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Supplementary Figure 1 | A figure of merit of information thermodynamics: Step

function. The parameters are chosen as the same as in Fig. 4a in the main text.
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Supplementary Figure 2 | A figure of merit of information thermodynamics:
Sinusoidal function. The parameters are chosen as the same as in Fig. 4b in the main
text.
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Supplementary Figure 3 | A figure of merit of information thermodynamics:
Linear function. The parameters are chosen as the same as in Fig. 4c in the main text.
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Supplementary Figure 4 | A figure of merit of information thermodynamics:
Exponential decay. The parameters are chosen as the same as in Fig. 4d in the main
text.
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Supplementary Figure 5 | A figure of merit of information thermodynamics:
Square wave. The parameters are chosen as the same as in Fig. 4e in the main text.
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Supplementary Figure 6 | A figure of merit of information thermodynamics:
Triangle wave. The parameters are chosen as the same as in Fig. 4f in the main text.
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Supplementary Figure 7 | A Bayesian network corresponding to Eq. (22) in

Supplementary note 3. This Bayesian network gives the joint probability Eq. (2),
where a node represents a random variable and an edge represents a causal relationship.
Due to a general framework of information thermodynamics®, information of initial
correlation I;,; is characterized by the mutual information between a, and m;, the
information of final correlation Iy, is characterized by the mutual information

between a;,q4; and {m;, m¢,q4¢}, and the transfer entropy I, from the subsystem a
to the other system C is characterized by the conditional mutual information between
a; and m;,4, under the condition of m,. These information quantities I;,;, Is,, and
I give a lower bound of the entropy production in the subsystem a.



Supplementary note 1 | Explicit expression of the information-thermodynamic
dissipation.
We consider the coupled Langevin equations (2) in the main text,

a = —=[a, — @(my, 1)] + &8, (1)

. 1
mt:_T_mat'*‘s;tm’ 2

where &F (x = a,m) is a white Gaussian noise with the variance T: (¢¥) = 0, and
(§XEX) = 2T 65,,,6(t — t'). In the model of E. coli bacterial chemotaxis given by
Egs. (1) and (2) with a,(mg,l;) = am, — Bl;, we can analytically calculate the

information-thermodynamic dissipation in the stationary state:

dIf — Edt
t Tta

[{af) —{ar)?][1 — (p™)?]dt  dt 11

- TG b @ ah T @)

When this quantity becomes zero, the equality in inequality (5) in the main text is
achieved. With the linear approximation a,(mg,l;) = am; — Bl;, we can explicitly

calculate the stationary value of (a,), (m;), (a?), {(a;m.) and (m?) as

(at)ss = 0, 4)

(me)ss = a1y, )

(af)ss = at™T{" + 19T, (6)

(agmy)ss = T T¢", (7

(m#)ss = (Ba™t)? + a 1t™T™ + t%a 1 (7™)  Har™T™ + 1°TF. (8)

The information-thermodynamic dissipation (3) then reduces to



dIfr — Edt:
T#

a 1=

_ -1
=dtlaT™ + (™) 'T¢] AT e

0, (9)

where the correlation coefficient (p#™)? is given by

(pgm)? = - <1 (10)

[1+‘ra(rm)‘1[a+TaTta(‘rmTtm)‘1]][1+‘[aTta(a‘rng”)_1]

In the limit of &« - 0 and 7%/t™ — 0, the information-thermodynamic dissipation (3)
can be zero, and the equality in Eq. (5) in the main text is achieved such that

a1 = £ ae=0, (11)
t

This corresponds to the situation where the feedback loop does not work (a« — 0) and
the information flow vanishes, and a relaxes infinitely fast (z¢/t™ — 0).

Supplementary note 2 | Detailed derivation of the second law of information
thermodynamics.

Here, we show the detailed derivation of the second law of information thermodynamics
for Egs. (1) and (2) [Eq. (4) in the main text]:

a
ginfo; — gt 4+ dsA™ > ;iadt, (12)
t

where dS™ := S[aysq¢lMesqe] — Slaglm,] is the conditional Shannon entropy

change of a with S[a;|m;] == — [ da; dm;p[a;, m;]Inp[a;|m], and dI{" is the

transfer entropy from a to m attime t:

plmeyaclas, mel
plmeyaclme]

The heat absorption® J¢& is defined as the ensemble average of the Stratonovich product

dIf = j dmyqeda, dmep[Mmeyqe, g, me] In » (13)

of the force é# — a, and the velocity a, such that

Ji =L —ap e ar), (14)
The heat absorption J¢ can be rewritten by Eq. (3) in the main text:

J& =A{EF —ap) o ay)

_ 1 _ a 1 = N2
== ((ay — a;) o & )—T—a((at_at) )



1 1
= | - t@-a), (15)

7a
where we used the relation of the Stratonovich integral® (f(a,, ms,[;) o &%) =
T#(0,,f (ar, my, 1)) for any function f.

From the detailed fluctuation theorem?, J2dt/T& can be rewritten as a ratio of the
probability distribution. Let the backward path-probability pgla:|a;yas, me] be
pelac|arrar, me] == G(as; Aryae; me), Where G is given by the path-integral

expression:
dt (Qeege —a, 1 z
platraclas, mi] = Nexp|— 4Tg ( t+d;t Ly pors (a; — C_lt)) ] (16)
=:1G(Atyar; A Mye). (7)

N is the normalization constant, so that [ da;,q: G(Qrsar; ar;me) = 1 is satisfied.
The backward path probability also satisfies the normalization condition
[da;pglaslassar, m:] = [ da; G(as; aryqr; me) = 1. Up to order dt, the entropy
change in the heat bath with temperature T is calculated as

Jé

pelaclaar, me
Ta dt = f daciaedar dmplaciar, ar, me] In
t

placiaclas, me]’

(18)

which is well known as the detailed fluctuation theorem?.
Because of the noise independence (¢£¢7) = 0, we have plasiae, Meyae, A, Me] =
placsaclas, melp[mesaclas, melplas, me]. From Egs. (13) and (18), the difference

zinfo _ jage /T s calculated as

minfo _ J¢ <lnp[ platiac, Mevae ar, Ml (19)

= —dt = .
t T
3 Atrat|Meraelpplaclaerar, melp[mesar, me]

t
The quantity Q[a;ar, Merar, A Me] = D[Arsac|MeraclPplac]Qerar melp[Mesar, me

satisfies the normalization condition of the probability:

f daggedmeygeda, dme Qlacyqe, Meyar, ar, M) = 1. (20)

Therefore, Q[a;yar, Merar, A, M¢] C€an be interpreted as the probability distribution of
(Apsae Mesar M), and the difference ZiM° — J&dt/ TS is rewritten as the
Kullback-Libler divergence DKL(p||Q)3:

a
-;-itnfo _ ]L dt
= a

Tt



placiar, Merae A Mel
Olatsar Meyar, A, Me]

= D (P1D)- (21)
From the non-negativity of the Kullback-Leibler divergence® [i.e., Dx.(»]|Q) = 0], we
obtain Eq. (12).

= J. daggedmeygeda, dmeplagyar, Metae, A, Me] In

Supplementary note 3 | Relationship between information thermodynamics for
two-dimensional Markov process and that in [S. Ito and T. Sagawa, Phys. Rev. Lett.
111, 180503 (2013)].

In our previous paper?, we have derived a general framework of information
thermodynamics and discussed information thermodynamics for the coupled Langevin
equations. We here give another application of the general resultin Ref. 4 to
two-dimensional Markov processes such as the coupled Langevin equations (1) and (2).
Here, we show that the general result in Ref. 4 is tighter than the
information-thermodynamic inequality (12).

We first consider the path probability of a single time step from (a;, m;), to
(@t+ae Meyar)- Due to the Markov property, the joint probability
plac+ar, Me+ar, A, M| is given by

Plactae, Mevar, A Me] = placraclar, melp[meraclas, melplaimelpm.],  (22)
where the independency of the noise (i.e.,
placsae Mevacla, me] = plagraclas, melpmesaclas, me]) is assumed.

We next consider a Bayesian network, which represents the stochastic process of Eq.
(22) (see Supplementary Fig. 7). This Bayesian network is given by the parents
(denoted as “pa”) of the random variables: pa(a;) = m;, pa(m;) = 0, pa(asiqt) =
{as, m:} and pa(m;,q:) = {a;, m:}. The stochastic process of Eq. (22) is given by
placrar, Meras A, me] =

placaclpalasrac)Ip[mesaclpa(meyac) Iplac|pala)lp[m.|pa(m,)]. This Bayesian
network shows a single time step of the Markovian dynamics from time ¢ to time

t + dt.
Let stochastic mutual information
be I[A;: A;] = Inp[A4, A;] — Inp[A,] —Inp[A,], and stochastic conditional
mutual information
be I[Ay: Ay |Az] = Inp[Ay, Az|As] — Inp[A;|As] —Inp[A,|As], where Ay, A,



and A are any set of random variables. From the argument in Ref. 4, the bound of the
entropy production for the subsystem a is given by an informational quantity @,
which corresponds to the Bayesian network shown in Supplementary Fig. 7:

2
0= Ifin - Iini - Z Itlr' (23)
1=1
Ifin = I[XZ C]
= I{apyqe: {me, Megar}], (24)
Ipi = I[xq:palxy)]
= I[az:my], (25)
Itlr = I[cy: pay(cy)]
=0, (26)
Itzr = I[cy: pax(cz)|c]
= I[Meyqet aglme], (27)

where we set X: = {x; = a;, x;, = @rrqe}, C:={cy = My, c; = Mpyge}, pax(my) ==
pa(m;)NX = @, and pay (M, 4¢) = pa(ms,q:)NX = a,. Let the entropy production in
the subsystem during the infinitesimal time step be o; == Inp(a;) —In p(asrqs) +
AsPa™ where AsPa™ is the entropy change in the heat baths. Again from the argument
in Ref. 4, we have inequality (o) = (@), where
(©) = [agsar: {me, megacd]) — (lag: {me, megac}]) (28)
=18, — I¢™ + dIBT — dIf. (29)
I8 :== (I[a;: m,]) is the mutual information between a and m attime t, dIff =
(Inp[misqelas, me]) — (Inp[mesq¢c|m:]) is the transfer entropy from a to m at time
t,and dIBY is defined as the conditional mutual information
dIB" = (I[me: QpyqelMesqe]). We note that Eq. (28) is consistent with information flow
in several papers®®
For the two-dimensional Langevin system Egs. (1) and (2), the ensemble average of
the entropy production for the subsystem (o) can be rewritten by the heat absorption
J&, (o) = —J&dt/ T& + (Inpla,]) — (Inplarsqc]) with (AsPa®) = —jadt/ TE. From
(a) = (0), we have the following inequality:

%dt < —dIP" 4+ dIF + dsH™ (30)



alm

where we used Eq. (29) and identity dS," = (Inp[a;]) — (Inp[asrac]) — e + IF™.
Because of the non-negativity of the mutual information® [i.e., dI*™ > 0], we have
inequality (12) [Eq. (4) in the main text]:

]a
T—tadt < —dIP" 4+ dIF + dSH™ (31)
t

< dIf +dsi™, (32)
The conditional mutual information dIF™ would be important as well as the transfer
entropy dIf*, because the bound including dIf™ [Eq. (31)] is tighter than the bound
without dIf"™ [Eq. (32)]. However, in the main text, we only focus on the role of the
transfer entropy dI;* for the sake of simplicity, by applying the weaker inequality (32).

Supplementary note 4 | Analytical calculation of the transfer entropy for the
coupled linear Langevin system.
We derive the analytical expression of the transfer entropy for the coupled linear
Langevin system:

i = Xiu o+ f+ &

i =Xiu x4 R+ &R

(&iel) = 2Ti68(e — ),

(¢ =0, (33)
where i,j=1,2, fi and uij are the time-dependent constants, T¢ is time-dependent
variance of the white Gaussian noise &}, and (...) denotes the ensemble average. In the
main text, we considered the model of the E. coli bacterial chemotaxis given by Egs. (1)
and (2) with a,(m,, 1) = am, — Bl,. To compare Egs. (1) and (2), we set {x}, x?} =
{agme, utt = —1/7% ui? = a/7%, f2 = =Pl /70, p3t = —-1/7", uf2 =0,
fZ2 =0, T =T# and TZ = T{™. The transfer entropy from the target system x! to
the other system x? attime t is defined as
dIf = (Inp[x?, g¢lxd, x2]) — (In p[xZ e |x2]).

Here, we analytically calculate the transfer entropy for the case that the joint

probability p[x%,x?] is a Gaussian distribution:

ij—j

1 1 . .
plxt, x?] = ———=exp |- E —xiG/x] |, (34)
2m,/detX; g 2



where X, is the covariant matrix 2’ (xix] 'Y, and Xt = xt — (x}). The inverse
matrix G, = (Z,)”" satisfies X, G’>' = 6, and G = G/'. The joint distribution
p[x?2] is given by the Gaussian probability:

271 — 1 _l 22\—1(x2\2
pit) = e |3 G GDY (3)

We consider the path-integral expression of the Langevin equations (33). The
conditional probability p[x?, 4 |x2, x?] is given by

dt [ x2, .. — x? A
2 1 .2 _ t+dt t 2j ] 2
plXtiaelxe, xi] = Nexp[— - § He X — ¢

4T2 dt :
j
- dt 21 1
= Nexp|— 4T2 (FZ — u? (36)

where IV is the normalization constant with [ dx?2, ;,p[x2, 4¢|xt, x2] = 1.
For the simplicity of notation, we set F? := (x2. 4 — x2)/dt — u#?(xt) — u#?x¢ — 2.
From Egs. (34) and (36), we have the joint distribution p[x?, 4., xZ] as

plxEiae xZ]

= J dxiplxiiaclxe, xE] plxi, xf]

e

N
= exp|—

11
e (i + )

lF 2
(th2 =2 H;th dt) ]

dt . o1y, GEN|
4<4—th(#t) +T)

From Eqgs. (35), (36), and (37), we obtain the analytical expression of the transfer

dt 1
377 9 =5 6B Gy

(37)

entropy dIf" up to the order of dt:
dIfr

= (Inplxtiaclxt, x21) + (Inp[xf]) — (Inp[xdy 4 x71)



dt 1 1
= — gz ((FE —p#'x)?) = 5n[2m2E2] — 5 (FE)HED?)
t

11
)|+ g+ ga

In |4ndetX dt 21y
n|4amdet; 4_th(ﬂt)+2

L1
2
2
<(thsz oy dt) >
+
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dt , 512 thl)
4(4—7}2(% )2+

21 2142
pAdt o dt 1 1 (Y2t
= Z_th“:czxcl) ~ar? (uehH)2zit —Eln[ZnZEZ] —5+ 4T
1242 yr22 2132 21
_|_le2222 _ (Ge)°Z¢ _ (uz™)dt pi-de GI2(F232)
2 t t Zthl ZGl}thZ 2thth2 t t Mt
(uih)?de
— ——1 + 0(dt?)
4GIT?
21 21 21y2
e, pde Lo G
= 2T7 (F¢xi) + 26T} thz(thxtz)—W+0(dt2)
(u?1)? detx,
= —————dt + 0(dt?
4Tt2 thz + ( )
1 dP,
=_l (1 —) 2 , 38
> n(l+ N, + 0(dt?) (38)

where we define dP, := (u?1)?(detZ,)dt/(Z??),and N, = 2T2. In this calculation, we
used G’ =GJ', 27 =5, GREM + GPPEE = 6, ((FA?)dt? = 2T2dt + 0(dt?),
(FZxi) = pi'Zit, (F2xE) = pi'2i? and Gi' = (27%)/(detZ,).

In the model of the E. coli bacterial chemotaxis, we have N, = 2T{" and

_ 1 [(ag) —(a)?1[{m¢) — (me)?*] — [(agme)? — (@ me)]?
W =y m2) — (mo)? “
= Sl v, (39

where V7 = (x?) — (x,)? indicates the variance of x, = a, or x; = m,, and

pim = [(a;m.)? — (a:Yme)]/ (VEV™MY2 is the correlation coefficient of a, and m,.
The correlation coefficient p2™ satisfies —1 < p#™ < 1, because of the
Cauchy-Schwartz inequality. We note that, if the joint probability p[a;, m;] is
Gaussian, the factor 1 — (p2™)? can be rewritten by the mutual information I#™ as



1—(pf™)? = exp[-21{™], (40)
where I#™ isdefined as If™ := (Inp[a;, m;]) — (Inp[a;]) — (Inp[m,]). This fact
implies that, if the target system a, and the other system m, are strongly correlated
(i.e., I#™ — o0), no information flow exists (i.e., dIf - 0).

From the analytical expression of the transfer entropy (38), we can analytically
compare the conventional thermodynamic bound [i.e., Ef* :== —J™dt/T/™ + dS&™ >
J&dt/T£] with the information-thermodynamic bound (12) for the model of E. coli
chemotaxis [Egs. (1) and (2) with a,(mg, ;) = am; — Bl;] in a stationary state, where
both of the Shannon entropy and the conditional Shannon changes vanish, i.e.,
dSM™ =0 and dS@™ = 0. Thus, the conventional thermodynamic bound is given by
the heat emission from m such that 5% :== —J™dt/T" and the
information-thermodynamic bound is given by the information flow such that
ginfo .= gJf. The information-thermodynamic bound is given by dIf = (1 —
(PE™2)[(a?) — (a,)?]dt/[4(x™)?T/]. The conventional thermodynamic bound is
given by EP == (a?)dt/[(z™)*T"]. From —1 < p#™ <1 and (a,)? > 0, we have
inequality Zf > i This implies that the information-thermodynamic bound Zinf
is tighter than the conventional bound Z for the model of E. coli bacterial
chemotaxis:

a
g5l > Einfo > %dt. (41)
t
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