

Supplemental Figure 1. Structure of an 8-DAP B73 maize kernel.

(A) Image of a Toluidine Blue-stained section of 8-DAP kernel showing different compartments. Multiple images of a single kernel section obtained using a low-magnification objective lens were merged using Adobe Photoshop CS5, and background was subsequently removed in Adobe Illustrator CS6 to generate the image. (B) through (F) Details of the captured kernel compartments. Colored dashed lines indicate the margins of excised compartments in a typical laser-capture experiment. Abbreviations: AL, aleurone; BETL, basal endosperm transfer layer; CSE, central starchy endosperm; CZ, conducting zone; EMB, embryo; ESR, embryo-surrounding region; NU, nucellus; PC: placento-chalazal region; PE, pericarp; PED, vascular region of the pedicel. Bars: (A) and (B), 400 μm; (C) and (D), 50 μm; (E), 400 μm; (F), 200 μm.

Supplemental Figure 2. Representative images of kernel compartments that were marked and collected for the LCM-RNA-Seq analyses reported in this study.

(A) Regions of the CSE and the captured regions of CZ; (B) CZ and the captured regions of ESR; (C) ESR; (D) BETL, and the captured regions of ESR and PC; (E) Regions of AL; (F) The EMB including suspensor and the captured regions of ESR; (G) Regions of NU; (H) Region of PE; and (I) Regions of PED. Abbreviations same as in Supplemental Figure 1. Bars: (A) and (B), 400 μ m; (C), 200 μ m; (D), 400 μ m; (E), 100 μ m; (F), 200 μ m; (G), (H) and (I), 400 μ m.

Supplemental Figure 3. Representative quality assessments of LCM-derived RNAs used in sequencing. Electropherograms of sample RNAs extracted from the captured kernel compartments prior to DNase treatment. RIN, RNA Integrity Number, is a measure of RNA quality (Agilent Technologies). Controls refer to known concentrations of total RNA obtained from 2-DAP kernels. Abbreviations: AL, aleurone; BETL, basal endosperm transfer layer; CSE, central starchy endosperm; CZ, conducting zone; EMB, embryo; ESR, embryo-surrounding region; NU, nucellus; PC: placento-chalazal region; PE, pericarp; PED, vascular region of the pedicel.

Supplemental Figure 4. Reproducibility of RNA-Seq reads for each triplicate of the filial compartments. Log₂-transformed FPKM values of the 29,369 genes expressed in at least one of the 22 sequenced samples are shown as scatter plots and were used as input for the Spearman correlation coefficient (SCC) analysis. The red diagonal line in each scatter plot denotes equal FPKMs between two samples. Abbreviations: AL, aleurone; BETL, basal endosperm transfer layer; CSE, central starchy endosperm; CZ, conducting zone; EMB, embryo; ESR, embryo-surrounding region.

Supplemental Figure 5. Distribution profile of RNA-Seq reads along the length of the gene models. Reads of all 22 sequenced samples were pooled and exonic reads were analyzed for depth of coverage using the available reference gene models to show the combination of Oligo(dT) and random primers provided sufficient coverage of the sequenced cDNAs.

Supplemental Figure 6. Profiles of sequenced RNAs from the captured kernel compartments.

(A) Number of expressed genes detected in one or more kernel compartments. Among the total 30,665 genes that were expressed in at least one compartment, 10,725 were detected in all compartments while expression of 4,292 genes was restricted to single compartments. (B) Venn diagram of the numbers of genes expressed in EMB, expressed in at least one captured compartment of endosperm (END), or expressed in at least one maternal compartment (MAT).

Supplemental Figure 7. Validation of the compartment-specific expression patterns using *in situ* hybridization localization of the mRNAs. For each panel, the gene ID/locus name is indicated.

(A) through (N) BETL-specific genes. (O) An ESR-specific gene. (P) and (Q) CSE-specific genes.
(R) through (T) AL-specific genes. Stage of kernels: (A), 6 DAP; (B) through (I), 7 DAP; (J) through (N), 8 DAP; (O) 7 DAP; (P) through (T), 10 DAP. Bars: 2 mm.

Supplemental Figure 8. Z-score plots showing expression profiles of all genes in the WGCNA-generated co-expression modules M1-M18. Abbreviations same as in Supplemental Figure 1.

Supplemental Figure 9. Expression pattern of genes in the endosperm-associated modules identified by WGCNA based on previously reported RNA-Seq data.

(A) Log_2 -transformed normalized read counts data from Li et al. (2014). **(B)** Log_2 -transformed Reads per kilobase of transcript per million mapped reads (RPKM) data from Chen et al. (2014). The selected data included kernels and endosperm of different developmental stages (in days after pollination, DAP). The associated kernel compartment and fractions of genes in each module with available data are indicated in parentheses.

Supplemental Figure 10. Expression pattern of genes in the endosperm-associated modules identified by WGCNA based on RNA-Seq data from Chen et al. (2014). The selected data included vegetative (Veg) tissues shoots (Sh), roots (R), Leaf (L), shoot apical meristem (SAM, Replicate 1); reproductive (Rep) tissues ear (E), tassel (T, Replicate 1), pre-emergence cob (C), silk (Si), Anther (A), ovule (O), pollen (P); and whole kernels, endosperm, and embryos of different developmental stages (in days after pollination, DAP). The associated kernel compartment and fractions of genes in each module that have available data are indicated in parentheses.

Supplemental Figure 11. Expression pattern of genes in the WGCNA co-expression modules (M1, M2, and M9) associated with both AL and EMB (in comparison to the other two EMB-associated modules M7 and M8) based on RNA-Seq data from Chen et al. (2014). The selected data included the same tissues as Supplemental Figure 10. The associated kernel compartment and fractions of genes in each module with available data are indicated in parentheses.

Supplemental Figure 12. Relationships of new sets of allele-biased genes with the co-expression modules obtained using WGCNA. The new allele-biased gene sets were identified using the normalized read data from Xin et al. (2013) by applying less stringent criteria, namely, 75% of the maternal reads and 55% of the paternal reads of the SNP associated reads (with a minimum 20 reads) were defined as maternally and paternally biased genes, respectively. The heat map indicates *P*-values (-log₁₀) of hypergeometric tests of over-representation of genes in a given tested pair of gene sets. Allele-biased gene sets are noted on the x-axis and all WGCNA co-expression modules on the y-axis. Boxes contain the numbers of overlapping genes. Numbers of genes in each allele-biased gene set: 7-DAP MEG, 73; 10-DAP MEG, 451; 15-DAP MEG, 31; 7-DAP PEG, 172; 10-DAP PEG, 111; 15-DAP PEG, 137.

Supplemental Figure 13. Enrichment of biological processes in the filial compartment-correlated modules. The heat map indicates enriched GO terms detected for modules M1, M2, M8, M9, M10, M12, M15, M17, and M18 based on FDR ($-\log_{10}$). The grey boxes represent GO terms that are not significantly enriched.

Supplemental Data. Zhan et al. Plant Cell (2015) 10.1105/tpc.114.135657

Supplemental Figure 14. Visualization of the five endosperm compartment-correlated co-expression modules using the VisANT program. The top 200 connections among top 100 intramodular hub genes (based on kME) are shown for modules M10 (A), M12 (B), M15 (C), M17 (D), and M18 (E) corresponding to CSE, AL, ESR, CZ, and BETL, respectively. Either a locus name (if available) or a gene ID is used to identify each gene. The 10 to 11 genes with the highest number of connections are shown in a bigger node size with red names/gene IDs.

Supplemental Figure 15. Yeast one-hybrid assays for binding of MRP-1 to the sequence motifs listed in Table 1. For each motif, two yeast strains were tested, one lacking MRP-1 (-MRP-1) and one expressing MRP-1 (+MRP-1). Each strain was spotted onto plates containing (+AbA) and lacking (-AbA) Aureobasidin A. Each strain was spotted in a 1:5 dilutions series.

Supplemental Figure 16. Yeast one-hybrid assays for binding of MRP-1 to the promoters of the genes listed in Supplemental Table 12. For each promoter, two yeast strains were tested, one lacking MRP-1 (-MRP-1) and one expressing MRP-1 (+MRP-1). Each strain was spotted onto plates containing (+AbA) and lacking (-AbA) Aureobasidin A. Each strain was spotted in a 1:5 dilutions series.

Supplemental Figure 17. Expression pattern of the 93 genes containing MRP-1-binding sub-motifs based on RNA-Seq data from Chen et al. (2014). Genes were hierarchically clustered based on Euclidean distance. The selected data included the same tissues as Supplemental Figure 10.

	# kernels		# sections used		Total area (mm ²)		RNA quality as RNA Integrity Numbers (RINs)			Total amount of RNA (ng)					
	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3	Rep. 1	Rep. 2	Rep. 3
CSE	9	8	7	26	23	23	36.64	34.69	33.67	7.10	6.80	6.10	236.98	183.70	203.13
CZ	9	7	7	95	137	95	22.04	33.53	35.58	6.00	6.20	5.10	143.65	156.20	195.80
ESR	20	9	9	150	246	208	6.86	10.69	7.25	4.90	6.50	4.20	343.18	191.40	314.60
BETL	6	6	7	150	149	150	15.75	14.77	19.34	4.10	4.90	3.50	556.92	200.20	422.40
AL	8	6	6	57	68	63	10.77	6.43	8.73	5.30	6.30	5.00	242.01	244.20	334.40
EMB	11	3	3	89	61	87	8.86	11.15	9.52	6.00	5.50	4.00	101.20	235.40	458.04
PC	-	-	7	-	-	118	-	-	6.09	-	-	2.90	-	-	25.62
NU	-	14	-	-	110	-	-	27.15	-	-	4.20	-	-	171.60	-
PE	-	11	-	-	10	-	-	19.70	-	-	4.80	-	-	193.60	-
PED	-	12	-	-	41	-	-	19.39	-	-	5.00	-	-	411.40	-
Control (10 ng)	-	-	-	-	-	-	-	-	-	8.40	9.00	9.00	-	-	-
Control (5 ng)	-	-	-	-	-	-	-	-	-	8.40	9.30	9.10	-	-	-
Control (2.50 ng)	-	-	-	-	-	-	-	-	-	8.80	9.40	9.20	-	-	-
Control (1.25 ng)	-	-	-	-	-	-	-	-	-	8.10	8.10	9.30	-	-	-

Supplemental Table 1. The origins, quality and quantities of RNAs isolated using laser-capture microdissection.

		All mapped r	reads	Mapped to exons			
Samples ^a	Total # reads	#	%	#	% (of mapped)		
CSE-1	10,222,204	8,861,426	86.7	3,299,695	37.2		
CSE-2	31,450,130	25,808,488	82.1	8,616,333	33.4		
CSE-3	33,686,796	27,230,237	80.8	8,924,753	32.8		
CZ-1	29,475,616	24,887,580	84.4	9,755,319	39.2		
CZ-2	36,099,924	28,111,041	77.9	10,407,325	37.0		
CZ-3	31,555,056	24,171,723	76.6	7,456,103	30.8		
ESR-1	40,439,606	34,729,514	85.9	11,344,960	32.7		
ESR-2	33,883,182	26,160,199	77.2	8,323,640	31.8		
ESR-3	32,478,306	29,137,023	89.7	8,238,762	28.3		
BETL-1	17,109,048	14,341,367	83.8	4,599,768	32.1		
BETL-2	27,823,360	21,678,667	77.9	6,237,856	28.8		
BETL-3	29,420,758	20,380,515	69.3	6,319,413	31.0		
AL-1	11,496,690	9,247,655	80.4	3,581,977	38.7		
AL-2	30,289,840	23,899,741	78.9	7,937,483	33.2		
AL-3	21,498,076	16,487,384	76.7	5,114,948	31.0		
EMB-1	23,091,244	12,142,139	52.6	4,792,036	39.5		
EMB-2	21,651,262	13,972,219	64.5	4,075,913	29.2		
EMB-3	22,895,586	11,973,058	52.3	3,284,420	27.4		
PC	28,140,418	21,025,363	74.7	5,095,299	24.2		
NU	24,447,238	15,850,406	64.8	4,363,845	27.5		
PE	23,581,668	16,044,397	68.0	3,549,164	22.1		
PED	21,838,282	13,136,224	60.2	3,363,514	25.6		

Supplemental Table 2. Summary statistics of RNA-Seq reads and mapping.

^aBiological replicates are indicated as -1, -2 and -3.

Comportment	Protein-	Transposable	Dooudogonoo	miDNAo	TF	S	Total #	
Compartment	coding genes elements		Pseudogenes	IIIRNAS	#	%		
CSE	19,928	664	544	0	1,137	5.4	21,136	
CZ	20,775	819	646	0	1,172	5.3	22,240	
ESR	22,228	925	699	1	1,305	5.5	23,853	
BETL	19,281	704	550	0	1,105	5.4	20,535	
AL	20,646	680	578	0	1,173	5.4	21,904	
EMB	21,392	685	623	3	1,343	5.9	22,703	
PC	15,605	354	305	0	964	5.9	16,264	
NU	15,173	397	340	0	899	5.7	15,910	
PE	17,615	417	369	1	1,057	5.7	18,402	
PED	16,740	366	338	0	1,040	6.0	17,444	

Supplemental Table 3. Number of genes expressed in each of the ten compartments.

Compartment	FPKN	FPKM < 2		CM < 10	10 ≤ FPP	(M < 200	FPKM ≥ 200		
	#	%	#	%	#	%	#	%	
CSE	14,501	47.29	7185	23.43	8,509	27.75	470	1.53	
CZ	14,438	47.08	7570	24.69	8,237	26.86	420	1.37	
ESR	13,859	45.19	7244	23.62	9,315	30.38	247	0.81	
BETL	15,585	50.82	6104	19.91	8,685	28.32	291	0.95	
AL	12,839	41.87	8204	26.75	9,182	29.94	440	1.43	
EMB	11,112	36.24	9395	30.64	9,765	31.84	393	1.28	
PC	15,613	50.91	7098	23.15	7,647	24.94	307	1.00	
NU	14,905	48.61	7699	25.11	7,748	25.27	313	1.02	
PE	11,176	36.45	10197	33.25	9,001	29.35	291	0.95	
PED	12,354	40.29	9273	30.24	8,712	28.41	326	1.06	

Supplemental Table 4. Number of genes expressed at different FPKM levels in the ten compartments.

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
AL	-91.9	66.0	-1.3	57.3	0.6	17.4	34.3	93.6	-20.3	1.7E-12
BETL	-72.2	-125.1	26.8	-64.2	-18.2	-70.6	-58.0	42.6	12.9	-2.1E-13
CSE	-99.2	-6.0	-12.1	32.0	41.2	81.2	-15.1	-15.5	55.4	6.8E-13
CZ	-102.3	-51.3	-0.9	-14.6	34.3	51.8	-29.3	-46.6	-54.7	-3.8E-13
EMB	-55.3	152.4	3.7	58.4	-31.7	-82.5	-33.9	-44.8	2.3	9.1E-13
ESR	-71.3	-44.3	8.3	-47.5	-32.0	-31.7	105.5	-35.6	7.2	4.3E-13
NU	112.3	-30.5	-180.6	5.5	27.0	-22.9	1.5	3.3	-1.6	-8.6E-13
PC	146.2	-106.4	58.8	99.4	-73.0	22.4	-1.4	-8.7	-2.6	-1.2E-12
PE	97.0	111.6	7.6	-107.5	-71.9	62.0	-16.1	9.1	0.9	-8.3E-13
PED	136.7	33.8	89.8	-18.8	123.7	-27.0	12.5	2.7	0.5	-2.2E-13
Standard deviation	107.6	90.5	70.8	63.4	59.4	55.8	45.1	42.7	27.3	2.5E-13
% of variance	28.9	20.5	12.5	10.0	8.8	7.8	5.1	4.6	1.9	0.0
Cumulative % of variance	28.9	49.4	61.9	71.9	80.7	88.5	93.6	98.1	100.0	100.0

Supplemental Table 5. Summary of principle component analysis (PCA) of the ten compartments. Ten principle components (PCs) of each of the ten kernel compartments, the standard deviation of each PC, and the percentage of variance explained by each PC are shown.

Supplemental Table 6. Summary of the available *in situ* hybridization and promoter analysis data for endosperm cell-specific genes.

GRMZN2G170400 PEAMT AL 0.94 In situ hybridization This study GRMZN2G03174 - AL 0.90 In situ hybridization This study GRMZN2G060955 VPP1 AL 0.70 In situ hybridization This study GRMZN2G091054 AL-9 AL 0.71 In situ hybridization Wisnewskiet at. (2004) GRMZN2G01054 FG006 - BETL 0.99 In situ hybridization Muniz et al. (2014) GRMZN2G2016145 TCRR-1 BETL 0.99 In situ hybridization Muniz et al. (2006) GRMZN2G20121262 BETL 0.99 In situ hybridization Gomez et al. (2002) GRMZN2G3072210 BETL 0.99 In situ hybridization Hueros et al. (2014) GRMZN2G3072200 BETL 0.97 In situ hybridization This study GRMZN2G3173382 BETL 0.97 In situ hybridization This study GRMZN2G3128483 - BETL 0.97 In situ hybridization This study GRMZN2G324835 MEG-	Gene ID	Locus Name	Cell Type	CS Score	Assays	References
GRMZM2G437435 - AL 0.90 In situ hybridization This study GRMZM2G0690774 - AL 0.87 In situ hybridization This study GRMZM2G069054 AL-9 AL 0.51 In situ hybridization Wisniewski et al. (2004) GRMZM2G091054 AL-9 AL 0.51 In situ hybridization Lid al. (2014); GRMZM2G016145 TCRR-1 BETL 0.99 In situ hybridization Muize et al. (2004) GRMZM2G13382 BAP-3A BETL 0.99 In situ hybridization Grmaz et al. (2002) GRMZM2G133162 - BETL 0.99 In situ hybridization This study GRMZM2G32209 BETL-4 BETL 0.97 In situ hybridization This study GRMZM2G32483 - BETL 0.97 In situ hybridization This study GRMZM2G32483 - BETL 0.97 In situ hybridization This study GRMZM2G32483 - BETL 0.97 In situ hybridization This study <	GRMZM2G170400	PEAMT	AL	0.94	In situ hybridization	This study
GRMZM2G091774 - AL 0.87 In situ hybridization This study GRMZM2G090054 AL-9 AL 0.70 In situ hybridization Usiniewski et al. (2004) GRMZM2G091054 AL-9 AL 0.51 In situ hybridization U et al. (2014): GRMZM2G016145 TCRR-1 BETL 0.99 In situ hybridization Li et al. (2002) GRMZM2G426158 - BETL 0.99 In situ hybridization This study GRMZM2G133382 BAP-3A BETL 0.99 In situ hybridization This study GRMZM2G133382 BAP-3A BETL 0.99 In situ hybridization This study GRMZM2G1332162 - BETL 0.99 In situ hybridization Hueros et al. (2004) GRMZM2G132400 - BETL 0.97 In situ hybridization This study GRMZM2G121137 - BETL 0.97 In situ hybridization This study GRMZM2G032211 - BETL 0.97 In situ hybridization This study	GRMZM2G437435	-	AL	0.90	In situ hybridization	This study
GRMZM2G069095 VPP1 AL 0.70 In situ hybridization, Wisnewski et al. (2004) GRMZM2G091054 AL-9 AL 0.51 In situ hybridization, U et al. (2014); GRMZM2G016145 TCRR-1 BETL 0.99 In situ hybridization, Miniz et al. (2004) GRMZM2G016145 TCRR-1 BETL 0.99 In situ hybridization, Miniz et al. (2004) GRMZM2G013382 BAP-3A BETL 0.99 In situ hybridization, Gomez et al. (2002) GRMZM2G132162 - BETL 0.99 In situ hybridization, Li et al. (2014) GRMZM2G72219 - BETL 0.99 In situ hybridization, This study GRMZM2G158400 - BETL 0.97 In situ hybridization, This study GRMZM2G121137 - BETL 0.97 In situ hybridization, This study GRMZM2G12137 - BETL 0.96 In situ hybridization, Cuteres et al. (2004) GRMZM2G107302 - BETL 0.96 In situ hybridization, This study GRMZM2G107302 - BETL 0.94 In situ hybridization, This study <td>GRMZM2G091774</td> <td>-</td> <td>AL</td> <td>0.87</td> <td>In situ hybridization</td> <td>This study</td>	GRMZM2G091774	-	AL	0.87	In situ hybridization	This study
GRMZM2G091054 AL 0.51 In situ hybridization Lit et al. (2014): G/mozet et al. (2009) AC199820.4_FG006 - BETL 0.99 In situ hybridization Lit et al. (2014): G/mozet et al. (2006) GRMZM2G016145 TCRR-1 BETL 0.99 In situ hybridization Lit et al. (2006) GRMZM2G133382 BAP-3A BETL 0.99 In situ hybridization This study GRMZM2G133382 BAP-3A BETL 0.99 In situ hybridization This study GRMZM2G132162 - BETL 0.99 In situ hybridization This study GRMZM2G123262 BAP-3A BETL 0.99 In situ hybridization This study GRMZM2G123262 BETL 0.97 In situ hybridization This study GRMZM2G1518400 - BETL 0.97 In situ hybridization This study GRMZM2G123411 - BETL 0.97 In situ hybridization This study GRMZM2G1524335 MEG-1 BETL 0.96 In situ hybridization This study	GRMZM2G069095	VPP1	AL	0.70	In situ hybridization	Wisniewski et al. (2004)
AC199820.4_FG006 - BETL 0.99 In situ hybridization Li et al. (2014) GRMZM2G016145 TCRR-1 BETL 0.99 In situ hybridization Li et al. (2014) GRMZM2G245158 - BETL 0.99 In situ hybridization This study GRMZM2G133382 BAP-3A BETL 0.99 In situ hybridization Gomez et al. (2002) GRMZM2G132162 - BETL 0.99 In situ hybridization This study GRMZM2G132162 - BETL 0.99 In situ hybridization Li et al. (2014) GRMZM2G132162 - BETL 0.99 In situ hybridization This study GRMZM2G158400 - BETL 0.97 In situ hybridization This study GRMZM2G158403 - BETL 0.97 In situ hybridization This study GRMZM2G12137 - BETL 0.97 In situ hybridization This study GRMZM2G107302 - BETL 0.96 In situ hybridization This study GRMZ	GRMZM2G091054	AL-9	AL	0.51	In situ hybridization;	Li et al. (2014);
Rot Double Description GRMZM2G016145 TCRR-1 BETL 0.99 In situ hybridization Muñiz et al. (2006) GRMZM2G016145 TCRR-1 BETL 0.99 In situ hybridization Muñiz et al. (2002) GRMZM2G131306 MRP1 BETL 0.99 In situ hybridization Gomez et al. (2002) GRMZM2G132162 - BETL 0.99 In situ hybridization Liet al. (2014) GRMZM2G0158400 - BETL 0.97 In situ hybridization This study GRMZM2G3168400 - BETL 0.97 In situ hybridization This study GRMZM2G32483 - BETL 0.97 In situ hybridization This study GRMZM2G32483 - BETL 0.97 In situ hybridization This study GRMZM2G32483 - BETL 0.97 In situ hybridization This study GRMZM2G32483 MEG-1 BETL 0.97 In situ hybridization This study GRMZM2G08271 BAP-1A BETL 0.96 In	AC100820 4 EG006	_	RETI	0.99	In situ hybridization	Li et al. (2014)
Dimuzitazione Diriti di substructura Diriti di substructura Diriti di substructura GRMZM2G426158 - BETL 0.99 In situ hybridization This study GRMZM2G13382 BAP-3A BETL 0.99 In situ hybridization Gomez et al. (2002) GRMZM2G132162 - BETL 0.99 In situ hybridization This study GRMZM2G072219 - BETL 0.97 In situ hybridization Hues et al. (2014) GRMZM2G128430 - BETL 0.97 In situ hybridization This study GRMZM2G324335 MEG-1 BETL 0.96 In situ hybridization This study GRMZM2G08271 BAP-1A BETL 0.95 In situ hybridization This study GRMZM2G107302 - BETL 0.94 In situ hybridization This study GRMZM2G175912 MEG-13 BETL 0.93 In situ hybridization This study GRMZM2G186407 - BETL 0.92 In situ hybridization This study GRMZM2G18733	<u>GRM7M2G016145</u>		BETI	0.99	In situ hybridization	$M_{\rm u}$ $\tilde{n}_{\rm r}$ c t $al (2006)$
Diskuz/RE2G111306 MRP1 BETL 0.93 In situ hybridization Gomez et al. (2002) GRMZM2G13382 BAP-3A BETL 0.99 In situ hybridization Serna et al. (2001) GRMZM2G13382 BAP-3A BETL 0.99 In situ hybridization This study GRMZM2G072219 - BETL 0.97 In situ hybridization Hueros et al. (2014) GRMZM2G073290 BETL-4 BETL 0.97 In situ hybridization This study GRMZM2G31137 - BETL 0.97 In situ hybridization This study GRMZM2G08271 BAP-1A BETL 0.96 In situ hybridization This study GRMZM2G107302 - BETL 0.93 In situ hybridization This study GRMZM2G158407 - BETL 0.93 In situ hybridization This study GRMZM2G17302 - BETL 0.93 In situ hybridization This study GRMZM2G158407 - BETL 0.92 In situ hybridization This study	GRMZM2G426158		BETI	0.99	In situ hybridization	This study
Ormulate/Entropy Description Description <thdescription< th=""></thdescription<>	GRMZM2G111306	 MRP1	BETI	0.99	In situ hybridization	Gómez et al. (2002)
Dr.M.2012 District	GRMZM2G133382	BAP-3A	BETI	0.99	In situ hybridization	Serna et al. (2002)
Diskut Product Disk Production This study GRMZM2G072219 - BETL 0.99 In situ hybridization Li et al. (2014) GRMZM2G073290 BETL-4 BETL 0.97 In situ hybridization Hueros et al. (1999) GRMZM2G121137 - BETL 0.97 In situ hybridization This study GRMZM2G332483 - BETL 0.96 In situ hybridization This study GRMZM2G354335 MEG-1 BETL 0.96 In situ hybridization Guérrez-Marcos et al. (2004) GRMZM2G08271 BAP-1A BETL 0.95 In situ hybridization This study GRMZM2G107302 - BETL 0.94 In situ hybridization This study GRMZM2G123411 - BETL 0.93 In situ hybridization This study GRMZM2G162657 BAP-2 BETL 0.92 In situ hybridization This study GRMZM2G158407 - BETL 0.92 In situ hybridization This study GRMZM2G158407 - BETL	GRMZM2G133362	-	BETI	0.99	In situ hybridization	This study
Orman District District Orman District District <thdistrict< th=""> <thdistrict< th=""> <thdist< td=""><td>GRMZM2G072210</td><td>_</td><td>BETI</td><td>0.99</td><td>In situ hybridization</td><td>Lietal (2014)</td></thdist<></thdistrict<></thdistrict<>	GRMZM2G072210	_	BETI	0.99	In situ hybridization	Lietal (2014)
Diricht/2007 Dir L Dir L Out I Out I State Nybridization This study GRMZM2G158400 - BETL 0.97 In situ hybridization This study GRMZM2G32483 - BETL 0.97 In situ hybridization This study GRMZM2G354335 MEG-1 BETL 0.96 In situ hybridization Guttérrez-Marcos et al. (2004) GRMZM2G107302 - BETL 0.95 In situ hybridization This study: GRMZM2G175912 MEG-1 BETL 0.94 In situ hybridization This study GRMZM2G175912 MEG-13 BETL 0.93 In situ hybridization This study GRMZM2G175912 MEG-13 BETL 0.92 In situ hybridization This study GRMZM2G158407 - BETL 0.92 In situ hybridization This study GRMZM2G152655 BAP-2 BETL 0.89 In situ hybridization Hueros et al. (1999) GRMZM2G152676 - BETL 0.79 In situ hybridization Hueros et al	GRMZM2G073200		BETI	0.99	In situ hybridization	Hueros et al. (1000)
GRMZM2G332483 - DETL 0.97 In situ hybridization This study GRMZM2G332483 - BETL 0.96 In situ hybridization This study GRMZM2G354335 MEG-1 BETL 0.96 In situ hybridization (2004) GRMZM2G008271 BAP-1A BETL 0.96 In situ hybridization This study GRMZM2G107302 - BETL 0.94 In situ hybridization This study GRMZM2G123411 - BETL 0.93 In situ hybridization This study GRMZM2G158407 - BETL 0.93 In situ hybridization This study GRMZM2G158407 - BETL 0.92 In situ hybridization This study GRMZM2G158407 - BETL 0.92 In situ hybridization This study GRMZM2G158407 - BETL 0.92 In situ hybridization This study GRMZM2G167733 EBE-2 BETL 0.89 In situ hybridization Hueros et al. (2003) GRMZM2G082785	GRMZM2G158400	DLIL-4		0.97	In situ hybridization	This study
GRMZM2G32403 - DETL 0.96 In situ hybridization This study GRMZM2G324137 - BETL 0.96 In situ hybridization This study GRMZM2G354335 MEG-1 BETL 0.96 In situ hybridization This study GRMZM2G08271 BAP-1A BETL 0.95 In situ hybridization This study: Sema et al. (2001) GRMZM2G123411 - BETL 0.93 In situ hybridization This study GRMZM2G175912 MEG-13 BETL 0.93 In situ hybridization This study GRMZM2G158407 - BETL 0.92 In situ hybridization This study GRMZM2G182765 BAP-2 BETL 0.92 In situ hybridization This study GRMZM2G182766 - BETL 0.89 In situ hybridization This study GRMZM2G082785 BETL-1 0.86 In situ hybridization Hueros et al. (1995) GRMZM2G082743 BETL-9 BETL 0.76 In situ hybridization Masonneau et al. (2003)	GRWZW2G332483	-		0.97	In situ hybridization	This study
GRMZM2G12137 - BETL 0.96 In situ hybridization; promoter fusion This study GRMZM2G354335 MEG-1 BETL 0.96 In situ hybridization; promoter fusion Gutiérrez-Marcos et al. (2004) GRMZM2G008271 BAP-1A BETL 0.95 In situ hybridization This study: Serna et al. (2001) GRMZM2G123411 - BETL 0.93 In situ hybridization This study GRMZM2G058703 - BETL 0.93 In situ hybridization This study GRMZM2G158407 - BETL 0.92 In situ hybridization This study GRMZM2G152655 BAP-2 BETL 0.89 In situ hybridization This study GRMZM2G167733 EBE-2 BETL 0.86 In situ hybridization This study GRMZM2G082785 BETL-1 BETL 0.79 In situ hybridization This study GRMZM2G090264 TCRR-2 BETL 0.76 In situ hybridization Magnard et al. (2005) GRMZM2G08027413 BETL-9 BETL 0.77 In situ hy	GRIVIZIVIZG332403	-		0.97		This study
GRMZM2G354335 MEG-1 BETL 0.96 In situ hybridization, promoter fusion (2004) GRMZM2G008271 BAP-1A BETL 0.95 In situ hybridization, sema et al. (2001) GRMZM2G107302 - BETL 0.94 In situ hybridization, This study GRMZM2G175912 MEG-13 BETL 0.93 In situ hybridization, This study GRMZM2G158407 - BETL 0.92 In situ hybridization, This study GRMZM2G152655 BAP-2 BETL 0.92 In situ hybridization, This study GRMZM2G167733 EBE-2 BETL 0.89 In situ hybridization, This study GRMZM2G082785 BETL-1 BETL 0.89 In situ hybridization, This study GRMZM2G082785 BETL-1 BETL 0.79 In situ hybridization, This study GRMZM2G082785 BETL-1 BETL 0.79 In situ hybridization, This study; GRMZM2G08027413 BETL-9 BETL 0.76 In situ hybridization, This study; GRMZM2G0807413 BETL-9 BETL 0.74 In situ hybridization, This study; </td <td>GRIVIZIVIZG 121137</td> <td>-</td> <td>DEIL</td> <td>0.96</td> <td>In situ hybridization</td> <td>Cutiórroz Marcos et al</td>	GRIVIZIVIZG 121137	-	DEIL	0.96	In situ hybridization	Cutiórroz Marcos et al
GRMZM2G008271 BAP-1A BETL 0.95 In situ hybridization This study; Serna et al. (2001) GRMZM2G107302 - BETL 0.94 In situ hybridization This study GRMZM2G123411 - BETL 0.93 In situ hybridization This study GRMZM2G175912 MEG-13 BETL 0.92 In situ hybridization This study GRMZM2G158407 - BETL 0.92 In situ hybridization This study GRMZM2G152655 BAP-2 BETL 0.89 In situ hybridization This study GRMZM2G167733 EBE-2 BETL 0.89 In situ hybridization This study GRMZM2G082785 BETL-1 BETL 0.79 In situ hybridization Hueros et al. (1995) GRMZM2G087413 BETL-9 BETL 0.76 In situ hybridization Masconneau et al. (2003) GRMZM2G08042174 CC8 BETL 0.77 In situ hybridization Masconneau et al. (2005) GRMZM2G0807413 BETL-9 BETL 0.77 In situ hybridization	GRMZM2G354335	MEG-1	BETL	0.96	promoter fusion	(2004)
GRMZM2G107302 - BETL 0.94 In situ hybridization This study GRMZM2C123411 - BETL 0.93 In situ hybridization This study GRMZM2G175912 MEG-13 BETL 0.93 In situ hybridization This study GRMZM2G15803 - BETL 0.92 In situ hybridization This study GRMZM2G152655 BAP-2 BETL 0.92 In situ hybridization This study GRMZM2G152655 BAP-2 BETL 0.89 In situ hybridization This study GRMZM2G167733 EBE-2 BETL 0.89 In situ hybridization This study GRMZM2G082785 BETL-1 BETL 0.76 In situ hybridization Magnard et al. (2003) GRMZM2G090264 TCRR-2 BETL 0.76 In situ hybridization This study; GRMZM2G089713 BETL-9 BETL 0.77 In situ hybridization Muriz et al. (2014) GRMZM2G089218 TCRR-2 BETL 0.76 In situ hybridization This study; <t< td=""><td>GRMZM2G008271</td><td>BAP-1A</td><td>BETL</td><td>0.95</td><td>In situ hybridization</td><td>This study; Serna et al. (2001)</td></t<>	GRMZM2G008271	BAP-1A	BETL	0.95	In situ hybridization	This study; Serna et al. (2001)
GRMZM2G123411 - BETL 0.93 In situ hybridization This study GRMZM2G175912 MEG-13 BETL 0.93 In situ hybridization This study GRMZM2G058703 - BETL 0.92 In situ hybridization This study GRMZM2G158407 - BETL 0.92 In situ hybridization This study GRMZM2G152655 BAP-2 BETL 0.89 In situ hybridization Hueros et al. (1999) GRMZM2G167733 EBE-2 BETL 0.89 In situ hybridization This study GRMZM2G082785 BETL-1 BETL 0.70 In situ hybridization Hueros et al. (1995) GRMZM2G0827413 BETL-9 BETL 0.74 In situ hybridization Massonneau et al. (2005) GRMZM2G090264 TCRR-2 BETL 0.57 In situ hybridization Muñz et al. (2014) GRMZM2G089713 Sh1 CSE 0.96 In situ hybridization Muñz et al. (2014) GRMZM2G089791 Sh1 CSE 0.95 In situ hybridization Li et al	GRMZM2G107302	-	BETL	0.94	In situ hybridization	This study
GRMZM2G175912 MEG-13 BETL 0.93 In situ hybridization This study GRMZM2G058703 - BETL 0.92 In situ hybridization This study GRMZM2G158407 - BETL 0.92 In situ hybridization This study GRMZM2G152655 BAP-2 BETL 0.89 In situ hybridization This study GRMZM2G152657 BAP-2 BETL 0.89 In situ hybridization This study GRMZM2G167733 EBE-2 BETL 0.86 In situ hybridization Magnard et al. (2003) GRMZM2G082785 BETL-1 BETL 0.79 In situ hybridization Hueros et al. (1995) GRMZM2G082785 BETL-1 BETL 0.76 In situ hybridization Masonneau et al. (2005) GRMZM2G087413 BETL-9 BETL 0.74 In situ hybridization This study: Royo et al. (2014) GRMZM2G060264 TCRR-2 BETL 0.57 In situ hybridization Muñiz et al. (2014) GRMZM2G060429 16-kD y-zein CSE 0.96 In situ hybridi	GRMZM2G123411	-	BETL	0.93	In situ hybridization	This study
GRMZM2G058703 - BETL 0.92 In situ hybridization This study GRMZM2G158407 - BETL 0.92 In situ hybridization This study GRMZM2G152655 BAP-2 BETL 0.89 In situ hybridization Hueros et al. (1999) GRMZM2G167733 EBE-2 BETL 0.89 In situ hybridization This study GRMZM2G082785 BETL-1 BETL 0.79 In situ hybridization Magnard et al. (2003) GRMZM2G082785 BETL-1 BETL 0.79 In situ hybridization Massonneau et al. (2005) GRMZM2G087413 BETL-9 BETL 0.74 In situ hybridization; promoter fusion This study; Roy o et al. (2014) GRMZM2G090264 TCRR-2 BETL 0.57 In situ hybridization Muñiz et al. (2010) GRMZM2G089713 Sh1 CSE 0.96 In situ hybridization Woo et al. (2011) GRMZM2G089713 Sh1 CSE 0.877 In situ hybridization Woo et al. (2014) GRMZM2G089713 Sh1 CSE 0.897	GRMZM2G175912	MEG-13	BETL	0.93	In situ hybridization	This study
GRMZM2G158407 - BETL 0.92 In situ hybridization This study GRMZM2G152655 BAP-2 BETL 0.89 In situ hybridization Hueros et al. (1999) GRMZM5G812796 - BETL 0.89 In situ hybridization This study GRMZM2G167733 EBE-2 BETL 0.86 In situ hybridization; promoter fusion Magnard et al. (2003) GRMZM2G082785 BETL-1 BETL 0.79 In situ hybridization; promoter fusion Magnard et al. (2003) GRMZM2G082785 BETL-1 BETL 0.76 In situ hybridization; promoter fusion Magnard et al. (2003) GRMZM2G087413 BETL-9 BETL 0.74 In situ hybridization; promoter fusion Massonneau et al. (2014) GRMZM2G090264 TCRR-2 BETL 0.57 In situ hybridization Muñiz et al. (2010) GRMZM2G080264 TCRR-2 BETL 0.57 In situ hybridization Woo et al. (2001) GRMZM2G080929 16-kD y-zein CSE 0.96 In situ hybridization This study GRMZM2G089713 Sh1	GRMZM2G058703	-	BETL	0.92	In situ hybridization	This study
GRMZM2G152655BAP-2BETL0.89In situ hybridizationHueros et al. (1999)GRMZM5G812796-BETL0.89In situ hybridizationThis studyGRMZM2G167733EBE-2BETL0.86In situ hybridization; promoter fusionMagnard et al. (2003)GRMZM2G082785BETL-1BETL0.79In situ hybridizationHueros et al. (1995)GRMZM2G401374CC8BETL0.76In situ hybridizationMassonneau et al. (2005)GRMZM2G087413BETL-9BETL0.74In situ hybridizationMossonneau et al. (2014)GRMZM2G090264TCRR-2BETL0.57In situ hybridizationMuñiz et al. (2010)GRMZM2G08042916-kD γ-zeinCSE0.96In situ hybridizationWoo et al. (2001)GRMZM2G08042916-kD γ-zeinCSE0.95In situ hybridizationWoo et al. (2001)GRMZM2G08042916-kD γ-zeinCSE0.95In situ hybridizationWoo et al. (2014)GRMZM2G0809713Sh1CSE0.89In situ hybridizationThis studyGRMZM2G154182ASN1CSE0.60In situ hybridizationLi et al. (2014)GRMZM2G00585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048086-ESR0.99In situ hybridizationLi et a	GRMZM2G158407	-	BETL	0.92	In situ hybridization	This study
GRMZM5G812796-BETL0.89In situ hybridizationThis studyGRMZM2G167733EBE-2BETL0.86In situ hybridization; promoter fusionMagnard et al. (2003)GRMZM2G082785BETL-1BETL0.79In situ hybridizationHueros et al. (1995)GRMZM2G401374CC8BETL0.76In situ hybridizationMassonneau et al. (2005)GRMZM2G087413BETL-9BETL0.74In situ hybridization; promoter fusionRoy et al. (2014)GRMZM2G090264TCRR-2BETL0.57In situ hybridizationMos et al. (2010)GRMZM2G0807413BETL-9BETL0.57In situ hybridizationWoo et al. (2011)GRMZM2G090264TCRR-2BETL0.57In situ hybridizationWoo et al. (2010)GRMZM2G08042916-kD y-zeinCSE0.96In situ hybridizationWoo et al. (2001)GRMZM2G080713Sh1CSE0.89In situ hybridizationLi et al. (2014)GRMZM2G429899Sh2CSE0.60In situ hybridizationLi et al. (2014)GRMZM2G023872SCL1CSE0.60In situ hybridizationLi et al. (2014)GRMZM2G006585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048689-ESR0.99In situ hybridizationLi et	GRMZM2G152655	BAP-2	BETL	0.89	In situ hybridization	Hueros et al. (1999)
GRMZM2G167733EBE-2BETL0.86In situ hybridization; promoter fusionMagnard et al. (2003)GRMZM2G082785BETL-1BETL0.79In situ hybridizationHueros et al. (1995)GRMZM2G401374CC8BETL0.76In situ hybridizationMassonneau et al. (2005)GRMZM2G087413BETL-9BETL0.74In situ hybridization; promoter fusionThis study; Royo et al. (2014)GRMZM2G090264TCRR-2BETL0.77In situ hybridizationMuñiz et al. (2010)GRMZM2G13872727-kD γ-zeinCSE0.96In situ hybridizationWoo et al. (2001)GRMZM2G08042916-kD γ-zeinCSE0.95In situ hybridizationWoo et al. (2001)GRMZM2G369799-CSE0.77In situ hybridizationThis studyGRMZM2G023872SCL1CSE0.68In situ hybridizationLi et al. (2014)GRMZM2G06585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G06585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G06685-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G149869-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G0408853ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G149869-ESR0.99In situ hybridization<	GRMZM5G812796	-	BETL	0.89	In situ hybridization	This study
GRMZM2G082785BETL-1BETL0.79In situ hybridizationHueros et al. (1995)GRMZM2G401374CC8BETL0.76In situ hybridizationMassonneau et al. (2005)GRMZM2G087413BETL-9BETL0.74In situ hybridization; promoter fusionThis study; Royo et al. (2014)GRMZM2G090264TCRR-2BETL0.57In situ hybridizationMuñiz et al. (2010)GRMZM2G080264TCRR-2BETL0.57In situ hybridizationWoo et al. (2011)GRMZM2G080264TCRR-2BETL0.57In situ hybridizationWoo et al. (2001)GRMZM2G08042916-kD γ-zeinCSE0.95In situ hybridizationWoo et al. (2001)GRMZM2G080713Sh1CSE0.89In situ hybridizationThis studyGRMZM2G429899Sh2CSE0.68In situ hybridizationLi et al. (2014)GRMZM2G023872SCL1CSE0.60In situ hybridizationLi et al. (2014)GRMZM2G06585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G06685-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G06685-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G06685-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G06686ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)<	GRMZM2G167733	EBE-2	BETL	0.86	In situ hybridization;	Magnard et al. (2003)
GRMZM2G401374CC8BETL0.76In situ hybridizationMassonneau et al. (2005)GRMZM2G087413BETL-9BETL0.74In situ hybridization, promoter fusionThis study; Royo et al. (2014)GRMZM2G090264TCRR-2BETL0.57In situ hybridizationMuñiz et al. (2010)GRMZM2G0807413SETL 27-kD y-zeinCSE0.96In situ hybridizationWoo et al. (2010)GRMZM2G06042916-kD y-zeinCSE0.95In situ hybridizationWoo et al. (2001)GRMZM2G080713Sh1CSE0.89In situ hybridizationWoo et al. (2014)GRMZM2G369799-CSE0.77In situ hybridizationLi et al. (2014)GRMZM2G023872SCL1CSE0.68In situ hybridizationLi et al. (2014)GRMZM2G060585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G06685-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G06685-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G06685-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2005)GRMZM2G149869-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086-ESR0.99In situ hybridizationLi et al. (2014)	GRM7M2G082785	BFTL-1	BETI	0.79	In situ hybridization	Hueros et al. (1995)
GRMZM2G087413BETL-9BETL0.74In situ hybridization; promoter fusionThis study; Royo et al. (2014)GRMZM2G090264TCRR-2BETL0.57In situ hybridizationMuñiz et al. (2010)GRMZM2G13872727-kD γ-zeinCSE0.96In situ hybridizationWoo et al. (2001)GRMZM2G06042916-kD γ-zeinCSE0.95In situ hybridizationWoo et al. (2001)GRMZM2G089713Sh1CSE0.89In situ hybridizationWoo et al. (2014)GRMZM2G369799-CSE0.77In situ hybridizationLi et al. (2014)GRMZM2G023872SCL1CSE0.68In situ hybridizationLi et al. (2014)GRMZM2G06585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G006585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G149869-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014) </td <td>GRMZM2G401374</td> <td>CC8</td> <td>BETI</td> <td>0.76</td> <td>In situ hybridization</td> <td>Massonneau et al. (2005)</td>	GRMZM2G401374	CC8	BETI	0.76	In situ hybridization	Massonneau et al. (2005)
GRMZM2G087413 BE1L-9 BE1L 0.74 promoter fusion Royo et al. (2014) GRMZM2G090264 TCRR-2 BETL 0.57 In situ hybridization Muñiz et al. (2010) GRMZM2G138727 27-kD γ-zein CSE 0.96 In situ hybridization Woo et al. (2001) GRMZM2G060429 16-kD γ-zein CSE 0.95 In situ hybridization Woo et al. (2001) GRMZM2G089713 Sh1 CSE 0.89 In situ hybridization This study GRMZM2G369799 - CSE 0.77 In situ hybridization Li et al. (2014) GRMZM2G023872 SCL1 CSE 0.68 In situ hybridization Li et al. (2014) GRMZM2G023872 SCL1 CSE 0.60 In situ hybridization Li et al. (2014) GRMZM2G006585 - CZ 0.70 In situ hybridization Li et al. (2014) GRMZM2G048353 ESR-6 ESR 0.99 In situ hybridization Li et al. (2014) GRMZM2G048353 ESR-6 ESR 0.99 In situ hybridization <			DET	0.74	In situ hybridization:	This study:
GRMZM2G090264TCRR-2BETL0.57In situ hybridizationMuñiz et al. (2010)GRMZM2G13872727-kD γ-zeinCSE0.96In situ hybridizationWoo et al. (2001)GRMZM2G06042916-kD γ-zeinCSE0.95In situ hybridizationWoo et al. (2001)GRMZM2G369799-CSE0.89In situ hybridizationLi et al. (2014)GRMZM2G429899Sh1CSE0.68In situ hybridizationLi et al. (2014)GRMZM2G023872SCL1CSE0.60In situ hybridizationLi et al. (2014)GRMZM2G0585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G0154182ASN1CSE0.47In situ hybridizationLi et al. (2014)GRMZM2G046855-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G120008-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)	GRMZM2G08/413	BEIL-9	BEIL	0.74	promoter fusion	Rovo et al. (2014)
GRMZM2G13872727-kD y-zeinCSE0.96In situ hybridizationWoo et al. (2001)GRMZM2G06042916-kD y-zeinCSE0.95In situ hybridizationWoo et al. (2001)GRMZM2G089713Sh1CSE0.89In situ hybridizationThis studyGRMZM2G369799-CSE0.77In situ hybridizationLi et al. (2014)GRMZM2G023872SCL1CSE0.68In situ hybridizationLi et al. (2014)GRMZM2G023872SCL1CSE0.60In situ hybridizationLi et al. (2014)GRMZM2G0585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G315601ESR-2ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G120008-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G120008-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G315601ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G120008-ESR0.99In situ hybridizationLi et al. (2005)GRMZM2G372553AE3ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G372553AE3ESR0.54In situ hybridizationLi et al. (2000)	GRMZM2G090264	TCRR-2	BETL	0.57	In situ hybridization	Muñiz et al. (2010)
GRMZM2G06042916-kD γ-zeinCSE0.95In situ hybridizationWoo et al. (2001)GRMZM2G089713Sh1CSE0.89In situ hybridizationThis studyGRMZM2G369799-CSE0.77In situ hybridizationLi et al. (2014)GRMZM2G429899Sh2CSE0.68In situ hybridizationLi et al. (2014)GRMZM2G023872SCL1CSE0.60In situ hybridizationLi et al. (2014)GRMZM2G154182ASN1CSE0.47In situ hybridizationLi et al. (2014)GRMZM2G006585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G315601ESR-2ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G120008-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G46086ESR-1ESR0.99In situ hybridizationLi et al. (2005)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)	GRMZM2G138727	27-kD γ-zein	CSE	0.96	In situ hybridization	Woo et al. (2001)
GRMZM2G089713Sh1CSE0.89In situ hybridizationThis studyGRMZM2G369799-CSE0.77In situ hybridizationLi et al. (2014)GRMZM2G429899Sh2CSE0.68In situ hybridizationLi et al. (2014)GRMZM2G023872SCL1CSE0.60In situ hybridizationLi et al. (2014)GRMZM2G053872SCL1CSE0.60In situ hybridizationLi et al. (2014)GRMZM2G0585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G315601ESR-2ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G149869-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G120008-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)	GRMZM2G060429	16-kD γ-zein	CSE	0.95	In situ hybridization	Woo et al. (2001)
GRMZM2G369799-CSE0.77In situ hybridizationLi et al. (2014)GRMZM2G429899Sh2CSE0.68In situ hybridizationThis studyGRMZM2G023872SCL1CSE0.60In situ hybridizationLi et al. (2014)GRMZM2G023872SCL1CSE0.60In situ hybridizationLi et al. (2014)GRMZM2G053872SCL1CSE0.47In situ hybridizationLi et al. (2014)GRMZM2G06585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G315601ESR-2ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2005)GRMZM2G149869-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G372553AE3ESR0.99In situ hybridizationLi et al. (2014)	GRMZM2G089713	Sh1	CSE	0.89	In situ hybridization	This study
GRMZM2G429899Sh2CSE0.68In situ hybridizationThis studyGRMZM2G023872SCL1CSE0.60In situ hybridizationLi et al. (2014)GRMZM2G154182ASN1CSE0.47In situ hybridizationLi et al. (2014)GRMZM2G006585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G315601ESR-2ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G149869-ESR0.99In situ hybridizationBalandín et al. (2005)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G372553AE3ESR0.54In situ hybridizationLi et al. (2000)	GRMZM2G369799	-	CSE	0.77	In situ hybridization	Li et al. (2014)
GRMZM2G023872SCL1CSE0.60In situ hybridizationLi et al. (2014)GRMZM2G154182ASN1CSE0.47In situ hybridizationLi et al. (2014)GRMZM2G006585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G315601ESR-2ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G149869-ESR0.99In situ hybridizationBalandín et al. (2005)GRMZM2G120008-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G372553AE3ESR0.54In situ hybridizationLi et al. (2000)	GRMZM2G429899	Sh2	CSE	0.68	In situ hybridization	This study
GRMZM2G154182ASN1CSE0.47In situ hybridizationLi et al. (2014)GRMZM2G006585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G315601ESR-2ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G149869-ESR0.99In situ hybridizationBalandín et al. (2005)GRMZM2G120008-ESR0.99In situ hybridizationThis studyGRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G372553AE3ESR0.54In situ hybridizationLi et al. (2000)	GRMZM2G023872	SCL1	CSE	0.60	In situ hybridization	Li et al. (2014)
GRMZM2G006585-CZ0.70In situ hybridizationLi et al. (2014)GRMZM2G315601ESR-2ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationBalandín et al. (2005)GRMZM2G149869-ESR0.99In situ hybridizationThis studyGRMZM2G120008-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G372553AE3ESR0.54In situ hybridizationLi et al. (2000)	GRMZM2G154182	ASN1	CSE	0.47	In situ hybridization	Li et al. (2014)
GRMZM2G315601ESR-2ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G048353ESR-6ESR0.99In situ hybridizationBalandín et al. (2005)GRMZM2G149869-ESR0.99In situ hybridizationThis studyGRMZM2G120008-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G372553AE3ESR0.54In situ hybridizationLi et al. (2000)	GRMZM2G006585	-	CZ	0.70	In situ hybridization	Liet al. (2014)
GRMZM2G048353ESR-6ESR0.99In situ hybridizationBalandín et al. (2005)GRMZM2G149869-ESR0.99In situ hybridizationThis studyGRMZM2G120008-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G372553AE3ESR0.54In situ hybridizationLi et al. (2000)	GRMZM2G315601	ESR-2	FSR	0.99	In situ hybridization	Lietal (2014)
GRMZM2G149869-ESR0.99In situ hybridizationData hybridizationGRMZM2G120008-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G372553AE3ESR0.54In situ hybridizationMagnard et al. (2000)	GRMZM2G048353	FSR-6	FSR	0.00	In situ hybridization	Balandín et al. (2005)
GRMZM2G120008-ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G046086ESR-1ESR0.99In situ hybridizationLi et al. (2014)GRMZM2G372553AE3ESR0.54In situ hybridizationMagnard et al. (2000)	GRMZM2G149869	-	FSR	0.00	In situ hybridization	This study
GRMZM2G046086 ESR-1 ESR 0.99 In situ hybridization Li et al. (2014) GRMZM2G372553 AE3 ESR 0.54 In situ hybridization Magnard et al. (2000)	GRMZM2G120008	-	ESR	0.00	In situ hybridization	Lietal (2014)
GRMZM2G372553 AE3 ESR 0.54 In situ hybridization Magnard et al. (2000)	GRMZM2G046086	ESR-1	ESR	0.00	In situ hybridization	Lietal (2014)
	GRMZM2G372553	AE3	ESR	0.54	In situ hybridization	Magnard et al. (2000)

Module	Mean TO observed ^a	Mean TO random ^b	Maximal TO random ^c	<i>P</i> -value ^d
1	0.20032682	0.04206503	0.05808373	< 10 ⁻⁵
2	0.13829484	0.03242548	0.03794889	< 10 ⁻⁵
3	0.05589406	0.03135009	0.03492353	< 10 ⁻⁵
4	0.05180793	0.03119400	0.03506029	< 10 ⁻⁵
5	0.11182849	0.03251804	0.03856629	< 10 ⁻⁵
6	0.05307235	0.03117166	0.03413336	< 10 ⁻⁵
7	0.10177977	0.03284855	0.03858159	< 10 ⁻⁵
8	0.05829481	0.03152054	0.03555416	< 10 ⁻⁵
9	0.26306783	0.03539109	0.04476182	< 10 ⁻⁵
10	0.11657907	0.03440147	0.04239688	< 10 ⁻⁵
11	0.04351963	0.03179076	0.03609683	< 10 ⁻⁵
12	0.08102435	0.03258770	0.03830303	< 10 ⁻⁵
13	0.11766000	0.03433284	0.04294189	< 10 ⁻⁵
14	0.14466003	0.03906574	0.05298123	< 10 ⁻⁵
15	0.05718379	0.03269729	0.03842810	< 10 ⁻⁵
16	0.10289539	0.03315041	0.04010339	< 10 ⁻⁵
17	0.11984522	0.03364567	0.04121327	< 10 ⁻⁵
18	0.07067248	0.03197153	0.03666547	< 10 ⁻⁵

Supplemental Table 7. Robustness of WGCNA-generated co-expression modules based on a permutation test of average topological overlap (TO).

^a the average TO for the genes in an observed module.

^b the average TO of 100,000 iterations.

° the maximum of the average TO for the 100,000 iterations.

^d the empirical probability of finding an average TO greater than or equal to the observed TO in 100, 000 collections of modules comprised of randomly selected genes.

Supplemental Table 8. Allele-biased genes enriched in the endosperm-associated co-expression modules M10, M15, M17, and M18.

Gene ID	Module	Allelic Expression Pattern	Stringency ^a	TF Family	Functional Annotation
GRMZM2G014119	10	MEG	High	-	Uncharacterized protein
GRMZM2G170099	10	MEG	High	-	Uncharacterized protein
GRMZM2G169695	10	MEG	High	-	AT-rich element binding factor 3
GRMZM2G124708	10	MEG	High	-	-
GRMZM2G121546	10	MEG	Low	-	Uncharacterized protein
GRMZM2G072174	10	MEG	Low	-	Uncharacterized protein
GRMZM2G154182	10	MEG	Low	NAC	Putative NAC domain transcription factor superfamily protein; Uncharacterized protein
GRMZM2G500698	10	MEG	Low	-	-
GRMZM2G170201	10	PEG	High	Orphans	Paired amphipathic helix repeat family protein
GRMZM2G043417	10	PEG	High	-	-
GRMZM2G059102	10	PEG	Low	MADS	MADS-box transcription factor 47; Uncharacterized protein
GRMZM2G359589	15	MEG	High	C2H2	Uncharacterized protein
GRMZM2G370991	15	MEG	High	-	Uncharacterized protein
GRMZM2G343972	15	MEG	High	-	Uncharacterized protein
GRMZM2G130580	15	MEG	High	Orphans	Uncharacterized protein
GRMZM2G024468	15	MEG	High	MYB	Uncharacterized protein
GRMZM2G150680	15	MEG	High	MYB	Putative MYB DNA-binding domain superfamily protein; Uncharacterized protein
GRMZM2G069840	15	MEG	Hiah	-	-
GRMZM2G476175	15	MEG	High	-	-
GRMZM2G120085	15	MEG	Low	-	Uncharacterized protein
GRMZM2G474602	15	MEG	Low	-	-
GRMZM2G092101	15	PEG	High	-	Uncharacterized protein
GRMZM2G103164	15	PEG	High	-	Putative leucine-rich repeat receptor-like protein kinase family protein
GRMZM2G324131	15	PEG	High	C2C2- GATA	Putative GATA transcription factor family protein
GRMZM5G830365	15	PEG	High	-	Putative AP2/EREBP transcription factor superfamily protein
GRMZM2G089562	15	PEG	High	-	DNA-binding protein; Uncharacterized protein
AC209624.2_FG001	15	PEG	High	-	-
AC209624.2_FG003	15	PEG	High	-	-
GRMZM2G028366	15	PEG	High	-	-
GRMZM2G093947	15	PEG	High	-	-
GRMZM2G374169	15	PEG	High	-	-
GRMZM2G494808	15	PEG	High	-	-
GRMZM2G099353	15	PEG	Low	-	Uncharacterized protein
GRMZM2G110531	15	PEG	Low	Orphans	Speckle-type POZ protein
GRMZM2G004334	15	PEG	Low	Homeobox	Putative homeobox/lipid-binding domain family protein
GRMZM2G450822	15	PEG	Low	-	-
GRMZM2G062650	17	MEG	High	NAC	NAM-related protein 1
GRMZM2G063498	17	MEG	High	-	-

Supplemental Table 8 Continued									
GRMZM2G041065	17	MEG	High	-	Pyrophosphate-energized vacuolar membrane proton pump				
GRMZM2G179777	17	MEG	Low	-	Triacylglycerol lipase				
GRMZM2G085078	17	MEG	Low	-	-				
GRMZM2G047104	17	PEG	High	-	Putative homeodomain-like transcription factor superfamily protein				
AC191534.3_FG003	17	PEG	High	-	-				
GRMZM2G006732	17	PEG	High	-	-				
GRMZM2G339663	17	PEG	High	-	-				
GRMZM5G897856	17	PEG	High	-	-				
GRMZM2G112925	18	MEG	High	Orphans	-				
GRMZM2G103247	18	MEG	Low	Orphans	Uncharacterized protein				
GRMZM2G147226	18	MEG	Low	-	Uncharacterized protein				
GRMZM2G012071	18	MEG	Low	-	-				
GRMZM2G152764	18	MEG	Low	-	-				
GRMZM2G459363	18	MEG	Low	-	-				
GRMZM2G447406	18	PEG	High	-	Uncharacterized protein				
GRMZM2G449489	18	PEG	High	-	Uncharacterized protein				
GRMZM2G007736	18	PEG	High	-	Uncharacterized protein				
GRMZM2G139406	18	PEG	High	-	Uncharacterized protein				
GRMZM2G048850	18	PEG	High	C2C2- GATA	Uncharacterized protein				
GRMZM2G145123	18	PEG	High	-	Putative RING/U-box superfamily protein; Uncharacterized protein				
GRMZM2G104866	18	PEG	High	AP2- EREBP	Putative AP2/EREBP transcription factor superfamily protein; Uncharacterized protein				
GRMZM2G121570	18	PEG	High	MYB	MYB-type transcription factor				
GRMZM2G084462	18	PEG	High	-	Isopentenyl transferase IPT2				
GRMZM2G037469	18	PEG	High	-	Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1				
GRMZM2G136465	18	PEG	High	-	-				
GRMZM2G164314	18	PEG	High	-	-				
GRMZM2G366435	18	PEG	High	-	-				
GRMZM2G479318	18	PEG	High	-	-				
GRMZM5G871454	18	PEG	High	-	-				
GRMZM2G156794	18	PEG	Low	-	Uncharacterized protein				
GRMZM2G046686	18	PEG	Low	-	Hexokinase-1; Uncharacterized protein				
GRMZM2G131165	18	PEG	Low	-	Anthranilate N-benzoyltransferase protein 1				
GRMZM2G480434	18	PEG	Low	AP2- EREBP	-				
GRMZM2G311401	18	PEG	Low	-	-				
GRMZM2G345189	18	PEG	Low	-	-				
GRMZM2G474620	18	PEG	Low	-	-				

^aStringency of criteria used for defining imprinted/allele-biased gene expression patterns. High indicates genes identified by applying the relatively stringent criteria used by Xin et al. (2013); Low indicates additional genes identified by applying the less stringent criteria used in this study.

Supplemental Table 9. Motif analysis of the endosperm compartment-correlated modules M10, M12, M15, M17, and M18.

Module	Motif	E-value	Motif Sequence	Matching TF ^a
10	1	1.30E-136	[CG]CGCCGCCGCCG	abi4
	2	4.40E-62	ΑΑΑ[ΑΤ]ΑΑΑ[ΑΤ]Α[ΑΤ]Α[ΑΤ]	SOC1
	3	2.50E-56	[GA][GA][AG]GAG[AG][AG][GA]GAG	-
	4	2.20E-54	CAGC[AG]GCAGC	-
	5	1.50E-41	AA[AG]AAAAAAAA	SOC1
	6	4.60E-39	C[GT]CC[GAT]CC[GT]CC	-
	7	2.70E-39		-
	8	2.40E-33	[AT][AT]A[TA][TA]TAT[AT]T[AT][TA]	-
	9	5.10E-28	GG[AG]GG[AG][GA]G[AG][AG]G[GA]	-
	10	3.00E-25	C[GC]TCG[TG]CG[CTG]C	bZIP911
12	1	7.70E-196	CGCCGCCGCCGC	abi4
	2	4.10E-92	CG[CG]CGCCGCC	abi4
	3	1.20E-76	[GA][GA]AGAG[AG][GA]AGAG	-
	4	9.30E-83	ΑΑΑΑΑΑΑ[ΑΤ]Α	SOC1
	5	2.10E-78	C[TG]CCTCC[TG]CC[TG]C	-
	6	4.30E-65	[ΤΑ]Α[ΤΑ]ΑΤΑΤΑ[ΤΑ][ΑΤ]ΤΑ	-
	7	4.40E-55	C[GC][GC]CG[GC]CGGC	ERF1
	8	3.10E-53	CG[TC]CGTCG[CT]C	-
	9	8.70E-51	C[TC]GC[TC]GC[TG]GC	-
	10	1.30E-37	[AT]TTTT[AT]TTT	-
15	1	7.00E-178	CACTCGGCAAAG	-
	2	7.10E-175	GCCGCCGCCGCC	abi4
	3	4.30E-86	GAGAG[AG][GA]AGA[GA][AG]	-
	4	1.00E-68	C[GC]GCG[GC]CG[GC]C	ERF1
	5	3.00E-64	ΑΑΑΑΑ[ΑΤ]ΑΑΑΑ	SOC1
	6	2.70E-43	G[CG][GC]G[CA]GG[CA][GC]G[CG]G	abi4
	7	8.30E-48	C[AG]GCAGC[AG]GC	-
	8	3.70E-46	C[CT][CT]C[CT][CT]C[CT]CC[CT]C	-
	9	9.60E-43		-
	10	5.10E-30		-
17	1	1.20E-154	[GC][CG]CGCCGCCGCC	abi4
	2	3.70E-88		-
	3	1.50E-83	A[AG]AAAAAAA	SOC1
	4	7.40E-97	[AG]GAGA[GA][AG]GAGAG	-
	5	7.30E-48	CCGCCGCCGC	ERF1
	6	3.40E-50	CG[CT]CG[TCG]CGCC	abi4
	7	3.10E-44		SOC1
	8	6.40E-34		-
	9	7.40E-34		
10	10	1.90E-37		
18	1	1.80E-203		abi4
	2	2.40E-182		
	3	1.00E-174		
	4	1.90E-101		
	5	2.00E-99		abi4
	6	9.20E-81		0001
	/	1.90E-81		5001
	8 0	1.80E-104		
	9	2.80E-115		
1	10	1.40E-74		

^aTranscription factors of which the known binding motif most significantly matches the identified motif (q-value < 0.05).

Supplemental Table 10. Occurrences of sub-motifs of each motif enriched in upstream sequences of M18 genes as identified by MEME.

Motif	Sub-motifs	Sites	Motif	Sub-motifs	Sites	Motif	Sub-motifs	Sites
1	CCGCCGCCGCCG	63	5	CGCCGCCGCC	65	8	TAGATAGATAGA	36
	GCGCCGCCGCCG	18		CGGCGCCGCC	32		TAGATATAGATA	31
	TCGCCGCCGCCG	13		CGCCGCCGGC	3		TAGATAGAGATA	10
	CCGCCGCCGCCC	3	6	TAGATATAGATA	24		TAGAGAGAGAGA	8
	GCGCCGCCGCCC	3		TAGATATATATA	13		TAGATATAGAGA	7
2	ΑΤΑΤΑΤΑΤΑΤΑΤ	90		ΤΑΑΑΤΑΤΑΑΑΤΑ	11		TAGATAGATATA	6
	ATATATATAGAT	10		TAGATATAGAAA	10		AAGATAGAGAGA	1
3	TAGATAGATAGA	72		TAGATATAAATA	8		TAGATAGAGAGA	1
	TAGATATATAGA	18		ΤΑΑΑΤΑΤΑΑΑΑ	7	9	AGAGAGAGAGAG	40
	TAGATAAATAGA	10		ΤΑΑΑΤΑΤΑΤΑΑΑ	6		GGAGAGAGAGAG	21
4	CACTCGGCAAAG	45		ΤΑΤΑΤΑΤΑΤΑΤΑ	6		AGAGAGGGAGAG	6
	CACTCGACAAAG	4		ΤΑΑΑΤΑΤΑΤΑΤΑ	4		GGAGAGGGAGAG	6
	CACTCGGCACAG	3		TAGATAAAAAAA	4		GGAGGAGGAGAG	6
	CACTCGGTAAAG	3		TAAATATAGAAA	3		GGAGAAGGAGAA	4
	CTCTCGGCAAAG	3		TAGATATATAAA	3		GGAGAAGGAGAG	4
	CTCTCGGCACAG	3		TAGATATAAAAA	1		GGAGAGAGAGAA	3
	CACCCGGCAAAG	2	7	ΑΑΑΑΤΑΑΑΤΑΑΑ	23		GGAGAAAGAGAG	2
	CACTCAGCAAAG	2		ΑΑΑΑΤΑΑΑΑΑΑ	12		GGAGGGAGAGAG	2
	CACTCGGCAAAA	2		ΑΑΑΑΑΑΑΑΑΑΑ	11		GGAGGGAGAGGG	2
	CACTCGGCAAAC	2		ΤΑΑΑΑΑΑΤΑΑΑ	10		GGAGAGAGAGGG	1
	CACTCGGCAAAT	2		ΑΑΑΑΑΑΑΤΑΑΑ	8		GGAGAGGGAGGG	1
	CACTTGGCAAAG	2		ΤΑΑΑΤΑΑΑΤΑΑΑ	8		GGAGGGGGAGAG	1
	CGCTCGGCAAAG	2		TAGAAAAATAAA	7		GGAGGGGGAGGG	1
	CTCTCGACAAAG	2		AAGAAAAATAAA	5	10	CGGCGGCGGC	40
	TACTCGGCAAAG	2		ΤΑΑΑΑΑΑΑΑΑΑ	4		CGGCGCCGGC	31
	AACTCGGCAAAG	1		ΤΑΑΑΤΑΑΑΑΑΑ	4		CCGCGGCGGC	26
	CACTCGGCGAAG	1		ΑΑΤΑΤΑΑΑΤΑΑΑ	3		CGGCGGCGCC	3
	CACTCGGTACAG	1		AAGATAAATAAA	2			
	CATTCGGCAAAG	1		ΤΑΤΑΤΑΑΑΤΑΑΑ	2			
	CCCTCGGCAAAG	1		ΑΑΑΑΤΑΤΑΤΑΑΑ	1			
	CTCTCAGCAAAG	1						

Supplemental Table 11. Putative functions of the 93 M18 genes that contain at least one MRP-1-binding sub-motifs (Motifs 3a/8a, 6a/8b, 8c, and 8f).

Gene ID	ММ	TF Family	Locus/ TF Name	Functional Annotation
AC196417.3_FG008	0.997666935	-	-	-
AC204876.3_FG006	0.995274098	-	-	-
AC233883.1_FG006	0.98545352	-	-	Uncharacterized protein
GRMZM2G002903	0.980405318	-	-	Uncharacterized protein
GRMZM2G003493	0.709293417	-	-	Uncharacterized protein
GRMZM2G005710	0.925096716	-	-	Uncharacterized protein
GRMZM2G007784	0.97271802	-	-	-
GRMZM2G008271	0.998357469	-	BAP-1A	Basal layer antifungal peptide
GRMZM2G008403	0.997103295	-	BAP-1B	Basal layer antifungal peptide
GRMZM2G009427	0.995625792	-	-	-
GRMZM2G010762	0.994304527	-	-	Early nodulin-like protein 3
				Putative leucine-rich repeat receptor-
GRMZM2G011896	0.988628322	-	_	like protein kinase family protein:
				Uncharacterized protein
GRMZM2G017869	0.995815117	-	-	Uncharacterized protein
GRMZM2G024350	0.995946537	-	-	Uncharacterized protein
GRMZM2G027472	0.995775449	-	-	Uncharacterized protein
GRM7M2G028386	0.995641682	AP2-FRFBP	FRFB137	-
GRMZM2G034862	0.995837595	-	-	Uncharacterized protein
GRMZM2G045082	0.995397205	-	_	Putative uncharacterized protein
GRMZM2G045638	0.978759996	-	_	Uncharacterized protein
GRMZM2G047833	0.995274098	-	_	
GRMZM2G048850	0.607116411		GATA33	Uncharacterized protein
	0.007110411	0202 0/11/1	0/11/100	Putative MYB DNA-binding domain
GRMZM2G049695	0.930118941	MYB-related	MYBR24	superfamily protein
GRMZM2G049912	0.950990813	-	-	Uncharacterized protein
GRMZM2G050407	0.966973351	-	-	Uncharacterized protein
GRMZM2G054359	0.996226267	-	-	Uncharacterized protein
GRMZM2G054632	0.977265787	-	-	Uncharacterized protein
GRMZM2G058703	0.998757072	-	-	Uncharacterized protein
GRMZM2G060991	0.984451944	-	_	-
GRMZM2G066546	0.982044708	-	-	Uncharacterized protein
GRMZM2G076370	0.997249693	-	-	Uncharacterized protein
GRMZM2G079547	0.994976509	-	-	Uncharacterized protein
GRMZM2G082785	0.991592203	-	BETL-1	BET1 protein
GRMZM2G082799	0.978839534	-	-	BET1 protein
GRMZM2G086827	0.998053357	-	MEG-10	-
GRMZM2G086835	0.923876737	-	-	Zinc finger protein 7
GRMZM2G088896	0.998693431	-	MEG-9	
GRMZM2G001445	0.999221086	-	BETI -10	Putative defensin
GRMZM2G004054	0.000221000	-	MEG-6	Putative uncharacterized protein
CRMZM2C005337	0.885645043	_		
01111/20030307	0.000040040	-	-	Acid phosphatase 1: Uncharacterized
GRMZM2G103526	0.7672607	-	-	protein
GRMZM2G106655	0.99900411	-	-	-
GRMZM2G107302	0.999258566	-	-	Uncharacterized protein
GRMZM2G107754	0.99443088	-	-	Uncharacterized protein
GRMZM2G110395	0.833343634	-	-	-
GRMZM2G110816	0.987045749	-	-	Uncharacterized protein
GRMZM2G115574	0.993363479	-	-	Uncharacterized protein
GRMZM2G128531	0.995574221	-	-	Blue copper protein
GRMZM2G131982	0.99682921	DBB	-	-

Supplemental Table 11 Continued				
				Putative GATA transcription factor
GRMZM2G118214	0.789535171	C2C2-GATA	GATA7	family protein; Uncharacterized
			_	protein
GRM7M2G122437	0.970709069	-	-	Uncharacterized protein
				Putative cytochrome P450
GRMZM2G126055	0 972985678	_	-	superfamily protein. Uncharacterized
	0.072000010			protein
GRM7M2G133370	0.008120023		BAD-3B	Basal laver antifungal pentide
	0.006009427	-		Pasal laver antifungal poptide
	0.990000427	-	DAF-JA	
GRIVIZIVIZG 133407	0.900070990	-	-	
GRIVIZIVIZG 130771	0.995082732	-		
GRIMZM2G137959	0.998934848	-	MEG-4	MEG4
GRMZM2G141574	0.950302131	-	-	-
GRMZM2G147226	0.968661535	-	-	Uncharacterized protein
GRMZM2G148270	0.984627461	-	-	Putative uncharacterized protein
GRMZM2G152655	0 999157709	-	BAP-2	Basal layer antifungal protein2;
	0.000101100		5, " 2	Uncharacterized protein
GRMZM2G156794	0.995986927	-	-	Uncharacterized protein
GRMZM2G158400	0.997452659	-	-	Uncharacterized protein
GRMZM2G158407	0.999145715	-	-	-
GRMZM2G165535	0.986253278	-	-	Uncharacterized protein
GRMZM2G170181	0.695195223	-	-	-
GRMZM2G172596	0.998045775	-	-	GAST1 protein
	0.004600115			Putative cytochrome P450
GRIMZIMZG175250	0.994699115	-	-	superfamily protein
GRMZM2G175896	0.997778567	-	MEG-12	-
GRMZM2G175912	0.999396321	-	MEG-13	-
GRMZM2G181051	0.998899063	-	MEG-11	-
GRMZM2G332483	0.99739216	-	-	Uncharacterized protein
GRMZM2G332703	0.983249958	-	-	-
GRMZM2G341010	0.998049519	-	-	Uncharacterized protein
GRMZM2G342246	0.99535502	-	-	Beta-expansin 7
001/21/000/2050	0.040405004			Plastid-specific 30S ribosomal protein
GRMZM2G347956	0.843165264	-	-	1
GRMZM2G354335	0.998651579	-	MEG-1	Putative uncharacterized protein
GRMZM2G383937	0.995865784	-	-	-
GRM7M2G406552	0.791376554	-	-	Nonspecific lipid-transfer protein
GRMZM2G409309	0.996479121	-	-	-
				Putative MYB DNA-binding domain
GRMZM2G422083	0.995972492	MYB-related	MYBR33	superfamily protein
GRM7M2G426158	0 995470482	-	-	-
GRMZM2G466545	0.964270672	-	-	Uncharacterized protein
GRMZM2G487702	0.004270072		-	
GIUNZUIZOTOTIOZ	0.000000470			MEG2: Maternally expressed gene 2:
GRMZM2G502035	0.998543642	-	MEG-2	Lincharacterized protein
GRM7M5G800473	0 996024857		-	
GPM7M5G802585	0.00024007	-	-	Incharacterized protein
	0.000302372	-	-	
	0.922133209	-	-	
	0.999152	-	-	
	0.93249873	-	-	-
	0.623012716	-	-	Uncharacterized protein
GRMZM5G888860	0.95/0/3782	-	-	-
GRMZM5G890815	0.954454282	-	-	-
I GRMZM5G897740	0.998634244	-	-	Uncharacterized protein

Gene ID	Locus/TF Name	Sub-motifs Contained in Promoter ^a	Y1H Results ^b
AC184794.2 FG003	-	None	_
GRMZM2G009854	-	None	+
GRMZM2G016145	TCRR-1	None	(+)
GRMZM2G027472	-	3a/8a (3), 6a/8b (2), 8c (1), 8f (1)	+
GRMZM2G030403	MYBR9	None	_
GRMZM2G034862	-	3a/8a (1), 8f (1)	+
GRMZM2G054359	-	3a/8a (5), 6a/8b (1), 8f (3)	+
GRMZM2G055621	-	None	_
GRMZM2G058703	-	3a/8a (2)	+
GRMZM2G062565	-	None	+
GRMZM2G063042	-	None	+
GRMZM2G070399	-	None	_
GRMZM2G072219	-	None	_
GRMZM2G082799	-	6a/8b (1), 8c (1)	+
GRMZM2G084462	-	None	_
GRMZM2G087413	-	None	+
GRMZM2G091445	-	6a/8b (1)	+
GRMZM2G107302	-	3a/8a (6)	+
GRMZM2G111306	MRP-1	None	_
GRMZM2G112925	-	None	_
GRMZM2G121111	MYBR81	None	_
GRMZM2G123411	-	None	+
GRMZM2G125386	-	None	_
GRMZM2G133370	-	3a/8a (1), 6a/8b (1), 8c (1)	+
GRMZM2G133382	-	3a/8a (5), 8c (1)	+
GRMZM2G136771	-	3a/8a (5), 6a/8b (1)	+
GRMZM2G138392	-	None	(+)
GRMZM2G141574	-	6a/8b (2), 8f (1)	+
GRMZM2G152655	BETL-2	3a/8a (4), 8c	+
GRMZM2G158407	-	3a/8a (2)	+
GRMZM2G175912	-	6a/8b (3)	(+)
GRMZM2G175976	BETL-3	None	-
GRMZM2G181051	-	8f (1)	+
GRMZM2G332483	-	3a/8a (1), 8c (1), 8f (1)	+
GRMZM2G354335	MEG-1	6a/8b (2), 8f (1)	+
GRMZM2G386276	-	None	-
GRMZM2G402156	MYBR19	None	-
GRMZM2G422083	MYBR33	6a/8b (2)	+
GRMZM2G426158	-	3a/8a (2)	+
GRMZM5G800473	-	6a/8b (1)	+
GRMZM5G812796	-	6a/8b (1)	+
GRMZM5G897740	-	8f (1)	+

Supplemental Table 12. Results of Y1H assays for binding of MRP-1 to the promoters of genes within M18.

^aThe number in parenthesis indicates the number of copies of that sub-motif.

^bScoring: + indicates strong positive, (+) indicates weak positive, – indicates negative. Images of the Y1H growth assays are shown in Supplemental Figure 16.

Supplemental Table 13. Sequences of the primers used to generate the clones for the *in situ* hybridization probes.

Gene ID	Forward Primer	Reverse Primer
GRMZM2G008271	TCTAGTTCATCACCCATGGC	GATCATGCATTAAGAGGGTC
GRMZM2G058703	CACATTGTTAGTATTAGACC	TAAAGCAGGAAGGGGAGAGG
GRMZM2G087413	TAAAGATCTCAGTGTCACAC	AGCCAGGTTGAAACGGCCTC
GRMZM2G089713	TACATTCTGGATCAGGTCCG	CCCTTCAACTTGTACTCGTC
GRMZM2G091774	GGAGGCCTCCTCAAGATTGG	AGCATAATAGCATCAGTTGG
GRMZM2G107302	AGTACACGACTCAGCCATTG	GACACCAAAATACTATATGC
GRMZM2G121137	TATCAGTATCTTCCACAAGC	CAAAACACCAACACAAATGC
GRMZM2G123411	СТСТАААСТСАААСАААТАС	CGAGTGCTTCAGACACTCGG
GRMZM2G132162	AGCATACTATTAGACATACC	GAGGCCACGTATGGAGAACC
GRMZM2G133370	GATCTTATCCATCACCTATG	CTAATATCATTGAAGACACAC
GRMZM2G149869	CGCCGACGCAAGACTACCAG	ACCTAACACCTGATGAATCC
GRMZM2G158400	GGAGAAGAAATTACAGATCC	TAGTAAAGATTTATGAGCAC
GRMZM2G158407	GAACATCGAAAGTATCATGC	AACAGTTTTGTTCATATCTC
GRMZM2G170400	AAAGCTTGTGGGGAAAATGG	GTGAAGGATGGTGTCACGGC
GRMZM2G175912	CATGTCACAAATGATATCGG	TGACTAAATTTCGCGAATCG
GRMZM2G332483	CAAGATCAGCCCCAAGCACG	ACTTATCTTATTGAGTTCAC
GRMZM2G426158	ATAGGCAATGTAAGAGTAGC	TTGAGACTGTTTCGAGATAG
GRMZM2G429899	GGCTACACAAATGCCTGAAG	ACATCCAGAGCTGACACGTG
GRMZM2G437435	TGGATGCTACACTCCTATCG	ATGGCTCCTCGTTGCTCAGC
GRMZM5G812796	CGATCGTCGTCGCAGAAAGG	GAAATACTCCACATGCATTG

Supplemental Table 14. Sequences of the primers used to generate the constructs to test the sub-motifs in Y1H assays. The sub-motif sequences are in bold red letters and are underlined. In all constructs, the sequence of the reverse primer was GATCCTCGAGGGACTAGCTAGACAAGCTCTC.

Sub-motif	Forward Primer
3a/8a	GATCAAGCTTA TAGATAGATAGA TTAAGCGTATCGCTAG
3b	GATCAAGCTT <u>TAGATATATAGA</u> TTAAGCGTATCGCTAG
3c	GATCAAGCTT TAGATAAATAGA TTAAGCGTATCGCTAG
6a/8b	GATCAAGCTTATAGATATAGATA
6b	GATCAAGCTTA TAGATATATATA TTAAGCGTATCGCTAG
6c	GATCAAGCTT TAAATATAAATA TTAAGCGTATCGCTAG
6d	GATCAAGCTT TAGATATAGAAA TTAAGCGTATCGCTAG
6e	GATCAAGCTT TAGATATAAATA TTAAGCGTATCGCTAG
6f	GATCAAGCTT <u>TAAATATAAAAA</u> TTAAGCGTATCGCTAG
6g	GATCAAGCTT TAAATATATAAA TTAAGCGTATCGCTAG
6h	GATCAAGCTT TATATATATATA TTAAGCGTATCGCTAG
6i	GATCAAGCTT TAAATATATATA TTAAGCGTATCGCTAG
6ј	GATCAAGCTT TAGATAAAAAA TTAAGCGTATCGCTAG
6k	GATCAAGCTT <u>TAAATATAGAAA</u> TTAAGCGTATCGCTAG
61	GATCAAGCTT TAGATATATAAA TTAAGCGTATCGCTAG
6m	GATCAAGCTT TAGATATAAAAA TTAAGCGTATCGCTAG
8c	GATCAAGCTT TAGATAGAGATA TTAAGCGTATCGCTAG
8d	GATCAAGCTT TAGAGAGAGAGA TTAAGCGTATCGCTAG
8e	GATCAAGCTT TAGATATAGAGA TTAAGCGTATCGCTAG
8f	GATCAAGCTT <u>TAGATAGATATA</u> TTAAGCGTATCGCTAG
8g	GATCAAGCTTAAGATAGAGAGAGA
8h	GATCAAGCTT <u>TAGATAGAGAGA</u> TTAAGCGTATCGCTAG

Supplemental Table 15. Sequences of the primers used to generate the constructs to test the promoters in Y1H assays.

Gene ID	Forward Primer	Reverse Primer	
AC184794.2_FG003	GATCAAGCTTGTCTAGAATGGTTTA GTGTAG	GATCCTCGAGGCACTTTCCGCAGATCCC ATATG	
GRMZM2G009854	GATCAAGCTTCAGCTACACCTGAAA ACCTAAAC	GATCCTCGAGCTTTTTGATGATTTAGCAG GTGG	
GRMZM2G016145	GATCAAGCTTCGTCTACTTCTTGCT CTAGATC	GATCCTCGAGGGACTAGCTAGACAAGCT CTC	
GRMZM2G027472	GATCGGTACCATGGTGTGGAACGA CCGTTG	GATCCTCGAGATGGATGACCGATAAGAG C	
GRMZM2G030403	GATCAAGCTTGAATAGTGGTATGAA CTATGC	GATCCTCGAGGAGAGTTGAGGATTGAGT AC	
GRMZM2G034862	GATCAAGCTTGGCCTCTAACGTAAT GGTTAAGG	GATCCTCGAGGGGTGATTAGAAAATACT AATGCC	
GRMZM2G046532	GATCAAGCTTGGCATGTACATAGGG CTCTG	GATCCTCGAGTATTCTATCCTTTGAGATG GAATG	
GRMZM2G054359	GATCAAGCTTGGTGTTGGTTAGTCA CAAGTC	GATCCTCGAGGGGTGCTAGATGAGAGCT AATACC	
GRMZM2G055621	GATCAAGCTTGATGGGGAGAGGCA TGTAAC	GATCCTCGAGGTCGTATGAACAGGAGTG C	
GRMZM2G058703	GATCAAGCTTATCAGGATACAATCG TTCTG	GATCCTCGAGGGGTGATGAACTAGAAAG TG	
GRMZM2G062565	GATCGGTACCGGTTTGTGCTGAACC TTTGG	GATCCTCGAGGGACAGTGAGTGACCTAA CTATG	
GRMZM2G063042	GATCGGTACCGACCGAAGGGGAAA AAGAC	GATCCTCGAGGGTTTGTTTATATTTGCTA G	
GRMZM2G070399	GATCAAGCTTCATGGGTTGCACGTG AAC	GATCCTCGAGCGACGATCTACACTGCTG TC	
GRMZM2G072219	GATCAAGCTTCTATCTTCTACATTCT TTGCC	GATCCTCGAGTTTGTAGTGCTATATGTGG ATTGG	
GRMZM2G082799	GATCAAGCTTCCTTTTCTTTATACCA CATGCC	GATCCTCGAGAAGGAAAGATGATCAAGC TTC	
GRMZM2G084462	GATCAAGCTTGGATCGATGACGTGA TCAAG	GATCCTCGAGGTCTTGATGATCTTGATTA TTGTAGCC	
GRMZM2G087413	GATCAAGCTTGGGATTTTGTAGGAA TCATC	GATCCTCGAGGGGTATAACTTCAACTGTT G	
GRMZM2G091445	GATCAAGCTTACCACTGCTTGCTAG TGATTTC	GATCCTCGAGTGAGGAGAACAGCATACA CATG	
GRMZM2G107302	GATCAAGCTTGTAGTTCAGCAGAAA ACAGCACGC	GATCCTCGAGCGAGCGTGTACTGCACGC ACAT	
GRMZM2G111306	GATCAAGCTTATATCACAAGGAAAG ATATG	GATCCTCGAGGAGGTGCGAGGGATTAAG TAC	
GRMZM2G112925	GATCAAGCTTGCCTTTACGGGCTTT TTAGG	GATCCTCGAGGTTTCCTTGGGCTTTGG	
GRMZM2G115340	GATCGGTACCAAAAGAGGTGGGAT CACCC	GATCCTCGAGCCATCAGCAACTAACGTT TC	
GRMZM2G121111	GATCAAGCTTAGAGGAGCGGTTGAA CACTG	GATCCTCGAGCGGCCGGGGTTAGCTAA GCTAG	
GRMZM2G123411	GATCAAGCTTGCCCGTCCTGTCCTA CAACG	GATCCTCGAGGGGTGAAAAGGGTAAGAG C	
GRMZM2G125386	GATCAAGCTTCTTGGTTTTGGTGAA TTGTGCC	GATCCTCGAGAGAGGAAACAATTGTTCTT GC	
GRMZM2G133370	GATCGGTACCGCGGTTGGTAGACA GGTAGG	GATCCTCGAGAGGTGATGGATAAGATCT AATA	

Supplemental Table	15 Continued	
GRMZM2G133382	GATCAAGCTTCTCGAATAATCTAATG TATTC	GATCCTCGAGTGTGATGGATAAGAGCTA ATAATA
GRMZM2G136771	GATCAAGCTTAAAGCAATGCTCATC TTTAACC	GATCCTCGAGGTGAAATGAAGAGGAGTG G
GRMZM2G138392	GATCAAGCTTCGGTTTTGAATGTGC	GATCCTCGAGGTCAGACACGATGAGAGA G
GRMZM2G141574	GATCAAGCTTATGCACTTTGGATATA CC	GATCCTCGAGAAGAAGAGGATATATAGA TC
GRMZM2G150680	GATCGGTACCCGTGGGTTTCGTACC CAC	GATCCTCGAGATCAGCACAAGATCCAAG G
GRMZM2G152655	GGCCGGTACCAGTTGATATAACTAG ATAGG	GATCCTCGAGGGGTGACAGATGATATGA GC
GRMZM2G158407	GATCAAGCTT CTGTCTCGGATGGAAAAAC	GATCCTCGAGGGTTAATTATTTGGGTGA GGA
GRMZM2G175912	GATCGGTACCACGGTTAATAGTAGA GCCAG	GCCCTCGAGGACGCAAGAAAATCTAAAG AAC
GRMZM2G175976	GATCAAGCTTCAAATTACCCGCAGG GGTATG	GATCCTCGAGTGTAGTTTGCTATCACCCT T
GRMZM2G181051	GATCAAGCTTAACTTCTGCAGAGTG TTTTG	GATCCTCGAGGTCGCAAGAAAATTTAAG GAAC
GRMZM2G314094	GATCAAGCTTCGAGAGCCTAACTTC ACCCAAC	GATCCTCGAGCACAAATTAAATGCATAGA AG
GRMZM2G332483	GATCGGTACCATACATAGATGGACA AACTG	GATCCTCGAGGAGATGAGAGCACAATAT TAC
GRMZM2G354335	GGCCGGTACCTCTCGACACAGGTA GGTAG	GATCCTCGAGGTCGCAAGAAATGTTAAG GAAC
GRMZM2G386276	GATCCCCGGGGTAGGAACTCACATA AG	GATCCTCGAGCTTTAAGTTAAATATGGTA CC
GRMZM2G402156	GATCAAGCTTGCCCTGGACGGTTCG CGATTAG	GATCCTCGAGGGGGGTTGGGTACTACGAT ATATG
GRMZM2G422083	GATCAAGCTTCCATACAGATATAGG TATATG	GATCCTCGAGACATGGATGGAGAAAAGG GC
GRMZM2G426158	GATCAAGCTTCGAGCCTTCGCATCG TTGATC	GATCCTCGAGGGTCGTATGAACAGGAGT GCTAG
GRMZM2G846314	GATCAAGCTTCGGAAAGGACAGGA CGTGTG	GATCCTCGAGGATGCAACAAATACCTCC TAC
GRMZM5G800473	GATCAAGCTTCGAGCGAGCCGGAA GTTTG	GATCCTCGAGATTGGAATGTATGTGAGT GAG
GRMZM5G812796	GATCAAGCTTCTTCTGACCATTGGC TCTG	GATCCTCGAGGAGGAAACGAGTATTCTT GC
GRMZM5G897740	GATCAAGCTTCAAGTTTCATACCAAT ATACG	GATCCTCGAGCGCCACCACTTCTTCTCT G

Supplemental References

- Balandín, M., Royo, J., Gómez, E., Muniz, L.M., Molina, A., and Hueros, G. (2005). A protective role for the embryo surrounding region of the maize endosperm, as evidenced by the characterisation of ZmESR-6, a defensin gene specifically expressed in this region. Plant molecular biology **58**, 269-282.
- Chen, J., Zeng, B., Zhang, M., Xie, S., Wang, G., Hauck, A., and Lai, J. (2014). Dynamic transcriptome landscape of maize embryo and endosperm development. Plant physiology 166, 252-264.
- **Gómez, E., Royo, J., Guo, Y., Thompson, R., and Hueros, G.** (2002). Establishment of Cereal Endosperm Expression Domains Identification and Properties of a Maize Transfer Cell–Specific Transcription Factor, ZmMRP-1. The Plant cell **14**, 599-610.
- Gómez, E., Royo, J., Muñiz, L.M., Sellam, O., Paul, W., Gerentes, D., Barrero, C., López,
 M., Perez, P., and Hueros, G. (2009). The maize transcription factor myb-related
 protein-1 is a key regulator of the differentiation of transfer cells. The Plant cell 21, 2022-2035.
- Gutiérrez-Marcos, J.F., Costa, L.M., Biderre-Petit, C., Khbaya, B., O'Sullivan, D.M., Wormald, M., Perez, P., and Dickinson, H.G. (2004). maternally expressed gene1 is a novel maize endosperm transfer cell–specific gene with a maternal parent-of-origin pattern of expression. The Plant cell **16**, 1288-1301.
- Hueros, G., Varotto, S., Salamini, F., and Thompson, R.D. (1995). Molecular characterization of BET1, a gene expressed in the endosperm transfer cells of maize. The Plant cell **7**, 747-757.
- Hueros, G., Royo, J., Maitz, M., Salamini, F., and Thompson, R.D. (1999). Evidence for factors regulating transfer cell-specific expression in maize endosperm. Plant molecular biology 41, 403-414.
- Li, G., Wang, D., Yang, R., Logan, K., Chen, H., Zhang, S., Skaggs, M.I., Lloyd, A., Burnett, W.J., Laurie, J.D., Hunter, B.G., Dannenhoffer, J.M., Larkins, B.A., Drews, G.N., Wang, X., and Yadegari, R. (2014). Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America 111, 7582-7587.
- Magnard, J.-L., Le Deunff, E., Domenech, J., Rogowsky, P.M., Testillano, P.S., Rougier, M., Risueño, M.C., Vergne, P., and Dumas, C. (2000). Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize. Plant molecular biology 44, 559-574.
- Magnard, J.L., Lehouque, G., Massonneau, A.E., Frangne, N., Heckel, T., Gutierrez-Marcos, J.F., Perez, P., Dumas, C., and Rogowsky, P.M. (2003). ZmEBE genes show a novel, continuous expression pattern in the central cell before fertilization and in specific domains of the resulting endosperm after fertilization. Plant molecular biology 53, 821-836.
- Massonneau, A., Condamine, P., Wisniewski, J.-P., Zivy, M., and Rogowsky, P.M. (2005). Maize cystatins respond to developmental cues, cold stress and drought. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression **1729**, 186-199.
- Muniz, L.M., Royo, J., Gomez, E., Baudot, G., Paul, W., and Hueros, G. (2010). Atypical response regulators expressed in the maize endosperm transfer cells link canonical two component systems and seed biology. BMC plant biology **10**, 84.

- Muñiz, L.M., Royo, J., Gómez, E., Barrero, C., Bergareche, D., and Hueros, G. (2006). The maize transfer cell specific type-A response regulator ZmTCRR-1 appears to be involved in intercellular signalling. The Plant Journal **48**, 17-27.
- Royo, J., Gomez, E., Sellam, O., Gerentes, D., Paul, W., and Hueros, G. (2014). Two maize END-1 orthologs, BETL9 and BETL9like, are transcribed in a non-overlapping spatial pattern on the outer surface of the developing endosperm. Frontiers in plant science 5, 180.
- Serna, A., Maitz, M., O'Connell, T., Santandrea, G., Thevissen, K., Tienens, K., Hueros, G., Faleri, C., Cai, G., and Lottspeich, F. (2001). Maize endosperm secretes a novel antifungal protein into adjacent maternal tissue. The Plant Journal **25**, 687-698.
- Wisniewski, J.-P., and Rogowsky, P.M. (2004). Vacuolar H+-translocating inorganic pyrophosphatase (Vpp1) marks partial aleurone cell fate in cereal endosperm development. Plant molecular biology **56**, 325-337.
- Woo, Y.M., Hu, D.W.N., Larkins, B.A., and Jung, R. (2001). Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. The Plant cell 13, 2297-2317.
- Xin, M., Yang, R., Li, G., Chen, H., Laurie, J., Ma, C., Wang, D., Yao, Y., Larkins, B.A., and Sun, Q. (2013). Dynamic expression of imprinted genes associates with maternally controlled nutrient allocation during maize endosperm development. The Plant cell 25, 3212-3227.