

Supplemental Figure 1. DA1, DAR1 and DAR2 act redundantly to affect organ growth.

Petal area (A), petal cell area (B) and fifth leaf area (C) of Col-0, da1-ko1, dar1-1, dar2-1, da1-ko1 dar2-1, da1-ko1 dar1-1 and da1-ko1 dar1-1 dar2-1.

Values (A-C) are given as mean \pm SE relative to the respective wild-type valules, set at 100%.

Supplemental Figure 2. Complementation test of da1-ko1 dar1-1 dar2-1.

(A) Petal area, fifth leaf area and seed area of *dar1-1 dar2-1* and *35S:DA1;da1-ko1 dar1-1 dar2-1* plants. Values are given as mean \pm SE relative to *dar1-1 dar2-1* values, set at 100%.

(B) Petal area, fifth leaf area and seed area of *da1-ko1 dar2-1* and 35S:DAR1;da1-ko1 dar1-1 dar2-1 plants. Values are given as mean \pm SE relative to *da1-ko1 dar2-1* values, set at 100%.

(C) Petal area, fifth leaf area and seed area of da1-ko1 dar1-1, 35S:DAR2;da1-ko1 dar1-1 dar2-1 and gDAR2;da1-ko1 dar1-1 dar2-1 plants. gDAR2;da1-ko1 dar1-1 dar2-1 is da1-ko1 dar1-1 dar2-1 transformed with a genomic copy of DAR2. Values are given as mean \pm SE relative to da1-ko1 dar1-1 values, set at 100%.

(D) Relative expression level of *DA1* in Col-0, *da1-ko1 dar1-1 dar2-1* and 35S:*DA1;da1-ko1 dar1-1 dar2-1* plants. Data shown are mean \pm SD of three replicates.

(E) Relative expression level of *DAR1* in Col-0, *da1-ko1 dar1-1 dar2-1* and *35S:DAR1;da1-ko1 dar1-1 dar2-1* plants. Data shown are mean \pm SD of three replicates.

(F)Relative expression level of *DAR2* in Col-0, *da1-ko1 dar1-1 dar2-1* and *35S:DAR2;da1-ko1 dar1-1 dar2-1* plants. Data shown are mean \pm SD of three replicates.

(G) Relative expression level of *DAR2* in Col-0, *da1-ko1 dar1-1 dar2-1* and *gDAR2;da1-ko1 dar1-1 dar2-1* plants. *gDAR2;da1-ko1 dar1-1 dar2-1* is *da1-ko1 dar1-1 dar2-1* transformed with a genomic copy of *DAR2*. Data shown are mean \pm SD of three replicates.

Supplemental Figure 3 . Overexpression of DA1, DAR1 or DAR2 does not affect organ size.

(A) 30-d-old plants of Col-0, 35S:DA1, 35S:DAR1 and 35S:DAR2.

(B) Petal area of Col-0, 35S:DA1, 35S:DAR1 and 35S:DAR2. Values are given as mean \pm SE relative to wild-type values.

(C) Fifth leaf area of Col-0, 35S:DA1, 35S:DAR1 and 35S:DAR2. Values are given as mean \pm SE relative to wild-type values.

(D) Relative expression level of *DA1* in Col-0 and *35S:DA1* plants. Data shown are mean \pm SD of three replicates.

(E) Relative expression level of *DAR1* in Col-0 and *35S:DAR1* plants. Data shown are mean \pm SD of three replicates.

(F) Relative expression level of *DAR*2 in Col-0 and 35S:DAR2 plants. Data shown are mean \pm SD of three replicates.

Bar= 5cm in (A)

Supplemental Figure 4. *DA1*, *DAR1* and *DAR2* act redundantly to influence endoreduplication during leaf development.

(A) Nuclear DNA ploidy distribution of Co-0 and *da1-ko1 dar1-1 dar2-1* fifth leaves measured over a period of 24 days after emergence (DAE). At 0 DAE, the fifth leaves (\sim 0.5 mm²) were visible. The values represent averages of three independent biological replicates.

(B) The endoreduplication index (EI) of Col-0 and *da1-ko1dar1-1dar2-1* fifth leaves. The EI represents the average number of endocycles undergone by a given nucleus.

Values (A and B) are given as mean \pm SE.

Supplemental Figure 5. *da1-ko1 dar1-1 dar2-1* is not altered in endoreduplication in petal cells

Nuclear DNA ploidy distribution of Col-0 and *da1-ko1 dar1-1 dar2-1* petals. Values are given as mean \pm SE.

Supplemental Figure 6. Expression of *TCP14* and *TCP15* in Col-0 and *da1-ko1 dar1-1 dar2-1* leaves.

(A) Expression of *TCP14* in Col-0 and *da1-ko1 dar1-1 dar2-1* leaves. (B) Expression of *TCP15* in Col-0 and *da1-ko1 dar1-1 dar2-1* leaves. The values represent averages of three independent biological replicates. Values (A and B) are given as mean \pm SE.

Supplemental Figure 7. *tcp14-3 tcp15-3* partially suppresses the reduced ploidy level phenotype of *da1-ko1 dar1-1 dar2-1*.

The average ploidy level of nuclei in Col-0, *tcp14-3 tcp15-3, da1-ko1 dar1-1 dar2-1* and *tcp14-3 tcp15-3 da1-ko1 dar1-1 dar2-1* fifth leaves. Values are given as mean \pm SE.

Supplemental Figure 8. DA1, DAR1 and DAR2 redundantly affect endoreduplication.

(A) Nuclear DNA ploidy distribution of Co-0, *da1-ko1*, *dar1-1*, *dar2-1*, *da1-ko1 dar2-1*, *dar1-1 dar2-1*, *dar1-1 dar2-1*, *dar1-1 dar2-1*, *dar1-1 dar2-1*, *dar1-1*

(B) The TCP14-GUS protein levels in $TCP14_{pro}$: TCP14-GUS and $TCP14_{pro}$: TCP14-GUS; $da1-ko1 \ dar1-1$ plants. Total protein extracts were subjected to immunoblot assays using anti-GUS and anti-Tubulin (as loading control) antibodies.

(C) The TCP15-GUS protein levels in *TCP15_{pro}:TCP15-GUS* and *TCP15_{pro}:TCP15-GUS;da1-ko1 dar1-1* plants. Total protein extracts were subjected to immunoblot assays using anti-GUS and anti-Tubulin (as loading control) antibodies.

Supplemental Figure 9. The simultaneous disruption of *DA1*, *DAR1* and *DAR2* affects cell proliferation.

The average number of cells in Col-0 and *da1-ko1 dar1-1 dar2-1* fifth leaves measured over a period of 10 days after emergence (DAE).

Values are given as mean \pm SE. **, *P*<0.01 compared with the wild type (Student's *t*-test).

Supplemental Figure 10. *tcp14-3 tcp15-3* does not suppress the petal and leaf size phenotypes of *da1-1*.

(A) Petal area of Col-0, *da1-1*, *tcp14-3 tcp15-3* and *tcp14-3 tcp15-3 da1-1*.

(B) Fifth leaf area of Col-0, *da1-1*, *tcp14-3 tcp15-3* and *tcp14-3 tcp15-3 da1-1*.

Values (A and B) are given as mean \pm SE relative to the respective wild-type values, set at 100%. **, *P*<0.01 compared with the wild type (Student's *t*-test).

Constructs	Number of complemented plants	Number of no complemented plants
35S:DA1	21	1
35S:DAR1	30	2
35s:DAR2	28	1
gDAR2	25	0

Supplemental Table 1. Complementation test of *da1-ko1 dar1-1 dar2-1*.

Supplemental Table 2. List of primers used in this study

Name	Primers	
Primers for verifying T-DNA		
SALK_126092-LP	AAGCCAGCTAAATATGATTGG	
SALK_126092-RP	AATCCGTTTGGAACTCGTTTG	
SALK_067100-LP	ATTTAGTCGAAGCCATGCATG	
SALK_067100-RP	TTACAAGGAGCAGCATCATCC	
SALK_016122LP	TTTCATTCCACCTTATGAGCCT	
SALK_016122RP	ATCTCCAAGCAACAAATATCCC	
SM_3_19812-LP	TTCAGCTAACGCGAGAGCTAG	
SM_3_19812-RP	CTTGCTGATCCTCCTCATCAC	
SALK_011491-LP	AGAACCACGTAAGCCCATCTC	
SALK_011491-RP	TCAAATGAACTCCACTACCGC	
SALK_LBa1	TGGTTCACGTAGTGGGCCATCG	
SAIL_LB1	GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC	
Primers for constructs in yeast two hybrid assays		
DA1-LIM+C-SalI-LP	GTCGACCGGTTGGTTTAACAAGATCTTT	
DA1-LIM+C-NotI-RP	GCGGCCGCTTAAACCGGGAATCTACCGGTC	
DAR1-SalI-LP	GTCGACCGGGTGGCTAACTAAAATCCTTA	
DAR1-NotI-RP	GCGGCCGCTTAAGGAAATGTACCGGTCAAGCGA	
DAR2-SalI-LP	GTCGACCATGGATTCTTCTTCCTCTTC	
DAR2-NotI-RP	GCGGCCGCCAAAGGAAAAGTTCCAGTTA	
TCP14-EcoRI-LP	GAATTCCAAAAGCCAACATCAAGTATCT	
TCP14-NotI-RP	GCGGCCGCCTAATCTTGCTGATCCTCCTCATCA	
TCP15-EcoRI-LP	GAATTCGATCCGGATCCGGATCAT	
TCP15-NotI-RP	GCGGCCGCTTAGGAATGATGACTGGTGCTTCC	
Primers for constructs in pull-down assays		
GST-DA1-F	GGATCCATGGGTTGGTTTAACAAGAT	
GST-DA1-R	GCGGCCGCTTAAACCGGGAATCTACCGGTC	
GST-DAR1-F	GGATCCATGGGGTGGCTAACTAAAATCCT	

GST-DAR1-R	CTCGAGTTAAGGAAATGTACCGGTCAAGC
GST-DAR2-F	GGATCCATGGATTCTTCTTCCTCTTC
GST-DAR2-R	CTCGAGTCACAAAGGAAAAGTTCCAG
TCP14-pMAL-C2-EcoRI-LP	GAATTCCAAAAGCCAACATCAAGTATCTTAAAT
TCP14- pMAL-C2-HindIII-RP	AAGCTTGCCTAATCTTGCTGATCCTCCTCATCACCAC
TCP15- pMAL-C2-EcoRI-LP	GAATTCGATCCGGATCCGGATCATAACCATC
TCP15- pMAL-C2-HindIII-RP	AAGCTTGCCTAGGAATGATGACTGGTGCTTCCATCT

Primers for constructs in ubiquitin binding assays

GST-DAR1-UIMs-F	GGATCCGTAGAAGATAGAAACTTGGAAGGTCC
GST-DAR1-UIMs-R	CTCGAGTGGAATGAGGAAGGGATATGGTT
GST-DAR1-delUIMs-F	GGATCTTTGACAAGTATGAATGTGGGATCTCC
GST-DAR1-delUIMs-R	CTCGAGTCATACTTGTCAAAATCAGATCCTTCC
GST-DAR1-F	GGATCCATGGGGTGGCTAACTAAAATCCT
GST-DAR1-R	CTCGAGTTAAGGAAATGTACCGGTCAAGC
GST-DAR2-UIMs-F	GGATCCAAGGTCTTTCCTCTACCTCCTT
GST-DAR2-UIMs-R	CTCGAGACCGCCACATATTCTTTGTCT

Primers for constructs in Co-IP assays

DA1-MYC-FP	GGTACCCGGTTGGTTTAACAAGATCTTT	
DA1-MYC-RP	GGATCCTTAAACCGGGAATCTACCGGTC	
DAR1-MYC-FP	GGATCCTAGGGTGGCTAACTAAAATCCT	
DAR1-MYC-RP	ACTAGTTTTAAGGAAATGTACCGGTCAAG	
DAR2-GFP-FP	ATGGATTCTTCTTCCTCTTC	
DAR2-GFP-RP	CAAAGGAAAAGTTCCAGTTA	
TCP14-MYC-BamH1-LP	GGATCCTAATGCAAAAGCCAACATCAAG	
TCP14-MYC-Sac1-RP	GAGCTCACTAATCTTGCTGATCCTCCTCAT	
TCP15-MYC-Kpn1-LP	GGTACCCGATCCGGATCCGGATCAT	
TCP15-MYC-Sac1-RP	GAGCTCATTAGGAATGATGACTGGTGCTTCC	
TCP14-GFP-FP	ATGCAAAAGCCAACATCAAGTATCT	
TCP14-GFP-RP	CTAATCTTGCTGATCCTCCTCATCA	
TCP15-GFP-FP	ATGGATCCGGATCCGGATCAT	
TCP15-GFP-RP	TTAGGAATGATGACTGGTGCTTCC	
Primers for constructs in complementation test		
DA1CDS-F	ATGGGTTGGTTTAACAAGATCTT	
DA1CDS-R	AACCGGGAATCTACCGGTCA	
DAR1CDS-F	ATGGGGTGGCTAACTAAAAT	
DAR1CDS-R	AGGAAATGTACCGGTCAAGC	
DAR2CDS-F	ATGGATTCTTCTTCCTCTT	
DAR2CDS-R	CAAAGGAAAAGTTCCAGTT	
gDAR2-F	GGGGACAAGTTTGTACAAAAAAGCAGGCTACATTGGTTGATAAAGTCATAAAGTC	
gDAR2-R	${\tt GGGGACCACTTTGTACAAGAAAGCTGGGTCCAAAGGAAAAGTTCCAGTTAAGCGG}$	
Primers for GUS constructs		
DAR1pro-F	GCACCTAAACAACTAATTGATTGGC	
DAR1pro-R	TGGCAACAACCATCCCTTACC	
DAR2pro-F	TTATGGACCGGATTAAGTCGG	

Supplemental Data. Peng et al. (2015). Plant Cell 10.1105/tpc.114.132274

DAR2pro-R	GAGGATGGAAAAATGGCCCCC
Primers for qRT-PCR	
CYCA2;3-FP	AGGCACAGATAACACAGCTG
CYCA2;3-RP	TGAGGTAGAGAGTGTCAGATGC
RBR-FP	AGTCGCCTGCTGCTAAGACAAA
RBR-RP	ATGACAGTCCTGAGCCACTTGG
TCP14-FP	AAAGTAGACGGAAGAGGG
TCP14-RP	TACCAGGAAACAAAGACG
TCP15-FP	CCTCCTCTTCCACTTCCT
TCP15-RP	GTAGCCACTCAATAGTTTCA
ACTIN2-F	GAAATCACAGCACTTGCACC
ACTIN2-R	AAGCCTTTGATCTTGAGAGC