

Supplemental Figure 1. Phenotypic Analyses of WT, *bhlh104-1* and *bhlh104-2* in Response to Fe Deficiency.

(A) Time course quantification of root length of WT and *bhlh104* mutants on Fe-sufficient (+Fe) or Fedeficient (-Fe and -Fe+Frz) media. Values are means \pm SD of ten plants for every line. (B) Phenotypes of WT, *bhlh104-1* and *bhlh104-2* plants germinated and grown on Fe-sufficient media for 4 days and then shifted to Fe-sufficient (+Fe) or Fe-deficient (-Fe and -Fe+Frz) media for 10 days. Bar = 1 cm. (C) Phenotypes of WT, *bhlh104-1* and *bhlh104-2* plants germinated and grown on Zn-, Cu-, Mn-deficient media (-Zn, 1/2 MS media without ZnSO₄; -Cu, 1/2 MS media without CuSO₄; -Mn, 1/2 MS media without MnSO₄) for two weeks. Bar = 1 cm. (D) Perls Fe stain in roots of 7-day-old WT and *bhlh104-1* plants germinated and grown on Fe-sufficient (+Fe) or Fe-deficient (-Fe+Frz) media. Bar = 100 µm.

Supplemental Figure 2. Phenotypic Analyses of WT and *bhlh104-2* Complemented Plants in Response to Fe Deficiency.

(A) Levels of bHLH104-GFP fusion protein in shoots and roots of 7-day-old *bhlh104-2* complemented plants grown on 1/2 MS media, as determined by immunoblot analysis using an anti-GFP antibody. The asterisks label the non-specific signal used as loading control. (B) Phenotypes of WT and *bhlh104-2* complemented plants grown for two weeks on Fe-deficient (-Fe+Frz) media. Bar = 1 cm.

Supplemental Figure 3. Quantification of Root Length of *bHLH104* ox Plants and Trypan Blue Staining of Necrosis in *bHLH104* ox Leaves.

(A) Quantification of root length of WT, *bhlh104* mutants and *bHLH104* ox plants grown on Fesufficient (+Fe) or Fe-deficient (-Fe+Frz) media for two weeks. Values are means \pm SD of ten plants for every line. Significant differences from the WT are indicated by * (P < 0.05), as determined by Student's *t* test. (B-G) Trypan blue staining of WT (B and D) and *bHLH104* ox (C, E, F and G) leaves. Bars = 1 mm in B, C, D and E; 200 µm in F and G.

Supplemental Figure 4. Identification of *ILR3* ox Plants and Trypan Blue Staining of Necrosis in *ILR3* ox Leaves.

(A) Level of the ILR3-GFP fusion protein in 4-week-old soil-grown *ILR3* ox plants, as determined by immunoblot analysis using an anti-GFP antibody. The asterisk labels the non-specific signal used as loading control. (B) Determination of *ILR3* expression in *ILR3* ox plants grown for four weeks in normal soil, assessed by qPCR. Values are means \pm SD of three independent experiments. (C) Quantification of root length of WT, *ilr3* mutants and *ILR3* ox plants grown on Fe-sufficient (+Fe) or Fe-deficient (-Fe+Frz) media for two weeks. Significant differences from the WT are indicated by * (P < 0.05), as determined by Student's *t* test. (D-G) Trypan blue staining of WT (D and F) and *ILR3* ox (E and G) leaves. Bars = 1 mm.

Supplemental Figure 5. Plants Silenced with *BTS* Exhibit Reduced Fertility.

(A) Determination of *BTS* expression in WT and *BTS* RNAi plants grown for four weeks in normal soil, assessed by qPCR. Values are means \pm SD of three independent experiments. (B) Quantification of root length of WT, *BTS* RNAi and *bts-2* plants grown on Fe-sufficient (+Fe) or Fe-deficient (-Fe+Frz) media for two weeks. Significant differences from the WT are indicated by * (P < 0.05), as determined by Student's *t* test. (C) Phenotypes of WT and *BTS* RNAi plants at the reproductive stage. The *BTS* RNAi plants showed obviously decreased fertility compared with the WT. Bar = 1 cm. (D) The magnification picture of flowers, siliques and cauline leaves in WT and *BTS* RNAi plants. Bars = 500 µm.

Supplemental Figure 6. Perls Staining for Fe³⁺ of *BTS* RNAi Plants.

(A-Q) Perls Fe stain signals in rosette leaves (A-C), trichomes (D), flowers (E-H), siliques (I-M), stamens (N-O) and embryos (P-Q) of WT (A, E, I, J, N and P) and *BTS* RNAi plants (B-D, F-H, K-M, O and Q). Bars = 1 mm in A, B, C, I, J and K; 100 μ m in D, P and Q; 500 μ m in E, F, G and H; 200 μ m in L, M, N and O. **(R)** Perls/DAB stain for Fe³⁺ signals in WT and *BTS* RNAi young- (y) and aged- (a) leaves, showing Fe deposits in phloem of the vessels in *BTS* RNAi plants. Ph, phloem; Xy, xylem. Bar = 50 μ m.

Supplemental Figure 7. Expression Pattern Analysis of *bHLH104*.

(A-J) GUS expression in 7-day-old Pro*bHLH104:GUS* transgenic seedlings (A-B) and 5- to 7-week-old adult plants grown in soil (C-J), showing GUS accumulation in tissues of leaves (A, D), roots (B, C), trichomes (E), sepals (F), stamens (G), siliques (H, I) and seed pots (J). Bars = 1 mm in A, D, H and I; 100 μ m in B, C, E and G; 500 μ m in F and J.

Supplemental Table 1 Primers Used to Identify of T-DNA Insertion Mutants, Gene Cloning and qPCR

Name	Sequence
T-DNA identification	ocquenee
hhh104-1 E	CCCCAAACCTTCTCTCTTTTC
bhh104-1	
hhh104-2-F	TCATCGGTTTTATTCGGTCTG
hhlh104-2-R	GAGGAACTAAAGCGTGTCGTG
ilr.3-2-F	GAATTCACTAGGTTAATGCCCTG
ilr.3-2-R	TGCTAAGGTCAAACCATCCAC
<i>ilr3-3</i> -F	TCAATCAATTCCCGAATCAAG
<i>ilr3-3</i> -R	CTTGCCACTATACCGATTTTG
Transcript identification	
bHLH104-F	ATGTATCCTTCTCCGACGATGATT
<i>bHLH104</i> -R	TTAAGCAGCAGGAGGCCTGAGT
Gene cloning	
bHLH104-F	ACTAAGCTTATGTATCCTTCTCTCGACG
<i>bHLH104</i> -R	TACCCATGGAGCAGCAGGAGGCCTGA
ILR3-F	ACTAAGCTTATGGTGTCACCCGAAAACGC
ILR3-R	TACCCATGGAGCAACAGGAGGACGAAGG
GFP-F	GGACCATGGGTAGATCTGACTAGTAAAGGA
GFP-R	CGTGGATCCTCATTTGTATAGTTCATCCATGC
<i>BT</i> S-RNAi-F-F	TGAAGCTTCAGAGCTTACTAACTTTGGC
<i>BT</i> S-RNAi-F-R	ACCTGCAGTTTAGCGAAGAAGATCTCAT
<i>BTS</i> -RNAi-R-F	ATGTCGACTTTAGCGAAGAAGATCTCAT
<i>BTS</i> -RNAi-R-R	ATACGCGTCAGAGCTTACTAACTTTGG
Promoter cloning	
ProbHLH104-F	GCGAATTCAATCTCTCGAATTTATGAAC
Pro <i>bHLH104</i> -R	ATGGATCCTTGAGAGTCTCCAAACAAAT
QPCR	
FER1-F	ACGTTGCTATGAAGGGACTAGC
FER1-R	TAGGTGAGACGATAGGGTGGAG
<i>bHLH3</i> 8-F	CGTTCATGTCTTCCAGCTTCTG
<i>bHLH</i> 38-R	GACCCGATACTCGTACCAAAAT
<i>bHLH</i> 39-F	TCCGTTCATGTCTTCCTGCCTCT
<i>bHLH39</i> -R	CACTTGCTCTTGCAGCTCTGGT
<i>bHLH100</i> -F	CTTGTCTTCCTCCCACCAATCA
<i>bHLH100</i> -R	TGCTCTTGCAGCTCTGGTATGT
<i>bHLH101</i> -F	ACGCCTTGTACTCTTCACTTCG
bHLH101-R	CIIGCIICIGCICIGGIAIGIAIIIC
bHLH34-F	
bHLH34-R	
DHLH104-F	
DHLH104-R	
ILR3-F	
ILR3-R	
	CTELETELECECATEACET
BTS-R	
ERO2-F	TTCACCGTTCATGGTCTTTGTT
FRO2-R	GAGCIAICICCCGGCCAAATT
IRT1-F	CTCTTTGCTTCCATCAAATGTTC
IRT1-R	CCTAACGCTATTCCGAATGG
IRT2-F	TCATAGTCACGGTCATGGTGTAG
IRT2-R	GAATGAAATAAAATGCCAACCTC
YSL1-F	CGAAACCATTCACAAGACAAGAG
YSL1-R	TTACCTTCCAAGTTCACACCAGAC
NAS4-F	TGTTCTTGGCTGCTCTTGTAGG
NAS4-R	CAAGGCTCAACGATTGGATAGA
FRD3-F	CGTCTAGGGATCATCGGTGCA
FRD3-R	TCCCCGAAGTTTGGTGGAATC
ZIF1-F	GCTGTAAGGTGGAGCAGATGAA
ZIF1-R	TAGTAGAGGAAGGGATAGAGTGAGG
MYB10-F	CACCATGCTGTGACAAAAGCCA
<i>MYB10</i> -R	AGACGACAACTCTTTCCGCATCT
MYB72-F	GGATAAACTATCTGAGACCGGACG
MYB72-R	GAGATGCGTGTTCCACACGTTT
TUB2-F	GGCCTTGTACGATATTTGCTTC
<i>TUB</i> 2-R	TCGGAGGTCAGAGTTGAGTTGA

Supplemental Table 2	Primers Used in ChIP-qPCR
Name	Sequence
bHLH38	-
ProbHLH38-a-F	AGGATAAATGATAAATGAGAAGCCA
ProbHLH38-a-R	CACTCTGATTAAAAAAACTGCCTCT
Pro <i>bHLH38</i> -b-F	CGAATGTTGGAAACTTCATTGATTC
Pro <i>bHLH38</i> -b-R	TTTTAATTCCACAATGACGATGGTC
Pro <i>bHLH38</i> -c-F	ACAACATAAAAAATGTATGGGACGA
Pro <i>bHLH38</i> -c-R	TTGTGTAAGAATCAAACATGTATAT
Pro <i>bHLH38</i> -d-F	CATGTTTGATTCTTACACAATATGC
Pro <i>bHLH38</i> -d-R	TCGTTGAGATTATATGATTGTGTTAT
bHLH39	
ProbHLH39-a-F	GGAGGTCAACAAATAAATAAAATGC
ProbHLH39-a-R	ACATATTGAAAGATGACTCAGCCTG
Pro <i>bHLH39</i> -b-F	CCAGTCTACTTGTGACTAGACCTTG
Pro <i>bHLH39</i> -b-R	AACCAAAACTTTAAAAATTCGCAAA
bHLH100	
ProbHLH100-a-F	AACCGAAGTGTTGTACTGTTTTCGA
ProbHI H100-a-R	AGATTTATCCATTGATATGTTGGCA
Pro <i>bHLH100</i> -b-F	ATGGGCTACAAACATGTAAACTCAT
Pro <i>bHI H100</i> -b-R	TCATTCTATTTACGCCTCTTTAAAT
Pro <i>bHI H100</i> -c-F	AAAATAAACGATAGACACTACACCA
ProbHI H100-c-R	GGTGGACGTGGACTATTGAGA
ProbHI H100-d-F	ATTIGCTCGTGCCTCTCAATAGT
ProbHLH100-d-R	GAATATGCAATCACATTTTTCTACC
ProbHI H100-e-F	AAGAACATTAGGATATTAATGCCTG
ProbHI H100-e-R	TAAATTAAAATACATTGGGTCACGA
bHLH101	
ProbHLH101-a-F	ATTTTGGAAGATGAAGGTAAAAGAG
ProbHLH101-a-R	TCATCGATCTATATATCCATTTGGA
Pro <i>bHLH101</i> -b-F	TCTTTGGTACGACCCTACGGCT
Pro <i>bHLH101</i> -b-R	AAGGTTCTTTCTTTCACATGTTTTG
ProbHLH101-c-F	TGAAGGTGATAAACACAAACAGACT
ProbHLH101-c-R	TGGTATTTCGTACCAGAGTCTAGTT
Pro <i>bHLH101</i> -d-F	TTGATAGTGGATCATTAATTACTTGTA
Pro <i>bHLH101</i> -d-R	ATTTACCATTCAGAGATCCATCC
ProbHLH101-e-F	ACAGCAAACATAAAACTTCATGTGG
ProbHLH101-e-R	GTTATATTTTGAACATGTGAACGCA
FIT	
Pro <i>FIT</i> -a-F	AGATGTGATAGGTACAGCAAAATTG
Pro <i>FIT-</i> a-R	ATTTGATACATGTGAAGCTAGCATA
Pro <i>FIT</i> -b-F	GCTTGTGACAACTAAACCAGTTGAC
Pro <i>FIT</i> -b-R	ATCGATCAGACCGTATTAAAAAGGT
Pro <i>FIT</i> -c-F	CTCTTGTTTCTAATCTGCATTCCCT
Pro <i>FIT</i> -c-R	TTACTCGAATGATTAATTTGTCGTG
PYE	
Pro <i>PYE</i> -a-F	AGTTTCTAACAGATGTTTTTCCGG
ProPYE-a-R	TTTTCATCAATTGTTTGCATTATAA
ProPYE-b-F	GTTTGTGGGAAACACACGACAG
Pro <i>PYE</i> -b-R	AGATGAAAAGTAACATTTTCACAAAA
ProPYE-c-F	GAGATGAGCTTTAGTGGCACGC
ProPYE-c-R	GAAGGTCCGAAGTTGAGGAGGG
TUB2	
Pro <i>TUB2</i> -F	TTTCGCTTTCTTGTTGGTCAATTAT
ProTUB2-R	CTTAACGATCCAAGTTTATGGATTG

Supplemental Methods

Trypan Blue Staining

To detect leaf necrosis, lactophenol-trypan blue staining was performed, as previously described (van Wees, 2008). *Arabidopsis* leaves were soaked in trypan blue working solution (10 mL phenol, 10 mL glycerol, 10 mL lactic acid, 10 mL distilled water, 80 mL ethanol and 0.02 g trypan blue, Sigma) in a boiling water bath for 5 min and cleared with saturated chloral hydrate solution (800 g of chloral hydrate dissolved in 200 mL distilled water and 100 mL glycerol).

van Wees, S. (2008). Phenotypic analysis of Arabidopsis mutants: trypan blue stain for fungi, oomycetes, and dead plant cells. CSH Protoc 2008, pdb prot4982.