
 

Supplementary Figure 1 | A figure of merit of information thermodynamics: Step 

function. The parameters are chosen as the same as in Fig. 4a in the main text. 



 

 

Supplementary Figure 2 | A figure of merit of information thermodynamics: 

Sinusoidal function. The parameters are chosen as the same as in Fig. 4b in the main 

text.



 

Supplementary Figure 3 | A figure of merit of information thermodynamics: 

Linear function. The parameters are chosen as the same as in Fig. 4c in the main text.



 

Supplementary Figure 4 | A figure of merit of information thermodynamics: 

Exponential decay. The parameters are chosen as the same as in Fig. 4d in the main 

text.



 

Supplementary Figure 5 | A figure of merit of information thermodynamics: 

Square wave. The parameters are chosen as the same as in Fig. 4e in the main text.



 

Supplementary Figure 6 | A figure of merit of information thermodynamics: 

Triangle wave. The parameters are chosen as the same as in Fig. 4f in the main text.



 

 

Supplementary Figure 7 | A Bayesian network corresponding to Eq. (22) in 

Supplementary note 3. This Bayesian network gives the joint probability Eq. (2), 

where a node represents a random variable and an edge represents a causal relationship. 

Due to a general framework of information thermodynamics
4
, information of initial 

correlation 𝐼ini is characterized by the mutual information between 𝑎𝑡 and 𝑚𝑡, the 

information of final correlation 𝐼fin is characterized by the mutual information 

between 𝑎𝑡+𝑑𝑡 and {𝑚𝑡, 𝑚𝑡+𝑑𝑡}, and the transfer entropy 𝐼tr from the subsystem 𝑎 

to the other system 𝒞 is characterized by the conditional mutual information between 

𝑎𝑡 and 𝑚𝑡+𝑑𝑡 under the condition of 𝑚𝑡. These information quantities 𝐼ini, 𝐼fin, and 

𝐼tr give a lower bound of the entropy production in the subsystem 𝑎. 

 



Supplementary note 1 | Explicit expression of the information-thermodynamic 

dissipation. 

We consider the coupled Langevin equations (2) in the main text,  

 
𝑎̇𝑡 = −

1

𝜏𝑎
[𝑎𝑡 − 𝑎̅𝑡(𝑚𝑡, 𝑙𝑡)] + 𝜉𝑡

𝑎,  (1) 

 
𝑚̇𝑡 = −

1

𝜏𝑚
𝑎𝑡 + 𝜉𝑡

𝑚, (2) 

where 𝜉𝑡
𝑥 (𝑥 = 𝑎,𝑚) is a white Gaussian noise with the variance 𝑇𝑡

𝑥: 〈𝜉𝑡
𝑥〉 = 0, and 

〈𝜉𝑡
𝑥𝜉𝑡′

𝑥′〉 = 2𝑇𝑡′
𝑥′𝛿𝑥𝑥′𝛿(𝑡 − 𝑡′). In the model of E. coli bacterial chemotaxis given by 

Eqs. (1) and (2) with 𝑎̅𝑡(𝑚𝑡, 𝑙𝑡) = 𝛼𝑚𝑡 − 𝛽𝑙𝑡, we can analytically calculate the 

information-thermodynamic dissipation in the stationary state: 

 
𝑑𝐼𝑡

tr −
𝐽𝑡
𝑎

𝑇𝑡
𝑎 𝑑𝑡 

 

 
=

[〈𝑎𝑡
2〉 − 〈𝑎𝑡〉

2][1 − (𝜌𝑡
𝑎𝑚)2]𝑑𝑡

4(𝜏𝑚)2𝑇𝑡
𝑚 +

𝑑𝑡

𝜏𝑎𝑇𝑡
𝑎 [

1

𝜏𝑎
〈(𝑎𝑡 − 𝑎̅𝑡)

2〉 − 𝑇𝑡
𝑎]. (3) 

When this quantity becomes zero, the equality in inequality (5) in the main text is 

achieved.  With the linear approximation 𝑎̅𝑡(𝑚𝑡, 𝑙𝑡) = 𝛼𝑚𝑡 − 𝛽𝑙𝑡, we can explicitly 

calculate the stationary value of 〈𝑎𝑡〉, 〈𝑚𝑡〉, 〈𝑎𝑡
2〉, 〈𝑎𝑡𝑚𝑡〉 and 〈𝑚𝑡

2〉 as 

 

 〈𝑎𝑡〉SS = 0, (4) 

 〈𝑚𝑡〉SS = 𝛽𝛼−1𝑙𝑡, (5) 

 〈𝑎𝑡
2〉SS = 𝛼𝜏𝑚𝑇𝑡

𝑚 + 𝜏𝑎𝑇𝑡
𝑎, (6) 

 〈𝑎𝑡𝑚𝑡〉SS = 𝜏𝑚𝑇𝑡
𝑚, (7) 

 〈𝑚𝑡
2〉SS = (𝛽𝛼−1𝑙𝑡)

2 + 𝛼−1𝜏𝑚𝑇𝑡
𝑚 + 𝜏𝑎𝛼−1(𝜏𝑚)−1[𝛼𝜏𝑚𝑇𝑡

𝑚 + 𝜏𝑎𝑇𝑡
𝑎]. (8) 

The information-thermodynamic dissipation (3) then reduces to 



 
𝑑𝐼𝑡

tr −
𝐽𝑡
𝑎

𝑇𝑡
𝑎 𝑑𝑡 

 

 
= 𝑑𝑡[𝛼𝑇𝑡

𝑚 + 𝜏𝑎(𝜏𝑚)−1𝑇𝑡
𝑎] [

𝛼

𝜏𝑎𝑇𝑡
𝑎  +

1 − (𝜌𝑡
𝑎𝑚)2

4𝜏𝑚𝑇𝑡
𝑚 ]  ≥ 0, (9) 

where the correlation coefficient (𝜌𝑡
𝑎𝑚)2 is given by 

 
(𝜌𝑡

𝑎𝑚)2 =
1

[1+𝜏𝑎(𝜏𝑚)−1[𝛼+𝜏𝑎𝑇𝑡
𝑎(𝜏𝑚𝑇𝑡

𝑚)−1]][1+𝜏𝑎𝑇𝑡
𝑎(𝛼𝜏𝑚𝑇𝑡

𝑚)
−1

]
 ≤ 1. (10) 

In the limit of 𝛼 → 0 and 𝜏𝑎/𝜏𝑚 → 0, the information-thermodynamic dissipation (3) 

can be zero, and the equality in Eq. (5) in the main text is achieved such that 

 
𝑑𝐼𝑡

tr =
𝐽𝑡
𝑎

𝑇𝑡
𝑎 𝑑𝑡=0. (11) 

This corresponds to the situation where the feedback loop does not work (𝛼 → 0) and 

the information flow vanishes, and 𝑎 relaxes infinitely fast (𝜏𝑎/𝜏𝑚 → 0). 

 

Supplementary note 2 | Detailed derivation of the second law of information 

thermodynamics. 

Here, we show the detailed derivation of the second law of information thermodynamics 

for Eqs. (1) and (2) [Eq. (4) in the main text]: 

 
Ξ𝑡

info: = 𝑑𝐼𝑡
tr + 𝑑𝑆𝑡

𝑎|𝑚
 ≥

𝐽𝑡
𝑎

𝑇𝑡
𝑎 𝑑𝑡, (12) 

where 𝑑𝑆𝑡
𝑎|𝑚

∶= 𝑆[𝑎𝑡+𝑑𝑡|𝑚𝑡+𝑑𝑡] −  𝑆[𝑎𝑡|𝑚𝑡] is the conditional Shannon entropy 

change of 𝑎 with 𝑆[𝑎𝑡|𝑚𝑡] ≔ −∫𝑑𝑎𝑡 𝑑𝑚𝑡𝑝[𝑎𝑡, 𝑚𝑡] ln 𝑝[𝑎𝑡|𝑚𝑡], and 𝑑𝐼𝑡
tr is the 

transfer entropy from 𝑎 to 𝑚 at time 𝑡: 

 
𝑑𝐼𝑡

tr ≔ ∫𝑑𝑚𝑡+𝑑𝑡𝑑𝑎𝑡 𝑑𝑚𝑡𝑝[𝑚𝑡+𝑑𝑡, 𝑎𝑡, 𝑚𝑡] ln
𝑝[𝑚𝑡+𝑑𝑡|𝑎𝑡, 𝑚𝑡]

𝑝[𝑚𝑡+𝑑𝑡|𝑚𝑡]
, (13) 

The heat absorption
1
 𝐽𝑡

𝑎 is defined as the ensemble average of the Stratonovich product 

of the force 𝜉𝑡
𝑎 − 𝑎̇𝑡 and the velocity 𝑎̇𝑡 such that 

 𝐽𝑡
𝑎 ≔ 〈(𝜉𝑡

𝑎 − 𝑎̇𝑡) ∘ 𝑎̇𝑡〉, (14) 

The heat absorption 𝐽𝑡
𝑎 can be rewritten by Eq. (3) in the main text:  

 𝐽𝑡
𝑎 = 〈(𝜉𝑡

𝑎 − 𝑎̇𝑡) ∘ 𝑎̇𝑡〉  

  
=

1

𝜏𝑎
[〈(𝑎𝑡 − 𝑎̅𝑡)  ∘ 𝜉𝑡

𝑎  〉 −
1

𝜏𝑎
〈(𝑎𝑡 − 𝑎̅𝑡)

2〉]  
 



  
=

1

𝜏𝑎
[𝑇𝑡

𝑎  −
1

𝜏𝑎
〈(𝑎𝑡 − 𝑎̅𝑡)

2〉] , (15) 

where we used the relation of the Stratonovich integral
1
 〈𝑓(𝑎𝑡, 𝑚𝑡, 𝑙𝑡) ∘ 𝜉𝑡

𝑎〉 =

𝑇𝑡
𝑎〈𝜕𝑎𝑡

𝑓(𝑎𝑡,𝑚𝑡, 𝑙𝑡)〉 for any function 𝑓.  

 From the detailed fluctuation theorem
2
, 𝐽𝑡

𝑎𝑑𝑡/𝑇𝑡
𝑎 can be rewritten as a ratio of the 

probability distribution. Let the backward path-probability 𝑝𝐵[𝑎𝑡|𝑎𝑡+𝑑𝑡, 𝑚𝑡] be 

𝑝𝐵[𝑎𝑡|𝑎𝑡+𝑑𝑡, 𝑚𝑡] ≔ 𝒢(𝑎𝑡; 𝑎𝑡+𝑑𝑡; 𝑚𝑡), where 𝒢 is given by the path-integral 

expression: 

 
𝑝[𝑎𝑡+𝑑𝑡|𝑎𝑡, 𝑚𝑡] = 𝒩𝑒𝑥𝑝 [−

𝑑𝑡

4𝑇𝑡
𝑎 (

𝑎𝑡+𝑑𝑡 − 𝑎𝑡

𝑑𝑡
+

1

𝜏𝑎
(𝑎𝑡 − 𝑎̅𝑡))

2

] (16) 

  =: 𝒢(𝑎𝑡+𝑑𝑡; 𝑎𝑡; 𝑚𝑡). (17) 

𝒩 is the normalization constant, so that ∫𝑑𝑎𝑡+𝑑𝑡 𝒢(𝑎𝑡+𝑑𝑡; 𝑎𝑡; 𝑚𝑡) = 1 is satisfied. 

The backward path probability also satisfies the normalization condition 

∫𝑑𝑎𝑡 𝑝𝐵[𝑎𝑡|𝑎𝑡+𝑑𝑡, 𝑚𝑡] = ∫𝑑𝑎𝑡 𝒢(𝑎𝑡; 𝑎𝑡+𝑑𝑡; 𝑚𝑡) = 1. Up to order 𝑑𝑡, the entropy 

change in the heat bath with temperature 𝑇𝑡
𝑎 is calculated as 

 𝐽𝑡
𝑎

𝑇𝑡
𝑎 𝑑𝑡 ≔ ∫𝑑𝑎𝑡+𝑑𝑡𝑑𝑎𝑡 𝑑𝑚𝑡𝑝[𝑎𝑡+𝑑𝑡, 𝑎𝑡, 𝑚𝑡] ln

𝑝𝐵[𝑎𝑡|𝑎𝑡+𝑑𝑡, 𝑚𝑡]

𝑝[𝑎𝑡+𝑑𝑡|𝑎𝑡, 𝑚𝑡]
, (18) 

which is well known as the detailed fluctuation theorem
2
. 

 Because of the noise independence 〈𝜉𝑡
𝑎𝜉𝑡′

𝑚〉 = 0, we have 𝑝[𝑎𝑡+𝑑𝑡, 𝑚𝑡+𝑑𝑡, 𝑎𝑡, 𝑚𝑡]  =

𝑝[𝑎𝑡+𝑑𝑡|𝑎𝑡, 𝑚𝑡]𝑝[𝑚𝑡+𝑑𝑡|𝑎𝑡, 𝑚𝑡]𝑝[𝑎𝑡, 𝑚𝑡]. From Eqs. (13) and (18), the difference 

Ξ𝑡
info − 𝐽𝑡

𝑎𝑑𝑡/ 𝑇𝑡
𝑎 is calculated as 

 
Ξ𝑡

info −
𝐽𝑡
𝑎

𝑇𝑡
𝑎 𝑑𝑡 = ⟨ln

𝑝[𝑎𝑡+𝑑𝑡, 𝑚𝑡+𝑑𝑡, 𝑎𝑡, 𝑚𝑡]

𝑝[𝑎𝑡+𝑑𝑡|𝑚𝑡+𝑑𝑡]𝑝𝐵[𝑎𝑡|𝑎𝑡+𝑑𝑡, 𝑚𝑡]𝑝[𝑚𝑡+𝑑𝑡, 𝑚𝑡]
⟩. (19) 

The quantity 𝒬[𝑎𝑡+𝑑𝑡, 𝑚𝑡+𝑑𝑡 , 𝑎𝑡, 𝑚𝑡] ≔ 𝑝[𝑎𝑡+𝑑𝑡|𝑚𝑡+𝑑𝑡]𝑝𝐵[𝑎𝑡|𝑎𝑡+𝑑𝑡, 𝑚𝑡]𝑝[𝑚𝑡+𝑑𝑡, 𝑚𝑡] 

satisfies the normalization condition of the probability: 

 
∫𝑑𝑎𝑡+𝑑𝑡𝑑𝑚𝑡+𝑑𝑡𝑑𝑎𝑡 𝑑𝑚𝑡 𝒬[𝑎𝑡+𝑑𝑡, 𝑚𝑡+𝑑𝑡, 𝑎𝑡, 𝑚𝑡] = 1. (20) 

Therefore, 𝒬[𝑎𝑡+𝑑𝑡, 𝑚𝑡+𝑑𝑡, 𝑎𝑡, 𝑚𝑡] can be interpreted as the probability distribution of 

(𝑎𝑡+𝑑𝑡, 𝑚𝑡+𝑑𝑡 , 𝑎𝑡, 𝑚𝑡), and the difference Ξ𝑡
info − 𝐽𝑡

𝑎𝑑𝑡/ 𝑇𝑡
𝑎 is rewritten as the 

Kullback-Libler divergence 𝐷𝐾𝐿(𝑝||𝒬)3
: 

 
Ξ𝑡

info −
𝐽𝑡
𝑎

𝑇𝑡
𝑎 𝑑𝑡  



 
= ∫𝑑𝑎𝑡+𝑑𝑡𝑑𝑚𝑡+𝑑𝑡𝑑𝑎𝑡 𝑑𝑚𝑡𝑝[𝑎𝑡+𝑑𝑡, 𝑚𝑡+𝑑𝑡, 𝑎𝑡, 𝑚𝑡] ln

𝑝[𝑎𝑡+𝑑𝑡, 𝑚𝑡+𝑑𝑡, 𝑎𝑡, 𝑚𝑡]

𝒬[𝑎𝑡+𝑑𝑡, 𝑚𝑡+𝑑𝑡, 𝑎𝑡, 𝑚𝑡]
  

 := 𝐷𝐾𝐿(𝑝||𝒬). (21) 

From the non-negativity of the Kullback-Leibler divergence
3
 [i.e., 𝐷𝐾𝐿(𝑝||𝒬) ≥ 0], we 

obtain Eq. (12). 

 

Supplementary note 3 | Relationship between information thermodynamics for 

two-dimensional Markov process and that in [S. Ito and T. Sagawa, Phys. Rev. Lett. 

111, 180503 (2013)]. 

In our previous paper
4
, we have derived a general framework of information 

thermodynamics and discussed information thermodynamics for the coupled Langevin 

equations. We here give another application of the general result
 
in Ref. 4 to 

two-dimensional Markov processes such as the coupled Langevin equations (1) and (2). 

Here, we show that the general result in Ref. 4 is tighter than the 

information-thermodynamic inequality (12). 

 We first consider the path probability of a single time step from (𝑎𝑡,𝑚𝑡), to 

(𝑎𝑡+𝑑𝑡, 𝑚𝑡+𝑑𝑡). Due to the Markov property, the joint probability 

𝑝[𝑎𝑡+𝑑𝑡, 𝑚𝑡+𝑑𝑡, 𝑎𝑡, 𝑚𝑡] is given by 

  𝑝[𝑎𝑡+𝑑𝑡, 𝑚𝑡+𝑑𝑡, 𝑎𝑡, 𝑚𝑡]  = 𝑝[𝑎𝑡+𝑑𝑡|𝑎𝑡,𝑚𝑡]𝑝[𝑚𝑡+𝑑𝑡|𝑎𝑡, 𝑚𝑡]𝑝[𝑎𝑡|𝑚𝑡]𝑝[𝑚𝑡], (22) 

where the independency of the noise (i.e., 

𝑝[𝑎𝑡+𝑑𝑡, 𝑚𝑡+𝑑𝑡|𝑎𝑡, 𝑚𝑡] = 𝑝[𝑎𝑡+𝑑𝑡|𝑎𝑡, 𝑚𝑡]𝑝[𝑚𝑡+𝑑𝑡|𝑎𝑡, 𝑚𝑡]) is assumed. 

 We next consider a Bayesian network, which represents the stochastic process of Eq. 

(22) (see Supplementary Fig. 7). This Bayesian network is given by the parents 

(denoted as “pa”) of the random variables: pa(𝑎𝑡) = 𝑚𝑡, pa(𝑚𝑡) = ∅, pa(𝑎𝑡+𝑑𝑡) =

{𝑎𝑡, 𝑚𝑡} and pa(𝑚𝑡+𝑑𝑡) = {𝑎𝑡, 𝑚𝑡}. The stochastic process of Eq. (22) is given by 

𝑝[𝑎𝑡+𝑑𝑡, 𝑚𝑡+𝑑𝑡, 𝑎𝑡, 𝑚𝑡]  =

𝑝[𝑎𝑡+𝑑𝑡|pa(𝑎𝑡+𝑑𝑡)]𝑝[𝑚𝑡+𝑑𝑡|pa(𝑚𝑡+𝑑𝑡)]𝑝[𝑎𝑡|pa(𝑎𝑡)]𝑝[𝑚𝑡|pa(𝑚𝑡)]. This Bayesian 

network shows a single time step of the Markovian dynamics from time 𝑡 to time 

𝑡 + 𝑑𝑡. 

 Let stochastic mutual information 

be 𝐼[𝒜1:𝒜2] ≔ ln 𝑝[𝒜1, 𝒜2] − ln 𝑝[𝒜1] − ln 𝑝[𝒜2], and stochastic conditional 

mutual information 

be 𝐼[𝒜1:𝒜2|𝒜3] ≔ ln 𝑝[𝒜1, 𝒜2|𝒜3] − ln 𝑝[𝒜1|𝒜3] − ln 𝑝[𝒜2|𝒜3], where 𝒜1, 𝒜2 



and 𝒜3 are any set of random variables. From the argument in Ref. 4, the bound of the 

entropy production for the subsystem 𝑎 is given by an informational quantity Θ, 

which corresponds to the Bayesian network shown in Supplementary Fig. 7: 

 

Θ ≔ 𝐼fin − 𝐼ini − ∑𝐼tr
𝑙

2

𝑙=1

, (23) 

 𝐼fin = 𝐼[𝑥2: 𝒞]  

  = 𝐼[𝑎𝑡+𝑑𝑡: {𝑚𝑡, 𝑚𝑡+𝑑𝑡}], (24) 

 𝐼ini = 𝐼[𝑥1:pa(𝑥1)]  

  = 𝐼[𝑎𝑡: 𝑚𝑡], (25) 

 𝐼tr
1  = 𝐼[𝑐1: pa𝑋(𝑐1)]  

  = 0, (26) 

 𝐼tr
2 = 𝐼[𝑐2: pa𝑋(𝑐2)|𝑐1]  

  = 𝐼[𝑚𝑡+𝑑𝑡: 𝑎𝑡|𝑚𝑡], (27) 

where we set 𝑋: = {𝑥1 = 𝑎𝑡, 𝑥2 = 𝑎𝑡+𝑑𝑡}, 𝒞:= {𝑐1 = 𝑚𝑡, 𝑐2 = 𝑚𝑡+𝑑𝑡}, pa𝑋(𝑚𝑡) ≔

pa(𝑚𝑡)⋂𝑋 = ∅, and pa𝑋(𝑚𝑡+𝑑𝑡) ≔ pa(𝑚𝑡+𝑑𝑡)⋂𝑋 = 𝑎𝑡. Let the entropy production in 

the subsystem during the infinitesimal time step be 𝜎𝑡 ≔ ln p(𝑎𝑡) − ln p(𝑎𝑡+𝑑𝑡)  +

 𝛥𝑠𝑡
bath, where 𝛥𝑠𝑡

bath is the entropy change in the heat baths. Again from the argument 

in Ref. 4, we have inequality 〈𝜎〉 ≥ 〈Θ〉, where 

 〈Θ〉 = 〈𝐼[𝑎𝑡+𝑑𝑡: {𝑚𝑡, 𝑚𝑡+𝑑𝑡}]〉 − 〈𝐼[𝑎𝑡: {𝑚𝑡, 𝑚𝑡+𝑑𝑡}]〉 (28) 

  = 𝐼𝑡+𝑑𝑡
𝑎𝑚 − 𝐼𝑡

𝑎𝑚 + 𝑑𝐼𝑡
Btr − 𝑑𝐼𝑡

tr. (29) 

𝐼𝑡
𝑎𝑚 ≔ 〈𝐼[𝑎𝑡: 𝑚𝑡]〉 is the mutual information between 𝑎 and 𝑚 at time 𝑡,  𝑑𝐼𝑡

tr ≔

〈ln 𝑝[𝑚𝑡+𝑑𝑡|𝑎𝑡,𝑚𝑡]〉 − 〈ln 𝑝[𝑚𝑡+𝑑𝑡|𝑚𝑡]〉 is the transfer entropy from 𝑎 to 𝑚 at time 

𝑡, and 𝑑𝐼𝑡
Btr is defined as the conditional mutual information 

𝑑𝐼𝑡
Btr = 〈𝐼[𝑚𝑡: 𝑎𝑡+𝑑𝑡|𝑚𝑡+𝑑𝑡]〉. We note that Eq. (28) is consistent with information flow 

in several papers
5-8

. 

 For the two-dimensional Langevin system Eqs. (1) and (2), the ensemble average of 

the entropy production for the subsystem 〈𝜎〉 can be rewritten by the heat absorption 

𝐽𝑡
𝑎, 〈𝜎〉 = −𝐽𝑡

𝑎𝑑𝑡/ 𝑇𝑡
𝑎 + 〈ln 𝑝[𝑎𝑡]〉 − 〈ln 𝑝[𝑎𝑡+𝑑𝑡]〉 with 〈𝛥𝑠𝑡

bath〉 = −𝐽𝑡
𝑎𝑑𝑡/ 𝑇𝑡

𝑎. From  

〈𝜎〉 ≥ 〈Θ〉, we have the following inequality: 

 𝐽𝑡
𝑎

𝑇𝑡
𝑎 𝑑𝑡 ≤ −𝑑𝐼𝑡

Btr + 𝑑𝐼𝑡
tr + 𝑑𝑆𝑡

𝑎|𝑚
  (30) 



where we used Eq. (29) and identity 𝑑𝑆𝑡
𝑎|𝑚

= 〈ln 𝑝[𝑎𝑡]〉 − 〈ln 𝑝[𝑎𝑡+𝑑𝑡]〉 − 𝐼𝑡+𝑑𝑡
𝑎𝑚 + 𝐼𝑡

𝑎𝑚. 

Because of the non-negativity of the mutual information
3
 [i.e., 𝑑𝐼𝑡

Btr ≥ 0], we have 

inequality (12) [Eq. (4) in the main text]: 

 𝐽𝑡
𝑎

𝑇𝑡
𝑎 𝑑𝑡 ≤ −𝑑𝐼𝑡

Btr + 𝑑𝐼𝑡
tr + 𝑑𝑆𝑡

𝑎|𝑚
  (31) 

  ≤ 𝑑𝐼𝑡
tr + 𝑑𝑆𝑡

𝑎|𝑚
. (32) 

The conditional mutual information 𝑑𝐼𝑡
Btr would be important as well as the transfer 

entropy 𝑑𝐼𝑡
tr, because the bound including 𝑑𝐼𝑡

Btr [Eq. (31)] is tighter than the bound 

without 𝑑𝐼𝑡
Btr [Eq. (32)]. However, in the main text, we only focus on the role of the 

transfer entropy 𝑑𝐼𝑡
tr for the sake of simplicity, by applying the weaker inequality (32).  

 

Supplementary note 4 | Analytical calculation of the transfer entropy for the 

coupled linear Langevin system. 

We derive the analytical expression of the transfer entropy for the coupled linear 

Langevin system:  

 𝑥̇𝑡
1 = ∑ 𝜇𝑡

1𝑗2
𝑗 𝑥𝑡

𝑗
+ 𝑓𝑡

1 + 𝜉𝑡
1,   

 𝑥̇𝑡
2 = ∑ 𝜇𝑡

2𝑗2
𝑗 𝑥𝑡

𝑗
+ 𝑓𝑡

2 + 𝜉𝑡
2,   

 〈𝜉𝑡
𝑖𝜉𝑡′

𝑗
〉 = 2𝑇𝑡

𝑖𝛿𝑖𝑗𝛿(𝑡 − 𝑡′),   

 〈𝜉𝑡
𝑖〉 = 0, (33) 

where 𝑖,j=1,2, 𝑓𝑡
𝑖 and 𝜇𝑡

𝑖𝑗
 are the time-dependent constants, 𝑇𝑡

𝑖 is time-dependent 

variance of the white Gaussian noise 𝜉𝑡
𝑖, and 〈… 〉 denotes the ensemble average. In the 

main text, we considered the model of the E. coli bacterial chemotaxis given by Eqs. (1) 

and (2) with 𝑎̅𝑡(𝑚𝑡, 𝑙𝑡) = 𝛼𝑚𝑡 − 𝛽𝑙𝑡. To compare Eqs. (1) and (2), we set {𝑥𝑡
1, 𝑥𝑡

2} =

{𝑎𝑡, 𝑚𝑡}, 𝜇𝑡
11 = −1/𝜏𝑎, 𝜇𝑡

12 = 𝛼/𝜏𝑎, 𝑓𝑡
1 = −𝛽𝑙𝑡/𝜏

𝑎, 𝜇𝑡
21 = −1/𝜏𝑚, 𝜇𝑡

22 = 0, 

𝑓𝑡
2 = 0, 𝑇𝑡

1 = 𝑇𝑡
𝑎, and 𝑇𝑡

2 = 𝑇𝑡
𝑚. The transfer entropy from the target system 𝑥1 to 

the other system 𝑥2 at time 𝑡 is defined as 

𝑑𝐼𝑡
tr ≔ 〈ln 𝑝[𝑥𝑡+𝑑𝑡

2 |𝑥𝑡
1, 𝑥𝑡

2]〉 − 〈ln 𝑝[𝑥𝑡+𝑑𝑡
2 |𝑥𝑡

2]〉. 

 Here, we analytically calculate the transfer entropy for the case that the joint 

probability 𝑝[𝑥𝑡
1, 𝑥𝑡

2] is a Gaussian distribution: 

 

𝑝[𝑥𝑡
1, 𝑥𝑡

2] =
1

2𝜋√detΣ𝑡

exp [−∑
1

2
𝑖𝑗

𝑥̅𝑡
𝑖𝐺𝑡

𝑖𝑗
𝑥̅𝑡

𝑗
], (34) 



where Σ𝑡 is the covariant matrix 𝛴𝑡
𝑖𝑗

= 〈𝑥̅𝑡
𝑖𝑥̅𝑡

𝑗〉, and 𝑥̅𝑡
𝑖 = 𝑥𝑡

𝑖 − 〈𝑥𝑡
𝑖〉. The inverse 

matrix 𝐺𝑡 = (Σ𝑡)
−1 satisfies ∑ 𝐺𝑡

𝑖𝑗
𝛴𝑡

𝑗𝑙
𝑗 = 𝛿𝑖𝑙 and 𝐺𝑡

𝑖𝑗
= 𝐺𝑡

𝑗𝑖
. The joint distribution 

𝑝[𝑥𝑡
2] is given by the Gaussian probability: 

 
𝑝[𝑥𝑡

2] =
1

√2𝜋𝛴𝑡
22

exp [−
1

2
(𝛴𝑡

22)−1(𝑥̅𝑡
2)2], (35) 

We consider the path-integral expression of the Langevin equations (33). The 

conditional probability 𝑝[𝑥𝑡+𝑑𝑡
2 |𝑥𝑡

1, 𝑥𝑡
2] is given by 

 

𝑝[𝑥𝑡+𝑑𝑡
2 |𝑥𝑡

1, 𝑥𝑡
2] = 𝒩exp [−

𝑑𝑡

4𝑇𝑡
2 (

𝑥𝑡+𝑑𝑡
2 − 𝑥𝑡

2

𝑑𝑡
− ∑𝜇𝑡

2𝑗

2

𝑗

𝑥𝑡
𝑗
− 𝑓𝑡

2)

2

]  

  
= 𝒩exp [−

𝑑𝑡

4𝑇𝑡
2
(𝐹𝑡

2 − 𝜇𝑡
21𝑥̅𝑡

1)2], (36) 

where 𝒩 is the normalization constant with ∫ 𝑑𝑥𝑡+𝑑𝑡
2 𝑝[𝑥𝑡+𝑑𝑡

2 |𝑥𝑡
1, 𝑥𝑡

2] = 1. 

For the simplicity of notation, we set 𝐹𝑡
2 ≔ (𝑥𝑡+𝑑𝑡

2 − 𝑥𝑡
2)/𝑑𝑡 − 𝜇𝑡

22〈𝑥𝑡
1〉 − 𝜇𝑡

22𝑥𝑡
2 − 𝑓𝑡

2. 

From Eqs. (34) and (36), we have the joint distribution 𝑝[𝑥𝑡+𝑑𝑡
2 , 𝑥𝑡

2] as 

 𝑝[𝑥𝑡+𝑑𝑡
2 , 𝑥𝑡

2]  

 = ∫ 𝑑𝑥𝑡
1𝑝[𝑥𝑡+𝑑𝑡

2 |𝑥𝑡
1, 𝑥𝑡

2] 𝑝[𝑥𝑡
1, 𝑥𝑡

2]  

 

=
𝒩

√4𝜋detΣ𝑡 (
𝑑𝑡
4𝑇𝑡

2 (𝜇𝑡
21)2 +

𝐺𝑡
11

2 )

 exp

[
 
 
 
 

−
𝑑𝑡

4𝑇𝑡
2
(𝐹𝑡

2)2 −
1

2
𝐺𝑡

22(𝑥̅𝑡
2)2

+

(𝐺𝑡
12𝑥̅𝑡

2 −
𝜇𝑡

21𝐹𝑡
2

2𝑇𝑡
2 𝑑𝑡)

2

4 (
𝑑𝑡
4𝑇𝑡

2 (𝜇𝑡
21)2 +

𝐺𝑡
11

2 )
]
 
 
 
 

. 

(37) 

From Eqs. (35), (36), and (37), we obtain the analytical expression of the transfer 

entropy 𝑑𝐼𝑡
tr up to the order of 𝑑𝑡: 

 𝑑𝐼𝑡
tr  

 = 〈ln 𝑝[𝑥𝑡+𝑑𝑡
2 |𝑥𝑡

1, 𝑥𝑡
2]〉 + 〈ln 𝑝[𝑥𝑡

2]〉 − 〈ln 𝑝[𝑥𝑡+𝑑𝑡
2 , 𝑥𝑡

2]〉  



 
= −

𝑑𝑡

4𝑇𝑡
2
〈(𝐹𝑡

2 − 𝜇𝑡
21𝑥̅𝑡

1)2〉−
1

2
ln[2𝜋𝛴𝑡

22] −
1

2
(𝛴𝑡

22)−1〈(𝑥̅𝑡
2)2〉

+
1

2
ln [4𝜋detΣ𝑡 (

𝑑𝑡

4𝑇𝑡
2 (𝜇𝑡

21)2 +
𝐺𝑡

11

2
)] +

𝑑𝑡

4𝑇𝑡
2
〈(𝐹𝑡

2)2〉 +
1

2
𝐺𝑡

22〈(𝑥̅𝑡
2)2〉

+

⟨(𝐺𝑡
12𝑥̅𝑡

2 −
𝜇𝑡

21𝐹𝑡
2

2𝑇𝑡
2 𝑑𝑡)

2

⟩

4 (
𝑑𝑡
4𝑇𝑡

2 (𝜇𝑡
21)2 +

𝐺𝑡
11

2 )

 

 

 
=

𝜇𝑡
21𝑑𝑡

2𝑇𝑡
2

〈𝐹𝑡
2𝑥̅𝑡

1〉 −
𝑑𝑡

4𝑇𝑡
2
(𝜇𝑡

21)2𝛴𝑡
11 −

1

2
ln[2𝜋𝛴𝑡

22] −
1

2
+

(𝜇𝑡
21)2𝑑𝑡

4𝐺𝑡
11𝑇𝑡

2

+
1

2
𝐺𝑡

22𝛴𝑡
22 −

(𝐺𝑡
12)2𝛴𝑡

22

2𝐺𝑡
11 [1 −

(𝜇𝑡
21)2𝑑𝑡

2𝐺𝑡
11𝑇𝑡

2 ] +
𝜇𝑡

21𝑑𝑡

2𝐺𝑡
11𝑇𝑡

2 𝐺𝑡
12〈𝐹𝑡

2𝑥̅𝑡
2〉

−
(𝜇𝑡

21)2𝑑𝑡

4𝐺𝑡
11𝑇𝑡

2 + 𝒪(𝑑𝑡2) 

 

 
=

𝜇𝑡
21𝑑𝑡

2𝑇𝑡
2

〈𝐹𝑡
2𝑥̅𝑡

1〉 +
𝜇𝑡

21𝑑𝑡

2𝐺𝑡
11𝑇𝑡

2 𝐺𝑡
12〈𝐹𝑡

2𝑥̅𝑡
2〉 −

(𝜇𝑡
21)2𝑑𝑡

4𝐺𝑡
11𝑇𝑡

2 + 𝒪(𝑑𝑡2) 
 

 
=

(𝜇𝑡
21)2

4𝑇𝑡
2

detΣ𝑡

𝛴𝑡
22 𝑑𝑡 + 𝒪(𝑑𝑡2) 

 

 
=

1

2
ln (1 +

𝑑𝑃𝑡

𝑁𝑡
) + 𝒪(𝑑𝑡2), (38) 

where we define 𝑑𝑃𝑡 ≔ (𝜇𝑡
21)2(detΣ𝑡)𝑑𝑡/(𝛴𝑡

22), and 𝑁𝑡 = 2𝑇𝑡
2. In this calculation, we 

used 𝐺𝑡
𝑖𝑗

= 𝐺𝑡
𝑗𝑖

, 𝛴𝑡
𝑖𝑗

= 𝛴𝑡
𝑗𝑖

, 𝐺𝑡
𝑖1𝛴𝑡

1𝑙 + 𝐺𝑡
𝑖2𝛴𝑡

2𝑙 = 𝛿𝑖𝑙, 〈(𝐹𝑡
2)2〉𝑑𝑡2 = 2𝑇𝑡

2𝑑𝑡 + 𝒪(𝑑𝑡2), 

〈𝐹𝑡
2𝑥̅𝑡

1〉 = 𝜇𝑡
21𝛴𝑡

11, 〈𝐹𝑡
2𝑥̅𝑡

2〉 = 𝜇𝑡
21𝛴𝑡

12, and 𝐺𝑡
11 = (𝛴𝑡

22)/(detΣ𝑡). 

 In the model of the E. coli bacterial chemotaxis, we have 𝑁𝑡 = 2𝑇𝑡
𝑚 and 

 
𝑑𝑃𝑡 =

1

(𝜏𝑚)2

[〈𝑎𝑡
2〉 − 〈𝑎𝑡〉

2][〈𝑚𝑡
2〉 − 〈𝑚𝑡〉

2] − [〈𝑎𝑡𝑚𝑡〉
2 − 〈𝑎𝑡〉〈𝑚𝑡〉]

2

〈𝑚𝑡
2〉 − 〈𝑚𝑡〉2

𝑑𝑡  

  
=

1−(𝜌𝑡
𝑎𝑚)2

(𝜏𝑚)2
𝑉𝑡

𝑎𝑑𝑡, (39) 

where 𝑉𝑡
𝑥 ≔ 〈𝑥𝑡

2〉 − 〈𝑥𝑡〉
2 indicates the variance of 𝑥𝑡 = 𝑎𝑡 or 𝑥𝑡 = 𝑚𝑡, and  

𝜌𝑡
𝑎𝑚 ≔ [〈𝑎𝑡𝑚𝑡〉

2 − 〈𝑎𝑡〉〈𝑚𝑡〉]/(𝑉𝑡
𝑎𝑉𝑡

𝑚)1/2 is the correlation coefficient of 𝑎𝑡 and 𝑚𝑡. 

The correlation coefficient 𝜌𝑡
𝑎𝑚 satisfies −1 ≤ 𝜌𝑡

𝑎𝑚 ≤ 1, because of the 

Cauchy-Schwartz inequality. We note that, if the joint probability 𝑝[𝑎𝑡, 𝑚𝑡] is 

Gaussian, the factor 1 − (𝜌𝑡
𝑎𝑚)2 can be rewritten by the mutual information 𝐼𝑡

𝑎𝑚 as 



  1 − (𝜌𝑡
𝑎𝑚)2 =  exp[-2𝐼𝑡

𝑎𝑚], (40) 

where 𝐼𝑡
𝑎𝑚 is defined as 𝐼𝑡

𝑎𝑚 ≔ 〈ln 𝑝[𝑎𝑡, 𝑚𝑡]〉 − 〈ln 𝑝[𝑎𝑡]〉 − 〈ln 𝑝[𝑚𝑡]〉. This fact 

implies that, if the target system 𝑎𝑡 and the other system 𝑚𝑡 are strongly correlated 

(i.e., 𝐼𝑡
𝑎𝑚 →∞), no information flow exists (i.e., 𝑑𝐼𝑡

tr → 0). 

 From the analytical expression of the transfer entropy (38), we can analytically 

compare the conventional thermodynamic bound [i.e., Ξ𝑡
SL ≔ −𝐽𝑡

𝑚𝑑𝑡/𝑇𝑡
𝑚 + 𝑑𝑆𝑡

𝑎𝑚 ≥

𝐽𝑡
𝑎𝑑𝑡/𝑇𝑡

𝑎] with the information-thermodynamic bound (12) for the model of E. coli 

chemotaxis [Eqs. (1) and (2) with 𝑎̅𝑡(𝑚𝑡, 𝑙𝑡) = 𝛼𝑚𝑡 − 𝛽𝑙𝑡] in a stationary state, where 

both of the Shannon entropy and the conditional Shannon changes vanish, i.e., 

𝑑𝑆𝑡
𝑎|𝑚

= 0 and 𝑑𝑆𝑡
𝑎𝑚 = 0. Thus, the conventional thermodynamic bound is given by 

the heat emission from 𝑚 such that Ξ𝑡
SL ≔ −𝐽𝑡

𝑚𝑑𝑡/𝑇𝑡
𝑚 and the 

information-thermodynamic bound is given by the information flow such that 

Ξ𝑡
info ≔ 𝑑𝐼𝑡

tr. The information-thermodynamic bound is given by 𝑑𝐼𝑡
tr = (1 −

(𝜌𝑡
𝑎𝑚)2)[〈𝑎𝑡

2〉 − 〈𝑎𝑡〉
2]𝑑𝑡/[4(𝜏𝑚)2𝑇𝑡

𝑚]. The conventional thermodynamic bound is 

given by Ξ𝑡
SL ≔ 〈𝑎𝑡

2〉𝑑𝑡/[(𝜏𝑚)2𝑇𝑡
𝑚]. From −1 ≤ 𝜌𝑡

𝑎𝑚 ≤ 1 and 〈𝑎𝑡〉
2 ≥ 0, we have 

inequality Ξ𝑡
SL ≥ Ξ𝑡

info. This implies that the information-thermodynamic bound Ξ𝑡
info 

is tighter than the conventional bound Ξ𝑡
SL for the model of E. coli bacterial 

chemotaxis:  

 
Ξ𝑡

SL ≥ Ξ𝑡
info ≥

𝐽𝑡
𝑎

𝑇𝑡
𝑎 𝑑𝑡. (41) 
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