


SUPPLEMENTARY FIGURES AND TABLE

Supplementary Figure S1: p-eIF4E is highly expressed in primary leukemia cells of AML patients and reduced by HHT. (A–B) Images of immunofluorescence staining of p-eIF4E from primary AML-M5 cells A. and normal blood cells B. Green: p-eIF4E. Blue: cell nucleus visualized by DAPI. (C–E) HHT selectively reduced p-eIF4E in a dose-dependent manner but did not affect t-eIF4E of AML primary leukemia cells. Primary leukemia cells were treated with HHT at indicated concentrations for 24 h and then collected for analyses of p-eIF4E and t-eIF4E. β-actin was used as loading control.

Supplementary Figure S2: Identification of p-eIF4E protein that interacts with HHT. Cell lysates from THP1 cells were incubated with HHT-biotin or biotin followed by co-precipitated with streptavidin agarose resin. Co-precipitated complexes were separated by SDS-polyacrylamine gel electrophoresis (SDS-PAGE) and coomassie brilliant blue staining. The identification of eIF4E was achieved by mass spectroscopic analysis.

Supplementary Figure S3: The structure of HHT-biotin and its preparation procedure.

Supplementary Table S1. Bioactivities of HHT and its analogs

Entry	Structure	IC50 (ng/ml)	
		p-eIF4E level	THP-1 proliferation
HHT C ₂₉ H ₃₉ NO ₉ MW:545.62	OH HO (R) O O-CH ₃ O,(S) (E) H ₃ C O (S)(R) N	64.54	9.72
HT C ₂₈ H ₃₇ NO ₉ MW:545.62	OH OH OO O	113.36	24.06
H0722 C ₃₉ H ₄₅ N ₃ O ₁₁ S ₂ MW:795.9		306.55	460.8
H021 C ₃₃ H ₄₆ N ₂ O ₉ MW:614.7	OH HO, O O-CH ₃	1280.93	7466.74
H0732 C ₄₃ H ₄₇ NO ₁₁ MW:753.8		804.72	3284.59
H025 C ₃₃ H ₄₆ N ₂ O ₉ MW:614.7	HO O O CH ₃	676.43	5434.63