Supplementary Information

CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X

Madina Karimova, Niklas Beschorner, Werner Dammermann, Jan Chemnitz, Daniela Indenbirken, Jan-Hendrik Bockmann, Adam Grundhoff, Stefan Lüth, Frank Buchholz, Julian Schulze zur Wiesch & Joachim Hauber

Context of supplementary information

- 1. Supplementary Figure legends
- 2. Supplementary Figure 1
- 3. Supplementary Figure 2
- 4. Supplementary Figure 3
- 5. Supplementary Figure 4
- 6. Supplementary Figure 5
- 7. Supplementary Table 1

Supplementary Figure 1 HBV reporter construct. The reporter plasmid for detecting Cas9n nuclease activity on HBV S or X target sequences was integrated into the genome of HEK293 or HeLa cells using the PiggyBac system (System Biosciences Inc.) to generate stable cell lines containing HBV reporters. Cells cotransfected with PiggyBac-HBV reporters and transposase were selected on puromycin and assessed for constitutive RFP expression.

Supplementary Figure 2 Distribution of deletion and insertion lengths. Distribution among indel amplicon reads derived from S-specific sgRNA expressing (A) HepG2-H1.3 and (B) HepG2.2.15 cells. The total length of individual deletions (red, upper graphs in each panel) or insertions (green, lower graphs in each panel) is shown in bins with 5 nucleotide increments. The bar height represents the total number of observed reads (log scale) with deletions/insertions of the given length. The '0'-value column represents reads without deletions or insertions.

Supplementary Figure 3 Distribution of deletion and insertion lengths. Distribution among indel amplicon reads derived from X-specific sgRNA expressing (A) HepG2-H1.3 and (B) HepG2.2.15 cells, as in Supplementary Figure 3.

Supplementary Figure 4 Consensus sequence of ORF S of HBV genotype A. Nucleotides appearing among isolates at a frequency higher than 0.01% are indicated below the consensus sequence. These positions in the consensus are referred to as semi-conserved and used to calculate the conservation of gRNA+PAM sequences. S-specific sgRNAs (i.e. sgRNA-S1, sgRNA-S2) are boxed, PAM sequences are boxed in gray.

Supplementary Figure 5 Consensus sequence of ORF X of HBV genotype A.

Nucleotides appearing among isolates at a frequency higher than 0.01% are indicated below the consensus sequence. These positions in the consensus are used to calculate the conservation of gRNA+PAM sequences as in Figure S1. X-specific sgRNAs (i.e. sgRNA-X1, sgRNA-X2) are boxed, PAM sequences are boxed in gray.

В

bins [length]

Consensus sequence of HBV protein S

::.	10 :	20 	30 :	40	50 	60 	70	80
ATGGAG C	AACATCACA	rcaggattcct. c	AGGACC	CTCGTGTTAC	AGGCGGGGTT	TTTCTTGTTG	ACAAGAATCCT a	CAC
* AA <u>TACC</u>	90 * GCAGAGTCTA a	100 * * * AGACTCG TGG F	110 :. ggacttctct	120 caattttcta g	130 :. G-GGGGGatCA agg t cc a	140 :. cccgtgtgtgtc a	150 : * * * * TTGGCCAAAAT g	160 •• * TCG
	170 ; ccaacctcca	180 	190 AACCTCCTGT t	200 cctccaattt c	210 GTCCTGGTTA c	220 : TCGCTGGATG t	230 ** ** TGTCTGCGGCG	240 ** TTT
:. * * TATCAT r	250 	260 ** ** * CATCCTGC	270 * *** * TGCTATGCCT	280 :. * * CATCTTCTTA g	290 :. * TTGGTTCTTC g	300 * TGGATTATCA gc	310 AGGTATGTTGC g	320 •• * CCG
	330 : CTCTAATTCO	340 :. CAGGATCa c	350 :. ACAACAA g g c t	360 :. ccagtacggg c	370 :. ACCaTGCAaA a c gg	380 :. ** ACCTGCACGA	390 	400 •• .GGC
: * AACTCT	410 : ATGTTTCCC: aa	420 	430 :* TACAAAACCT c	440 	450 :. ATTGCACCTG t a	460 ** TATTCCCATC	470 * * CCATCgTCcTG a t	480 •• GGC
····· * * TTTCGC	490 ! AAAATACCTA t	500 * * *** ATGGGAGTGGG g	510 :. cctcagtccg c	520 ! TTTCTCtTGG a c	530 	540 * TAGTGCCATT	550 	560 •• TCG
TAGGGC c	570 •••••* TTTCCCCCAC	580 •••• •••• ** * CTGTTTGGCTT t c	590 * * * TCAGcTATaT t t g	600 * * * * GGATGATGTG t a t t c	610 :. ** GTAtTGGGGG c	620 ccaagicigi aa c r	630 * * ACAgCATCgTG t a c t	640 AGt ag k
:.	650 ••• ••••	660 :.	670 :.	680 :.	690 .			
CCCTTT	ATACCGCTG t	TTACCAATTTT t	CTTTTGTCTc at t	TGGGTATACA C	TTTAA ac			

Consensus sequ	ence of HB	V protein	Х				
10 :lo ATGGCTGCTAGGCT g	20 i*** **** gtactgccaa g	30 ::·::::::::::::::::::::::::::::::::::	40 i···i· cccccgcgacci a	50 		70 : _{**} .* *** GCGCTGAAT	80 ***** * * *
90 ************************************	100 ••••*• Geccgcttgg	110 :	120 TCCCCTTCTC	130 : :CGTCTGCCGT	140 : tcCagCCGA a gt a	150 : CACGGGGGCGG	160 CACCTCT
170 l CTTTAC <mark>GCGGTCTC</mark> a	180 : CCC <mark>GTCTGTG</mark>	190 : CCTTCTCATC	200 : TGQ <mark>CGG</mark> LCCC a	210 : GTGTGCACTTC	220 : :GCTTCACCTC	230 : TGC	240 .:
250 	260 :	270 :	280 :	290 :	300 :	310 :	320 ACGTT
330 GCATGGAGACCACC ca	340 : GTGAACGCCC nnnn	350 : ATCAGatCcI	360 :	370 : TTACATAAGA	380 : AGGACTCTTGG	390 : ACTCcCAGC	400 .: AATGTCA
410 l ACGACCGACCTTGA	420 : GGCcTACTTC nnnnnnnn	c agg t 430 : AAA	440 :	450 :	460 :	470 :	480
490 	500 	510 	520 :	530 :	540 : GACTG nnnnnnnnn a	550 TGTGTTTAA nnnacc	560 gGACTGG
570 	580 : GGAGATTAGG Ga	590 : TTAAaGgTc- c - t	600 : <u>TtTGTATT</u> a	610 : AGGAGGCTGT	620 : AGGCATAAAT g	630 : TGGTCTGcg0 tt	640 l CACCAgc -t nn
650 il acCaTGCAACTTTT c-ncnnnnn nn n	660 : TCACCTCTGC nn	: CTAA					

Supplementary Table 1 Conservation of target sites. Upper panel: Percentage conservation of the 23 nt (20 nt complementary to gRNA plus 3 nt PAM sequence) in sgRNA/Cas9 target sequences S1, S2, X1 and X2 among the HBV genotypes B, C, D, E, F and G. Lower panel: DNA sequences of the gRNA binding sites in the conserved HBV regions. PAM motifs are oriented on the right-hand side and are highlighted by grey boxes. Positions with non-conserved nucleotides are indicated in italic. Non-conserved nucleotides appearing with a frequency of more than 1% are indicated underneath in lower case.

Conservation of 23 nucleotides sequence (20 gRNA + 3 PAM) in HBV genotypes, %						
	ORI	FS	ORF X			
genotype	S1	S2	X1	X2		
A	100.0	95.3	100.0	100.0		
В	95.9	98.1	97.9	93.3		
С	97.5	98.4	96.9	98.4		
D	89.1	95.5	100.0	100.0		
E	99.0	98.8	95.0	98.0		
F	low	low	low	low		
G	93.7	90.3	97.7	62.0		
Η	low	low	low	low		

HBV-S1	ACCCCGCCTGTAACACGAGC	AGG

HBV-S2 TACCGCAGAGTCTAGACTCG TGG a

HBV-X1	GTCTGTGCCTTCTCATCTGC	CGG
HBV-X2	GTAAAGAGAGGTGCGCCCCG	TGG