_t^{am})^2]dt}{4(\tau^m)^2 T_t^m} + \frac{dt}{\tau^a T_t^a} \left[\frac{1}{\tau^a} \langle (a_t - \bar{a}_t)^2 \rangle - T_t^a \right].
$$
 (3)

When this quantity becomes zero, the equality in inequality (5) in the main text is achieved. With the linear approximation $\bar{a}_t(m_t, l_t) = \alpha m_t - \beta l_t$, we can explicitly calculate the stationary value of $\langle a_t \rangle$, $\langle m_t \rangle$, $\langle a_t^2 \rangle$, $\langle a_t m_t \rangle$ and $\langle m_t^2 \rangle$ as

$$
\langle a_t \rangle_{\rm SS} = 0,\tag{4}
$$

$$
\langle m_t \rangle_{\rm SS} = \beta \alpha^{-1} l_t,\tag{5}
$$

$$
\langle a_t^2 \rangle_{\rm SS} = \alpha \tau^m T_t^m + \tau^a T_t^a,\tag{6}
$$

$$
\langle a_t m_t \rangle_{\text{SS}} = \tau^m T_t^m,\tag{7}
$$

$$
\langle m_t^2 \rangle_{SS} = (\beta \alpha^{-1} l_t)^2 + \alpha^{-1} \tau^m T_t^m + \tau^a \alpha^{-1} (\tau^m)^{-1} [\alpha \tau^m T_t^m + \tau^a T_t^a]. \tag{8}
$$

The information-thermodynamic dissipation (3) then reduces to

$$
dI_t^{\text{tr}} - \frac{J_t^a}{T_t^a} dt
$$

=
$$
dt[\alpha T_t^m + \tau^a (\tau^m)^{-1} T_t^a] \left[\frac{\alpha}{\tau^a T_t^a} + \frac{1 - (\rho_t^{am})^2}{4\tau^m T_t^m} \right] \ge 0,
$$
 (9)

where the correlation coefficient $(\rho_t^{am})^2$ is given by

$$
(\rho_t^{am})^2 = \frac{1}{[1 + \tau^a(\tau^m)^{-1}[\alpha + \tau^a T_t^a(\tau^m T_t^m)^{-1}]] [1 + \tau^a T_t^a(\alpha \tau^m T_t^m)^{-1}]} \le 1.
$$
 (10)

In the limit of $\alpha \to 0$ and $\tau^a / \tau^m \to 0$, the information-thermodynamic dissipation (3) can be zero, and the equality in Eq. (5) in the main text is achieved such that

$$
dI_t^{\text{tr}} = \frac{J_t^a}{T_t^a} dt = 0.
$$
 (11)

This corresponds to the situation where the feedback loop does not work ($\alpha \rightarrow 0$) and the information flow vanishes, and a relaxes infinitely fast $(\tau^a / \tau^m \to 0)$.

Supplementary note 2 | Detailed derivation of the second law of information thermodynamics.

Here, we show the detailed derivation of the second law of information thermodynamics for Eqs. (1) and (2) [Eq. (4) in the main text]:

$$
\Xi_t^{\text{info}} := dI_t^{\text{tr}} + dS_t^{a|m} \ge \frac{J_t^a}{T_t^a} dt,\tag{12}
$$

where $dS_t^{a|m} := S[a_{t+dt}|m_{t+dt}] - S[a_t|m_t]$ is the conditional Shannon entropy change of a with $S[a_t|m_t] := - \int da_t dm_t p[a_t, m_t] \ln p[a_t|m_t]$, and dl_t^{tr} is the transfer entropy from a to m at time t :

$$
dI_t^{\text{tr}} := \int dm_{t+dt} da_t dm_t p[m_{t+dt}, a_t, m_t] \ln \frac{p[m_{t+dt}|a_t, m_t]}{p[m_{t+dt}|m_t]},
$$
(13)

The heat absorption¹ J_t^a is defined as the ensemble average of the Stratonovich product of the force $\xi_t^a - \dot{a}_t$ and the velocity \dot{a}_t such that

$$
J_t^a := \langle (\xi_t^a - \dot{a}_t) \circ \dot{a}_t \rangle, \tag{14}
$$

The heat absorption J_t^a can be rewritten by Eq. (3) in the main text:

$$
J_t^a = \langle (\xi_t^a - \dot{a}_t) \circ \dot{a}_t \rangle
$$

=
$$
\frac{1}{\tau^a} \Big[\langle (a_t - \bar{a}_t) \circ \xi_t^a \rangle - \frac{1}{\tau^a} \langle (a_t - \bar{a}_t)^2 \rangle \Big]
$$

$$
=\frac{1}{\tau^a}\left[T_t^a - \frac{1}{\tau^a}\langle (a_t - \bar{a}_t)^2 \rangle\right],\tag{15}
$$

where we used the relation of the Stratonovich integral¹ $\langle f(a_t, m_t, l_t) \circ \xi_t^a \rangle =$ $T_t^a \langle \partial_{a_t} f(a_t, m_t, l_t) \rangle$ for any function f.

From the detailed fluctuation theorem², $\int_t^a dt/T_t^a$ can be rewritten as a ratio of the probability distribution. Let the backward path-probability $p_B[a_t|a_{t+dt}, m_t]$ be $p_B[a_t|a_{t+dt}, m_t] \coloneqq \mathcal{G}(a_t; a_{t+dt}; m_t)$, where \mathcal{G} is given by the path-integral expression:

$$
p[a_{t+dt}|a_t, m_t] = N \exp\left[-\frac{dt}{4T_t^a} \left(\frac{a_{t+dt} - a_t}{dt} + \frac{1}{\tau^a} (a_t - \bar{a}_t)\right)^2\right]
$$
(16)

$$
=: \mathcal{G}(a_{t+dt}; a_t; m_t). \tag{17}
$$

N is the normalization constant, so that $\int da_{t+dt} G(a_{t+dt}; a_t; m_t) = 1$ is satisfied. The backward path probability also satisfies the normalization condition $\int da_t p_B[a_t|a_{t+dt},m_t] = \int da_t \mathcal{G}(a_t; a_{t+dt};m_t) = 1$. Up to order dt, the entropy change in the heat bath with temperature T_t^a is calculated as

$$
\frac{J_t^a}{T_t^a} dt := \int da_{t+dt} da_t dm_t p[a_{t+dt}, a_t, m_t] \ln \frac{p_B[a_t|a_{t+dt}, m_t]}{p[a_{t+dt}|a_t, m_t]},
$$
(18)

which is well known as the detailed fluctuation theorem².

Because of the noise independence $\langle \xi_t^a \xi_t^m \rangle = 0$, we have $p[a_{t+dt}, m_{t+dt}, a_t, m_t] =$ $p[a_{t+dt}|a_t, m_t]p[m_{t+dt}|a_t, m_t]p[a_t, m_t]$. From Eqs. (13) and (18), the difference $\Xi_t^{\text{info}} - J_t^a dt / T_t^a$ is calculated as

$$
\Xi_t^{\text{info}} - \frac{J_t^a}{T_t^a} dt = \left\langle \ln \frac{p[a_{t+dt}, m_{t+dt}, a_t, m_t]}{p[a_{t+dt}|m_{t+dt}]p_B[a_t|a_{t+dt}, m_t]p[m_{t+dt}, m_t]} \right\rangle. \tag{19}
$$

The quantity $Q[a_{t+dt}, m_{t+dt}, a_t, m_t] \coloneqq p[a_{t+dt}|m_{t+dt}]p_B[a_t|a_{t+dt}, m_t]p[m_{t+dt}, m_t]$ satisfies the normalization condition of the probability:

$$
\int da_{t+dt} dm_{t+dt} da_t dm_t \mathcal{Q}[a_{t+dt}, m_{t+dt}, a_t, m_t] = 1.
$$
 (20)

Therefore, $Q[a_{t+dt}, m_{t+dt}, a_t, m_t]$ can be interpreted as the probability distribution of $(a_{t+dt}, m_{t+dt}, a_t, m_t)$, and the difference $\Xi_t^{\text{info}} - J_t^a dt / T_t^a$ is rewritten as the Kullback-Libler divergence $D_{KL}(p||Q)^3$:

$$
\Xi^{\mathrm{info}}_t - \frac{J^a_t}{T^a_t} dt
$$

$$
= \int da_{t+dt} dm_{t+dt} da_t dm_t p[a_{t+dt}, m_{t+dt}, a_t, m_t] \ln \frac{p[a_{t+dt}, m_{t+dt}, a_t, m_t]}{Q[a_{t+dt}, m_{t+dt}, a_t, m_t]}
$$

:= $D_{KL}(p||Q)$. (21)

From the non-negativity of the Kullback-Leibler divergence³ [i.e., $D_{KL}(p||Q) \ge 0$], we obtain Eq. (12).

Supplementary note 3 | Relationship between information thermodynamics for two-dimensional Markov process and that in [S. Ito and T. Sagawa, Phys. Rev. Lett. 111, 180503 (2013)].

In our previous paper⁴, we have derived a general framework of information thermodynamics and discussed information thermodynamics for the coupled Langevin equations. We here give another application of the general result in Ref. 4 to two-dimensional Markov processes such as the coupled Langevin equations (1) and (2). Here, we show that the general result in Ref. 4 is tighter than the information-thermodynamic inequality (12).

We first consider the path probability of a single time step from (a_t, m_t) , to (a_{t+dt}, m_{t+dt}) . Due to the Markov property, the joint probability $p[a_{t+dt}, m_{t+dt}, a_t, m_t]$ is given by

 $p[a_{t+dt}, m_{t+dt}, a_t, m_t] = p[a_{t+dt} | a_t, m_t] p[m_{t+dt} | a_t, m_t] p[a_t | m_t] p[m_t]$ (22) where the independency of the noise (i.e.,

 $p[a_{t+dt}, m_{t+dt} | a_t, m_t] = p[a_{t+dt} | a_t, m_t] p[m_{t+dt} | a_t, m_t])$ is assumed.

We next consider a Bayesian network, which represents the stochastic process of Eq. (22) (see Supplementary Fig. 7). This Bayesian network is given by the parents (denoted as "pa") of the random variables: $pa(a_t) = m_t$, $pa(m_t) = \emptyset$, $pa(a_{t+dt}) =$ $\{a_t, m_t\}$ and $pa(m_{t+dt}) = \{a_t, m_t\}$. The stochastic process of Eq. (22) is given by $p[a_{t+dt}, m_{t+dt}, a_t, m_t] =$

 $p[a_{t+dt}|pa(a_{t+dt})]p[m_{t+dt}|pa(m_{t+dt})]p[a_t|pa(a_t)]p[m_t|pa(m_t)]$. This Bayesian network shows a single time step of the Markovian dynamics from time t to time $t + dt$.

Let stochastic mutual information

be $I[\mathcal{A}_1; \mathcal{A}_2] \coloneqq \ln p[\mathcal{A}_1, \mathcal{A}_2] - \ln p[\mathcal{A}_1] - \ln p[\mathcal{A}_2]$, and stochastic conditional mutual information

be $I[\mathcal{A}_1:\mathcal{A}_2|\mathcal{A}_3] \coloneqq \ln p[\mathcal{A}_1, \mathcal{A}_2|\mathcal{A}_3] - \ln p[\mathcal{A}_1|\mathcal{A}_3] - \ln p[\mathcal{A}_2|\mathcal{A}_3]$, where \mathcal{A}_1 , \mathcal{A}_2

and A_3 are any set of random variables. From the argument in Ref. 4, the bound of the entropy production for the subsystem a is given by an informational quantity Θ , which corresponds to the Bayesian network shown in Supplementary Fig. 7:

$$
\Theta := I_{\text{fin}} - I_{\text{ini}} - \sum_{l=1}^{2} I_{\text{tr}}^{l},
$$
\n(23)

$$
I_{\text{fin}} = I[x_2 : C]
$$

= I[a_{t+dt}: {m_t, m_{t+dt}}], (24)

$$
I_{\text{ini}} = I[x_1:\text{pa}(x_1)]
$$

= I[a_t:m_t], (25)

$$
I_{tr}^{1} = I[c_{1}:pa_{X}(c_{1})]
$$

= 0, (26)

$$
I_{tr}^{2} = I[c_{2}:pa_{X}(c_{2})|c_{1}]
$$

= I[m_{t+dt}: a_t|m_t], (27)

where we set $X = \{x_1 = a_t, x_2 = a_{t+dt}\}\text{, } C = \{c_1 = m_t, c_2 = m_{t+dt}\}\text{, } pa_X(m_t) =$ $pa(m_t) \cap X = \emptyset$, and $pa_X(m_{t+dt}) \coloneqq pa(m_{t+dt}) \cap X = a_t$. Let the entropy production in the subsystem during the infinitesimal time step be $\sigma_t := \ln p(a_t) - \ln p(a_{t+dt}) +$ Δs_t^{bath} , where Δs_t^{bath} is the entropy change in the heat baths. Again from the argument in Ref. 4, we have inequality $\langle \sigma \rangle \geq \langle \Theta \rangle$, where

$$
\langle \Theta \rangle = \langle I[a_{t+dt} : \{m_t, m_{t+dt}\}] \rangle - \langle I[a_t : \{m_t, m_{t+dt}\}] \rangle \tag{28}
$$

$$
= I_{t+dt}^{am} - I_t^{am} + dI_t^{Btr} - dI_t^{tr}.
$$
\n
$$
(29)
$$

 $I_t^{am} := \langle I[a_t; m_t] \rangle$ is the mutual information between a and m at time t, $dI_t^{tr} :=$ $\langle \ln p[m_{t+dt} | a_t, m_t] \rangle - \langle \ln p[m_{t+dt} | m_t] \rangle$ is the transfer entropy from a to m at time t, and dI_t^{Btr} is defined as the conditional mutual information $dI_t^{\text{Btr}} = \langle I[m_t: a_{t+dt}|m_{t+dt}]\rangle$. We note that Eq. (28) is consistent with information flow in several papers⁵⁻⁸.

For the two-dimensional Langevin system Eqs. (1) and (2), the ensemble average of the entropy production for the subsystem $\langle \sigma \rangle$ can be rewritten by the heat absorption J_t^a , $\langle \sigma \rangle = -J_t^a dt / T_t^a + \langle \ln p[a_t] \rangle - \langle \ln p[a_{t+dt}] \rangle$ with $\langle \Delta s_t^{\text{bath}} \rangle = -J_t^a dt / T_t^a$. From $\langle \sigma \rangle \geq \langle \Theta \rangle$, we have the following inequality:

$$
\frac{J_t^a}{T_t^a}dt \le -dI_t^{\text{Btr}} + dI_t^{\text{tr}} + dS_t^{a|m}
$$
\n(30)

where we used Eq. (29) and identity $dS_t^{a|m} = \langle \ln p[a_t] \rangle - \langle \ln p[a_{t+dt}] \rangle - I_{t+dt}^{am} + I_t^{am}$. Because of the non-negativity of the mutual information³ [i.e., $dI_t^{Btr} \ge 0$], we have inequality (12) [Eq. (4) in the main text]:

$$
\frac{J_t^a}{T_t^a}dt \le -dI_t^{\text{Btr}} + dI_t^{\text{tr}} + dS_t^{a|m} \tag{31}
$$

$$
\leq dI_t^{\text{tr}} + dS_t^{a|m}.\tag{32}
$$

The conditional mutual information dI_t^{Btr} would be important as well as the transfer entropy dI_t^{tr} , because the bound including dI_t^{Br} [Eq. (31)] is tighter than the bound without dI_t^{Btr} [Eq. (32)]. However, in the main text, we only focus on the role of the transfer entropy dI_t^{tr} for the sake of simplicity, by applying the weaker inequality (32).

Supplementary note 4 | Analytical calculation of the transfer entropy for the coupled linear Langevin system.

We derive the analytical expression of the transfer entropy for the coupled linear Langevin system:

$$
\dot{x}_t^1 = \sum_j^2 \mu_t^{1j} x_t^j + f_t^1 + \xi_t^1, \n\dot{x}_t^2 = \sum_j^2 \mu_t^{2j} x_t^j + f_t^2 + \xi_t^2, \n\langle \xi_t^i \xi_{tt}^j \rangle = 2T_t^i \delta_{ij} \delta(t - t'), \n\langle \xi_t^i \rangle = 0,
$$
\n(33)

where *i*,j=1,2, f_t^i and μ_t^{ij} are the time-dependent constants, T_t^i is time-dependent variance of the white Gaussian noise ξ_t^i , and $\langle \dots \rangle$ denotes the ensemble average. In the main text, we considered the model of the *E. coli* bacterial chemotaxis given by Eqs. (1) and (2) with $\bar{a}_t(m_t, l_t) = \alpha m_t - \beta l_t$. To compare Eqs. (1) and (2), we set $\{x_t^1, x_t^2\} =$ $\{a_t, m_t\}, \mu_t^{11} = -1/\tau^a, \mu_t^{12} = \alpha/\tau^a, f_t^{1} = -\beta l_t/\tau^a, \mu_t^{21} = -1/\tau^m, \mu_t^{22} = 0,$ $f_t^2 = 0$, $T_t^1 = T_t^a$, and $T_t^2 = T_t^m$. The transfer entropy from the target system x^1 to the other system x^2 at time t is defined as $dI_t^{\text{tr}} \coloneqq \langle \ln p[x_{t+dt}^2 | x_t^1, x_t^2] \rangle - \langle \ln p[x_{t+dt}^2 | x_t^2] \rangle.$

Here, we analytically calculate the transfer entropy for the case that the joint probability $p[x_t^1, x_t^2]$ is a Gaussian distribution:

$$
p[x_t^1, x_t^2] = \frac{1}{2\pi\sqrt{\det\sum_t}} \exp\left[-\sum_{ij} \frac{1}{2} \bar{x}_t^i G_t^{ij} \bar{x}_t^j\right],\tag{34}
$$

where Σ_t is the covariant matrix $\Sigma_t^{ij} = \langle \bar{x}_t^i \bar{x}_t^j \rangle$ \overline{x}_t^i , and $\overline{x}_t^i = x_t^i - \langle x_t^i \rangle$. The inverse matrix $G_t = (\Sigma_t)^{-1}$ satisfies $\sum_j G_t^{ij} \Sigma_t^{jl} = \delta_{il}$ and $G_t^{ij} = G_t^{ji}$. The joint distribution $p[x_t^2]$ is given by the Gaussian probability:

$$
p[x_t^2] = \frac{1}{\sqrt{2\pi\Sigma_t^{22}}} \exp\left[-\frac{1}{2}(\Sigma_t^{22})^{-1}(\bar{x}_t^2)^2\right],\tag{35}
$$

We consider the path-integral expression of the Langevin equations (33). The conditional probability $p[x_{t+dt}^2 | x_t^1, x_t^2]$ is given by

$$
p[x_{t+dt}^2 | x_t^1, x_t^2] = \mathcal{N} \exp\left[-\frac{dt}{4T_t^2} \left(\frac{x_{t+dt}^2 - x_t^2}{dt} - \sum_j^2 \mu_t^{2j} x_t^j - f_t^2 \right)^2 \right]
$$

$$
= \mathcal{N} \exp\left[-\frac{dt}{4T_t^2} (F_t^2 - \mu_t^{21} \bar{x}_t^1)^2 \right],
$$
 (36)

where N is the normalization constant with $\int dx_{t+dt}^2 p[x_{t+dt}^2 | x_t^1, x_t^2] = 1$. For the simplicity of notation, we set $F_t^2 := (x_{t+dt}^2 - x_t^2)/dt - \mu_t^{22}(x_t^1) - \mu_t^{22}x_t^2 - f_t^2$. From Eqs. (34) and (36), we have the joint distribution $p[x_{t+dt}^2, x_t^2]$ as

$$
p[x_{t+dt}^{2}, x_{t}^{2}]
$$
\n
$$
= \int dx_{t}^{1} p[x_{t+dt}^{2}|x_{t}^{1}, x_{t}^{2}] p[x_{t}^{1}, x_{t}^{2}]
$$
\n
$$
= \frac{\mathcal{N}}{\sqrt{4\pi \det \Sigma_{t} \left(\frac{dt}{4T_{t}^{2}} (\mu_{t}^{2})^{2} + \frac{G_{t}^{11}}{2}\right)}} \exp\left[-\frac{dt}{4T_{t}^{2}} (F_{t}^{2})^{2} - \frac{1}{2} G_{t}^{22} (\bar{x}_{t}^{2})^{2}\right]
$$
\n
$$
+ \frac{\left(G_{t}^{12} \bar{x}_{t}^{2} - \frac{\mu_{t}^{21} F_{t}^{2}}{2T_{t}^{2}} dt\right)^{2}}{4\left(\frac{dt}{4T_{t}^{2}} (\mu_{t}^{2})^{2} + \frac{G_{t}^{11}}{2}\right)}.
$$
\n(37)

From Eqs. (35), (36), and (37), we obtain the analytical expression of the transfer entropy dI_t^{tr} up to the order of dt :

$$
dI_t^{\text{tr}}
$$

= $\langle \ln p[x_{t+dt}^2 | x_t^1, x_t^2] \rangle + \langle \ln p[x_t^2] \rangle - \langle \ln p[x_{t+dt}^2, x_t^2] \rangle$

$$
= -\frac{dt}{4T_t^2} \langle (F_t^2 - \mu_t^2 \cdot \bar{x}_t^1)^2 \rangle - \frac{1}{2} \ln[2\pi \Sigma_t^{22}] - \frac{1}{2} (\Sigma_t^{22})^{-1} \langle (\bar{x}_t^2)^2 \rangle
$$

+ $\frac{1}{2} \ln \left[4\pi \det \Sigma_t \left(\frac{dt}{4T_t^2} (\mu_t^{21})^2 + \frac{G_t^{11}}{2} \right) \right] + \frac{dt}{4T_t^2} \langle (F_t^2)^2 \rangle + \frac{1}{2} G_t^{22} \langle (\bar{x}_t^2)^2 \rangle$
+ $\frac{\langle (G_t^{12} \bar{x}_t^2 - \frac{\mu_t^{21} F_t^2}{2T_t^2} dt)^2 \rangle}{4 \left(\frac{dt}{4T_t^2} (\mu_t^{21})^2 + \frac{G_t^{11}}{2} \right)}$
= $\frac{\mu_t^{21} dt}{2T_t^2} \langle F_t^2 \bar{x}_t^1 \rangle - \frac{dt}{4T_t^2} (\mu_t^{21})^2 \Sigma_t^{11} - \frac{1}{2} \ln[2\pi \Sigma_t^{22}] - \frac{1}{2} + \frac{(\mu_t^{21})^2 dt}{4G_t^{11} T_t^2}$
+ $\frac{1}{2} G_t^{22} \Sigma_t^{22} - \frac{(G_t^{12})^2 \Sigma_t^{22}}{2G_t^{11}} \left[1 - \frac{(\mu_t^{21})^2 dt}{2G_t^{11} T_t^2} \right] + \frac{\mu_t^{21} dt}{2G_t^{11} T_t^2} G_t^{12} \langle F_t^2 \bar{x}_t^2 \rangle$
- $\frac{(\mu_t^{21})^2 dt}{4G_t^{11} T_t^2} + O(dt^2)$
= $\frac{\mu_t^{21} dt}{2T_t^2} \langle F_t^2 \bar{x}_t^1 \rangle + \frac{\mu_t^{21} dt}{2G_t^{11} T_t^2} G_t^{12} \langle F_t^2 \bar{x}_t^2 \rangle - \frac{(\mu_t^{21})^2 dt}{4G_t^{11} T_t^2} + O(dt^2)$
= $\frac{(\mu_t^{21})^2}{4T_t^2} \frac{\det \Sigma_t}{\Sigma_t^{22}} dt + O(dt^2$

where we define $dP_t := (\mu_t^{21})^2 (\det \Sigma_t) dt / (\Sigma_t^{22})$, and $N_t = 2T_t^2$. In this calculation, we used $G_t^{ij} = G_t^{ji}$, $\Sigma_t^{ij} = \Sigma_t^{ji}$, $G_t^{i1} \Sigma_t^{1l} + G_t^{i2} \Sigma_t^{2l} = \delta_{il}$, $\langle (F_t^2)^2 \rangle dt^2 = 2T_t^2 dt + \mathcal{O}(dt^2)$, $\langle F_t^2 \bar{x}_t^1 \rangle = \mu_t^{21} \Sigma_t^{11}, \ \langle F_t^2 \bar{x}_t^2 \rangle = \mu_t^{21} \Sigma_t^{12}, \text{ and } G_t^{11} = (\Sigma_t^{22})/(\det \Sigma_t).$

In the model of the *E*. coli bacterial chemotaxis, we have $N_t = 2T_t^m$ and

$$
dP_t = \frac{1}{(\tau^m)^2} \frac{[(a_t^2) - \langle a_t \rangle^2][\langle m_t^2 \rangle - \langle m_t \rangle^2] - [\langle a_t m_t \rangle^2 - \langle a_t \rangle \langle m_t \rangle]^2}{\langle m_t^2 \rangle - \langle m_t \rangle^2} dt
$$

=
$$
\frac{1 - (\rho_t^{am})^2}{(\tau^m)^2} V_t^a dt,
$$
 (39)

where $V_t^x := \langle x_t^2 \rangle - \langle x_t \rangle^2$ indicates the variance of $x_t = a_t$ or $x_t = m_t$, and $\rho_t^{am} := \frac{\left[\langle a_t m_t \rangle^2 - \langle a_t \rangle \langle m_t \rangle \right]}{\langle V_t^a V_t^m \rangle^{1/2}}$ is the correlation coefficient of a_t and m_t . The correlation coefficient ρ_t^{am} satisfies $-1 \leq \rho_t^{am} \leq 1$, because of the Cauchy-Schwartz inequality. We note that, if the joint probability $p[a_t, m_t]$ is Gaussian, the factor $1 - (\rho_t^{am})^2$ can be rewritten by the mutual information I_t^{am} as

$$
1 - (\rho_t^{am})^2 = \exp[-2I_t^{am}], \tag{40}
$$

where I_t^{am} is defined as $I_t^{am} := \langle \ln p[a_t, m_t] \rangle - \langle \ln p[a_t] \rangle - \langle \ln p[m_t] \rangle$. This fact implies that, if the target system a_t and the other system m_t are strongly correlated (i.e., $I_t^{am} \to \infty$), no information flow exists (i.e., $dI_t^{tr} \to 0$).

From the analytical expression of the transfer entropy (38), we can analytically compare the conventional thermodynamic bound [i.e., $\Xi_t^{SL} := -J_t^m dt / T_t^m + dS_t^{am} \geq$ $J_t^a dt/T_t^a$] with the information-thermodynamic bound (12) for the model of *E. coli* chemotaxis [Eqs. (1) and (2) with $\bar{a}_t(m_t, l_t) = \alpha m_t - \beta l_t$] in a stationary state, where both of the Shannon entropy and the conditional Shannon changes vanish, i.e., $dS_t^{a|m} = 0$ and $dS_t^{am} = 0$. Thus, the conventional thermodynamic bound is given by the heat emission from *m* such that $\Xi_t^{SL} := -J_t^m dt / T_t^m$ and the information-thermodynamic bound is given by the information flow such that $\Xi_t^{\text{info}} \coloneqq dI_t^{\text{tr}}$. The information-thermodynamic bound is given by $dI_t^{\text{tr}} = (1 (\rho_t^{am})^2$)[$\langle a_t^2 \rangle - \langle a_t \rangle^2$]dt/[4 $(\tau^m)^2 T_t^m$]. The conventional thermodynamic bound is given by $\Xi_t^{SL} := \langle a_t^2 \rangle dt / [(\tau^m)^2 T_t^m]$. From $-1 \leq \rho_t^{am} \leq 1$ and $\langle a_t \rangle^2 \geq 0$, we have inequality $\Xi_t^{\text{SL}} \geq \Xi_t^{\text{info}}$. This implies that the information-thermodynamic bound Ξ_t^{info} is tighter than the conventional bound $\mathbb{E}_{t}^{\text{SL}}$ for the model of *E. coli* bacterial chemotaxis:

$$
\Xi_t^{\text{SL}} \ge \Xi_t^{\text{info}} \ge \frac{J_t^a}{T_t^a} dt. \tag{41}
$$

Supplementary References

¹Sekimoto, K. *Stochastic Energetics* (Springer, New York, 2010).

²Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. **75**, 126001 (2012).

³Cover, T. M. & Thomas, J. A. *Element of Information Theory* (John Wiley and Sons, New York, 1991).

⁴Ito, S. & Sagawa, T. Information thermodynamics on causal networks. Phys. Rev. Lett. **111**, 180603 (2013).

 5 Allahverdyan, A. E., Janzing, D., & Mahler, G. Thermodynamic efficiency of information and heat flow. J. Stat. Mech. (2009). P09011.

⁶Hartich D., Barato A. C., & Seifert U. Stochastic thermodynamics of bipartite systems: transfer entropy inequalities and a Maxwell's demon interpretation. J. Stat. Mech. (2014). P02016.

⁷Horowitz J. M. & Esposito M. Thermodynamics with continuous information flow. Phys. Rev. X, **4**, 031015 (2014).

⁸Shiraishi N. & Sagawa T. Fluctuation theorem for partially masked nonequilibrium dynamics. Phys. Rev. E, **91**, 012130 (2015).