

Supplemental Figure 1: Phenotypes for key inflorescence mutants in pea.

This figure summarises the main phenotypic features of key pea mutants described in the introduction of this study. For each mutant, a diagram of inflorescence architecture (left), and schematic of the meristem transitions involved (right) are shown for the most severe mutant allele described. **(A)** Wild-type.

(B) The *pim* mutant, which bears proliferating secondary inflorescences (I_2s) in the place of single flowers. After one or more iterations of I_2 structures, flowers are borne, usually with abnormal morphology (Taylor et al., 2002).

(C) The det mutant, which exhibits termination of the main stem in an ectopic I₂ (Singer et al., 1990).

(E) The *veg1* and *gigas* mutants, which share a non-flowering phenotype with aerial branching under LD conditions (Beveridge and Murfet, 1996; Berbel et al., 2012).

In diagrams, arrows indicate the potential for indeterminate growth, green ovals are leaves, pink circles are flowers and blue triangles are stubs terminating each secondary inflorescence (I_2) axis. In schematics, straight arrows indicate meristem transitions and products, and circular arrows indicate meristem indeterminacy. Meristem abbreviations are as follows: vegetative meristem (VM), primary inflorescence meristem (I_1 M), secondary inflorescence meristem (I_2 M), floral meristem (FM).

Supplemental Figure 2: Branching in the veg2 mutants.

Characterisation of branch outgrowth throughout development for intact *veg2-1* and *veg2-2* mutant plants, and their associated wild-type (WT) lines (siblings of *veg2-1*, and line NGB5839, respectively), and deflowered wild-type plants (WT-F: line NGB5839, each flower removed after anthesis). Increase in length of the main lateral branch at each node was calculated from measurements taken at five weekly time points during development (43-71 days after sowing) and a final time point when wild-type plants were senescing (97 days after sowing). Stem node is shown on the y-axis and branch length on the x-axis to represent an upright plant with lateral branches. Branch length is not shown for reproductive nodes in wild-type and *veg2-2* plants as an I_2 was present as the main lateral structure at these nodes. Mean values \pm standard error are shown for n = 5 to 6 plants grown in LD (24 light), from the same experiment shown in Figure 2C.

Supplemental Figure 3: DET expression in non-flowering gigas and veg1 mutants.

Relative expression of *DET* transcript as a marker of primary inflorescence (I_1) identity in dissected shoot apices during early floral development in wild-type (WT; line NGB5839 or wild-type sibling of *veg1*), 45 days after sowing under LD (18 light/6 dark) conditions, in the same experiment shown in Figures 2E and 6B. Note that expression of *DET* at levels equal to or higher than wild-type indicate acquisition of I_1 identity has occurred prior to this time point, similar to wild-type. Mean ± standard error are shown for n = 2 to 3 biological replicates. For more detailed resolution of *DET* expression in these mutants, please refer to Hecht et al. (2011) and Berbel et al. (2012).

Supplemental Figure 4: Floral morphology in the *veg2-2* mutant.

(A-F) Examples of flowers exhibiting the range in severity of floral morphology defects observed in *veg2-2* mutant plants. Flowers range from (A) those defective in all whorls to (F) flowers with wild-type morphology.
(G) Photo of a *veg2-2* mutant plant exhibiting decreasing floral defects with increased reproductive node. Scale bars indicate 1mm.

Supplemental Figure 5: The pim-2 veg2-2 double mutant phenotype. Legend over page.

Supplemental Figure 5: The pim-2 veg2-2 double mutant phenotype.

(A-D) The *pim-2* single mutant. (A) Diagram of the *pim* stem. (B) Photograph of aerial stem nodes. (C) Diagram and (D) photograph of the *pim* secondary inflorescence (I_2) with normal I_2 morphology but groups of proliferating abnormal I_2 structures borne in place of single flowers. Arrows indicate where the pedicel of a single flower would be in wild-type.

(E-J) The *pim-2 veg2-2* double mutant. (E) Diagram of the *pim veg2-2* stem. (F) Photograph of aerial stem nodes. Branches that had a bract present instead of a leaf at the first branch node (arrows in F) developed instead of I₂ structures at aerial nodes. The presence of a bract made these branches distinct from vegetative branches at lower nodes, but reminiscent of the 'I₂' structures in *veg2-2*, which have a bract subtending each flower. Once initiated, these branches were present at every subsequent aerial node, as is seen for I₂ structures in wild-type pea. *pim veg2-2* plants lacked recognisable flowers, but eventually produced floral organs at upper nodes on branches and/or the main stem. (G) Diagram and (H) photograph of a branch borne on the main stem of the *pim veg2-2* double mutant, which had a bract (B) at the first node (arrow in H), leaves (L) at subsequent nodes, and showed acquisition of partial floral identity at later nodes. (I) Leaf dissected from an upper node of a branch that acquired partial floral identity, with an axillary stamen (arrow; inset at higher magnification). (J) A reduced leaf (back) dissected from an upper branch node, with a stamen (arrow; inset at higher magnification) fused to the leaf in place of a rachis.

(K-L) Bracts and associated axillary structures in *veg2-2* and *veg2-2 pim*. **(K)** Bract dissected from a *veg2-2* 'l₂', where the bract subtended an axillary flower (removed for clarity and shown inset only). **(L)** Bract dissected from a *veg2-2 pim* aerial branch, shown subtending an axillary bud which also had a bract at the first node (arrow), and eventually acquired partial floral identity (stamens visible in dissected bud, inset).

(M-N) Comparison of (M) node of floral initiation in wild-type (WT), *pim* and *veg2-2* single mutants, and (N) node of first axillary structure borne from the main stem bearing a bract instead of a leaf at the first node. In *veg2-2* the node of floral initiation is the same as the node of first bract, as *veg2-2* I₂ structures have bracts subtending each flower. Values represent mean \pm standard error for *n* = 11-14 plants per genotype.

In diagrams, arrows indicate the potential for indeterminate growth, pink arrows indicate the acquisition of partial floral identity, white squares are abnormal flowers (F^*), blue triangles are terminal stubs (S), and green ovals are leaves (L) or bracts (B).

Scale bars in photographs indicate 2mm.

Supplemental Figure 6: Comparative map for pea and Medicago showing relative locations of *VEG2/FDa* and surrounding genes.

Corresponding genes are linked between pea linkage group I (Ps LGI) and Medicago chromosome 5 (Mt Chr5) by dashed lines. For pea, distances were estimated from the segregation data of two F_2 populations from crosses between *veg2-2* and Solara (114 plants), and NGB5839 and JI1794 (92 plants), using JoinMap software (v4; Kyazma B.V., Wageningen, Netherlands). There were no recombination events between *FDa* and *VEG2*, using a marker for *FDa* based on the G536A SNP (Figure 4), which co-segregated perfectly with *veg2-2* phenotype. Full details for markers and corresponding Medicago genes are given in Supplemental Table 1.

Supplemental Figure 7: Phylogram of the angiosperm FD family. Legend over page.

Supplemental Figure 7: Phylogram of the angiosperm FD family.

Phylogram of FD proteins from diverse eudicot and monocot species. Proteins previously identified as FD-like that fall outside the core FD family (GmFDL19, Medtr7g088090, TaFDL2 and TaFDL6; Li and Dubcovsky, 2008; Pierre et al., 2008; Nan et al., 2014) and other related group A bZIP proteins (AtAREB3 and OsAREB3) are also included. Alternative names for previously identified soybean proteins GmFDL02 (GmFDb1), GmFDL04 (GmFDc1) and GmFDL0602 (GmFDc2) are adopted to better reflect wider phylogenetic relationships. Bootstrap values obtained from 10,000 trees are indicated as a percentage above each branch. Branches with bootstrap values <55% have been collapsed. Legume FD proteins are shown in bold. The analysis is based on the sequence alignment shown in Supplemental Dataset 2. Sequence details and species abbreviations are given in Supplemental Table 2.

Supplemental Figure 8: Microsynteny between genomic regions containing *FD* and flanking genes in Arabidopsis and legume species.

The genes flanking *FD* in Arabidopsis (At), and legume *FDa*, *FDb*, and *FDc* genes in Medicago (Mt), common bean (Pv) and soybean (Gm) are shown. Genes are represented as boxes with point showing putative direction of transcription. Gene details are given in Supplemental Table 4. Chromosome number is indicated for each species. Between species, corresponding genes are connected by dashed lines.

Supplemental Figure 9: Conserved nature of the amino acid altered by the veg2-2 SNP.

(A) Alignment of predicted protein sequence for the bZIP domain showing conservation of the arginine altered in the *veg2-2* mutant between FD proteins from diverse eudicot species (Ac, Kiwifruit; Aquca, Aquilegia; At, Arabidopsis; Cs, Cucumber; Eg, Eucalyptus; Fv, Strawberry; Gr, Cotton; Md, Apple; Me, Cassava; Pp, Peach; Pt, Poplar; Sl, Tomato; Vv, Grape) and monocot species (Bd, Brachypodium; Hv, Barley; Ma, Banana; Os, Rice; Pd, Date palm; Sb, Sorghum; Si, Foxtail millet; Ta, Wheat; Zm, Maize).

(B) Alignment of the bZIP domain and surrounding region for all Arabidopsis bZIP family proteins, illustrating conservation of the arginine altered in the pea *veg2-2* mutant (arrow). Letters in parenthesis indicate group of bZIP protein as defined by Corrêa (2008).

Shading in alignments indicates degree of conservation: black = 100%, dark grey = 80\%, light grey = 60%. Sequence details are given in Supplemental Table 2.

В

		¥
AtFD	(A)	GNRRHKRMIKNRESAARSRARKQAYTNELELEVAHLQAENARLKR
AtFDP	(A)	GDRRYKRMIKNRESAARSRARKQAYTNELELEIAHLQTENARLKI
AtABF1	(A)	VERRQKRMIKNRESAARSRARKQAYTLELEAEIESLKLVNQDLQK
ALABEZ	(A) (A)	VERRORMIKNRESAARSRARKOAYTVELEAEVAKIKEENDELOR
AtABF4	(A)	IERRORMIKNRESAARSRARKOAYTLELEAEIEKUKKTNOELOK
AtABI5	(A)	VERRQRRMIKNRESAARSRARKQAYTVELEAELNQLKEENAQLKH
AtAREB3	(A)	VERRQKRMIKNRESAARSRARKQAYTHELEIKVSRLEEENERLRK
AtbZIP13	(A)	AAQRQRRMIKNRESAARSRERKQAYQVELEALAAKLEEENELLSK
AtbZIPI5	(A) (A)	
AtDPBF4	(A)	VERROKRMIKNRESAARSRARKOAYTHELEIKVSRLEEENEKLRR
AtGBF4	(A)	AAQRQKRMIKNRESAARSRERKQAYQVELETLAAKLEEENEQLLK
AtbZIP17	(B)	DEKKRARLMRNRESAQLSR <mark>Q</mark> RKKHYVEELEEKVRNMHSTITDLNG
AtbZIP28	(B)	DKRKLIRQIRNRESAQLSRLRKKQQTEELERKVKSMNATIAELNG
AtbZIP49	(B)	EKKKNVRLVRNRESAHLSRORKKHYVEELEDKVKNMHSTISELSS
AtbZIP25	(C)	DIKKIRMINSINESAKKSIKKKQEIIIVDIEIQVDSIKGDISIIIK DVKRARMLSINESARRSIRKOEOMNEFDTOVGOLRAEHSTLIN
AtBZO2H1	(C)	DVKKSRRMLSNRESARRSRRRKQEQTSDLETQVNDLKGEHSSLLK
AtBZO2H3	(C)	NVKRVKRMLSNRESARRSR <mark>R</mark> RKQAHLSELETQVSQLRVENSKLMK
AtAHBP1B	(D)	DQKTLRRLAQNREAARK SRLRKKAYVQQLENSRLKLTQLEQELQR
AtDZIPZI	(D)	
AtbZIP50	(D)	DPKTLRRLAONREAARKSRLRKKAYVOOLESCRIK TOLEOEIOR
AtOBF	(D)	DQKTLRRLAQNREAARKSRLRKKAYVQQLENSRLKLTQLEQELQR
Atpan	(D)	DQRTLRRLAQNREAARKSRLRKKAYVQQLENSRIRLAQLEEELKR
AtTGA1	(D)	PDKIQRRLAQNREAARKSRLRKKAYVQQLETSRLKLIQLEQELDR
At'I'GA3	(D)	NDKMKRRLAQNREAARKSRLRKKAHVQQLEESRLKI SQLEQELVR
ALIGA4	(D)	DOKTLERLAONREAARKSRURKKAYVOOLENSRUKUTOLEOELOR
AtbZIP34	(E)	DPKRVKRILANRQSAQRSRVRKLQYISELERSVTSLQAEVSVLSP
AtbZIP61	(E)	DPKRVKRILANR <mark>QSAQRSR</mark> VRKLQYISELERSVTSLQTEVSVLSP
AtbZIP19	(F)	GKKGEKRPLGNREAVRKYREKKKAKAASLEDEVARLRAVNQQLVK
AtbZIP23	(남) (단)	ESSGKKRPLGNREAVRKYREKKKAKAASLEDEVMRI KAVNOU LK
AtbZIP24 AtbZIP16	(F) (G)	ELKRORRKOSNRESARRSRI RKOAECDELAORAEVI NEENTNI RA
AtbZIP68	(G)	EIKRQRRKQSNRESARRSRLRKQAECDELAQRAEVLNGENSSLRA
AtGBF1	(G)	ELKRQKRKQSNRESARRSRLRKQAECEQLQQRVESLSNENQSLRD
AtGBF2	(G)	EVKREKRKQSNRESARRSRLRKQAETEQLSVKVDALVAENMSLRS
AtGBF3	(G) (H)	ELKRERRKQSNRESARRSRLRKQAETEELARKVEALTAENMALRS
AtHYH	(H)	EYRSLKRLLRNRVSAOOARERKKVYVSDI ESRANELONNNDOLEE
AtbZIP18	(I)	DPKRAKRIIANRQSAARSKERKARYILELERKVQTLQTEATTLSA
AtbZIP29	(I)	DPKRVKRILANRQSAARSKERKMRYIVELEHKVQTLQTEATTLSA
AtbZIP30	(I)	DPKRVKRILANRVSAARSKERKTRYMAELEHKVQTLQTEATTLSA
AtDZIP31 Atb7TD32	(1) (T)	DPKEVRRILKNQESAARSKQKKLQYMINLELKINFILENKNASIFE
AtbZIP33	(I)	DPKKVRRILKNRELAASSKORKLKYMIDLEHRIKFLENKNALIFE
AtbZIP52	(I)	DPKRAKRILANRQSAARSKERKARYIQELERKVQSLQTEATTLSA
AtbZIP69	(I)	DPKRAKRIWANRQSAARSKERKMRYIAELERKVQTLQTEATSLSA
AtbZIP71	(I)	DPNEVKRILENRDLDTRSKQGKSLYIVDLEGSVRIHVMVNTSLYG
ALDZIP74 AtPosF21	(I) (T)	DAKKIKAMLANRASAARSKENKERKIRDMELRVEITENIQASIFG DPKRAKRIWANROSAARSKERKTRYIFELERKVOTIOTEATTI SA
AtVIP1	(I)	DPKRAKRILANROSAARSKERKIRYTGELERKVOTLONEATTLSA
AtbZIP62	(J)	EERRIRRILANRESARQTIRRRQAMCEELSKKAADLTYENENLRR
AtbZIP60	(K)	VAKKRRRRVRNRDAAVRSRERKKEYVQDLEKKSKYLERECLRLGR
AtbZIP76	(L) (T)	TYEADNTKRAKQQFAQRSRVRKLQYISELERNVQTLQAEGSKVSA
AtbZIP78	(L)	ATSEADTKRAROOFAORSRVRKIOYIAELERNVOIL
AtbZIP1	(S)	DEKKRKRKLSNRESARRSRLKKQKLMEDTIHEISSLERRIKENSE
AtbZIP3	(S)	NERKQRRMVSNRESARRSRMRKQRHLDELLSQVAWLRSENHQLLD
AtbZIP4	(S)	DDKKRRRTISNRESAKRSRMKKKKRFEELTEEVNRLNIRNQELKN
ALDZIP5 Athzide	(S) (S)	DDRKRKRMESNRESAKRSRMRKORHIDNILKDEANDIGI.ENDELAN
AtbZIP7	(S)	DERKRKRMESNRESAKRSRMRKOSHIDNLREOVNRLDLENRELGN
AtbZIP8	(S)	NERKRRRKVSNRESARRSRMRKQRHMEELWSMLVQLINKNKSLVD
AtbZIP42	(S)	NERKQRRMISNRESARRSRMRKQRHLDELWSQVMWLRIENHQLLD
AtbZIP43	(S)	NERKQKRKISNRESARRSRMRKQRQVDELWSQVMWLRDENHQLLR
ALDZIP44 AtbZTP48	(S) (S)	DERKORRMISNRESARRSRWRAQKHLDDI TAQVTHI KKENAQIVA
AtbZIP53	(S)	DERKRKRMISNRESARRSRMRKQKQLGDLINEVTLLKNDNAKITE
AtbZIP58	(S)	DERKQRRMISNRESARRSRMRKQRHLDELWSQVIRLRTDNHCLMD
AtbZIP70	(S)	EERRARRMVSNRESARRSRMRKKKQIEELQQQVEQLMMLNHHLSE
AtbZIP75	(S)	EEKRLERMASNRESARRTRMRERMMKEGLQMQVKQLMAYNQFLYN
ALGBF 5 AtGBF6	(S)	EORKRKRMLSNRESARRSRMKKOKLLDDLTAOVNHIKKENTEIVT
311 87880	. ,	DPKILKRIISNRVAAOKSRWKKVOYLDALVKRSMELOREVSELRS

bZIP consensus

N---X7--R----X9---L--X6--L--X6--L

Supplemental Figure 10: Positive and negative BiFC controls.

Negative control comprising VEG2 fused to the N-terminal half of YFP (YFN-VEG2) co-expressed with the C-terminal half of YFP (YFC), and positive control with co-expression of constructs for a known interaction (Belda-Palazón et al., 2012). Photographs from left to right comprise the green channel image showing fluorescence of YFP, the bright field image and the merged YFP fluorescence and bright field images. Scale bars indicate 40µm.

Supplemental Table 1: Mapping locus details.

For mapping of VEG2/FDa and flanking genes for Supplemental Figure 6, existing morphological markers were supplemented with newly designed molecular markers targeted to introns of pea orthologs of genes identified in the relevant interval of the *Medicago truncatula* genome at Phytozome (phytozome.jgi.doe.gov; Goodstein et al., 2012). For cleaved amplified polymorphic sequence (CAPS) markers, the relevant restriction enzyme is shown in parentheses. The VEG2 locus was mapped separately to, but later found to correspond to FDa. Populations are as follows: a, *veg2-2* x Solara; b, NGB5839 x JI1794.

Name	Marker type	Population	Primers	Tm (°C)	Accession number(s)	Corresponding Medicago locus (Mt4.0)
F-box SKIP31-like protein (F-box)	HRM	b	TGGAGCCCGATTTTGTAAG ATTATCTCCAAAAGGAAGAAAGC	55	KP751411; GAMJ01003933	Medtr5g025560
LA RELATED PROTEIN 1C (LARP1C)	HRM	b	CCGACTGTGCCCCAGTTGCTTTCT CCATGCAACTTCTTCAGGTC	55	JI919144, JI924790, JR963915	Medtr5g022790
EDa	CAPS (BspHI)	а	GATCATTTTCCCTTCGACACTC GGGAAAGATTCACAACCACAA	60	KD720040-	
T Da	HRM	b	GCGGTAATCATTTCGTACTCA TGTTTGGTGGGATAGGGCAATGTG	55	KP739949, KP739950	Medtr5g022780
VEG2	Morphological	а	-	-		
RING-H2 finger protein (RING-H2)	HRM	b	TTAATTGGCCTGGAAGAGGA CATGCGAACAAGGAAGAACA	55	KP739948	Medtr5g022770
Protein of unknown function (DUF343)	HRM	b	AGATGAAGATGCATCAAAACCAGA GGAAGAGTGAGGGGGAGGGCAACA	55	JI907170	Medtr5g022760
Ferredoxin-NADP reductase (FENR1)	CAPS (HpyCh4IV)	a, b	ATGCTTATGCCAAAAGATCCTAATGC CTCTGCTTACAGCAAAGTCAAGCCTGAAGTT	60	X12446	Medtr5g022300
Protein of unknown function (DUF726)	Size	b	GCTGCATTGCTTTCAGCTAC CTCTTGCTCCAAGTGAGTAACC	56	JI945542	Medtr5g021430
APETALA3 (AP3)	CAPS (Psil)	b	TGGGGGATATTGATCTGTGG TCAAGCATTTTCTGCAGCCACACA	55	JN412098	Medtr5g021270
Glutaredoxin (GRX)	HRM	b	TTCAGTTTCCGCTTTCGTTC TGATCCACCAATATGCTTCC	55	JI899180	Medtr5g021090
Protein of unknown function (DUF1230)	HRM	b	TTCTTCATTAAGCAACAAGCAA CCGAGCTAGGATCTGCAAAA	55	GAMJ01037230	Medtr5g016100
AFILA (AF)	Morphological	а	-	-	-	Medtr5g014400
STAY-GREEN (I;SGR)	Morphological	а	-	-	AB303331; AM884277	Medtr5g011120

Supplemental Table 2: Details of sequences for FD proteins and related bZIP transcription factors used for phylogenetic analyses and alignments.

Asterisks indicate that an altered annotation was used (putative intron sequence was removed or annotation of exons was corrected based on transcript sequence or alignments between species). Where relevant, previous gene names are indicated. Sequences were obtained from GenBank (www.ncbi.nlm.nih.gov), Phytozome (phytozome.jgi.doe.gov; Goodstein et al., 2012), or alternative sources as indicated.

Species	Gene name	Accession number	Source	Reference(s)
Actinidia chinensis (kiwifruit)	AcFD	AGK89941	GenBank	Varkonyi-Gasic et al. (2013)
Aquilegia coerulea	AqucaFD	Aquca_075_00022*	Aquilegia coerulea Genome Sequencing Project assembly v1.1 at Phytozome	This study
	AtABF1 (AtbZIP35)	NP_564551		
	AtABF2 (AtbZIP36)	NP_849777		
	AtABF3 (AtbZIP37)	NP_567949		
	AtABF4 (AtbZIP38)	NP_566629		
	AtABI5 (AtbZIP39)	NP_565840		
	AtAHBP1B (AtbZIP20)	NP_196312		
	AtAREB3 (AtbZIP66)	NP_191244		
	AtbZIP1	NP_199756		
	AtbZIP3	NP_197087		
	AtbZIP4	NP_176162		
	AtbZIP5	NP_566925		
	AtbZIP6	NP_179870		
	AtbZIP7	NP_195487		
	AtbZIP8	NP_177054		
	AtbZIP9	NP_568457		
	AtbZIP13	NP_199221		
	AtbZIP15	NP_199105		
	AtbZIP16	NP_850248		
		NP_565946		
	AtbZIP18	NP_181594	-	
		NP_307974		
		AIDZIFZI INF_303610 Ath7IP23 NIP_170268		
	AtbZIP24	NP 190764	-	
	AthZIP25	NP 567003	—	
Arabidopsis	AthZIP28	NP 187691	GenBank	Jakoby et al.
thaliana	AtbZIP29	NP 849520		(2002)
	AtbZIP30	NP 179719	_	
	AtbZIP31	NP 178956		
	AtbZIP32	NP_178948	1	
	AtbZIP33	NP_565355		
	AtbZIP34	NP_565970		
	AtbZIP42	NP_189674		
	AtbZIP43	NP_198696		
	AtbZIP44	NP_177672		
	AtbZIP48	NP_178489		
	AtbZIP49	NP_191225		
	AtbZIP50	NP_565162		
	AtbZIP52	NP_172170		
	AtbZIP53	NP_191801		
	AtbZIP58	NP_172817		
	AtbZIP60	NP_174998		
	AtbZIP61	NP_191371	_	
	AtbZIP62	NP_173381	_	
	AtbZIP65	NP_850784	_	
		<u>INF_174494</u>	_	
		NP_1/209/	_	
		NP_200891		
	AtbZIP71 NP_180011 AtbZIP72 NP_196333 AtbZIP74 NP_850010	NP_100011		
		NP 850010	-1	
1				1

Species	Cono nomo	Accession number	Source	Poforonoo(c)	
Species	Gene name	Accession number	Source	Reference(s)	
	AtbZIP75	NP_850791	_		
	AtbZIP76	AAU94427	_		
	AtbZIP77	AAM64869			
	AtbZIP78	NP_849319			
	AtBZO2H1 (AtbZIP10)	NP_192173			
	AtBZO2H3 (AtbZIP63)	NP_568508			
	AtDPBF2 (AtbZIP67)	NP_566870			
	AtDPBF4 (AtbZIP12)	NP 850341	7		
	AtFD (AtbZIP14)	BAC65864	7		
	AtFDP(AtbZIP27)	CAD29861	-		
	AtGBF1 (AtbZIP41)	NP 195391	-	lakoby et al	
Arabidonsis	AtGBE2 (AtbZIP54)	NP 192021	-	(2002).	
thaliana	AtGBE3 (AthZIP55)	NP 182150	-	(2002), Abe et al	
unanana	AtCBE4 (AtbZIP40)	NP 171803	- GenBank	(2005)	
(continued)		ND 170409	-	Wigge et al	
(continued)		NP_179406	_	(2005)	
	AtGBF6 (AtbZIP11)	NP_195185	_	(2003)	
	AtHY5 (AtbZIP56)	NP_568246	_		
	AtHYH (AtbZIP64)	NP_850605	_		
	AtOBF (AtbZIP26)	NP_196313			
	AtPAN (AtbZIP46)	NP_177031			
	AtPosF21 AtbZIP59)	NP_001031456			
	AtTGA1 (AtbZIP47)	NP_851273			
	AtTGA3 (AtbZIP22)	NP_564156			
	AtTGA4 (AtbZIP57)	NP_196565	7		
	AtTGA6 (AtbZIP45)	NP 566415	7		
	AtVIP1 (AtbZIP51)	NP 564486	-		
	BdFD1	XP_003578537			
Brachypodium	BdFD2	XP_003563257	GenBank	Tsuji et al.	
distachyon	BdFD3	XP_003570743	ConBank	(2013)	
Cucumis	Barbo				
sativus (cucumber)	CsFD	Cucsa.322810	Cucumis sativis genome v1 at Phytozome	This study	
Eucalyptus grandis	EgFD	Eucgr.J02482*	Eucalyptus grandis genome assembly v1.1 (Myburg et al., 2014) at Phytozome	This study	
Fragaria vesca	FvFD1	mrna14556.1-v1.0-hybrid	Fragaria vesca genome	Tsuji et al.	
(strawberry)	FvFD2	mrna08566.1-v1.0-hvbrid	at Phytozome	(2013)	
	GmEDa1	Glyma01d36810*	ar hytozome		
	Gill Dal	not appotated:	_		
	GmFDa2	Chr11: 5007867 5006221			
		CIII 11. 3997807-3990321	-	Jung et al.	
Chusing man	GIIFDDT (GIIFDL02)	Giyma02g05100	Soybean genome v1.1	(2012); Tsuji et	
Glycine max	GmFDb2		(Schmutz et al., 2010) at	al. (2013); Nan	
(Soybean)	0mED=1	CIII 10. 2091/990-20913/70	Phytozome	et al. (2014);	
	GIIFDCT (CmEDL04)	Glyma04g02420		This study	
	(GMFDL04)	Oh	-	-	
	GMFDC2 (GMFDL0602)	Glyma06g02470	_		
	GmFDL19	Glyma19g30230			
	GrFD1	Gorai.003G007000			
Gossypium	GrFD2	Gorai.007G191800	Cotton genome v2.1		
raimondii	GrFD3	Gorai.009G192500	(Paterson et al., 2012) at	This study	
(cotton)	GrFD4	Gorai.009G269300	Phytozome		
	GrFD5	Gorai.002G122200			
Hordeum	HvFD1	BAK04622		Touii et el	
vulgare	HvFD2	AK249012	GenBank		
(barley)	HvFD3	AK359958	7	(2013)	
Lotus japonicus	LjFDa	chr2.CM0272.780.r2.m	Lotus japonicus genome assembly build 2.5 (Sato et al., 2008) at Kazusa DNA Research Institute (www.kazusa.or.jp/lotus)	This study	
Malus	MdED1	MDP000169473*	Malus domestica genome	Table 1	
domestica			v1.0 (Velasco et al., 2010)	I suji et al.	
(apple)	MdFD2	MDP0000636541*	at Phytozome	(2013)	

Species	Gene name	Accession number	Source	Reference(s)
•	MeFD1	cassava4.1 021397m*		
Manihot esculenta	MeED2	cassava4 1_029555m*	Cassava genome v4.1	
	MaED2	00000v04.1_0220000m*	(Prochnik et al., 2012) at	This study
(cassava)	MEFD3	Cassava4.1_023228111	Phytozome	
	MeFD4	cassava4.1_021412m^		
	MtFDa	Medtr5g022780*	Medicago truncatula	Stanton-Geddes
Medicago	MtFDb	Medtr8g075130*	Genome Project v3.5	et al. (2013);
เทมที่เวลเนเล	Medtr/g088090	Medtr7g088090	(Tourig et al., 2011) at	This study
	(prev. Mitro) MaED1	GSMUA Achr1P02640_001*	Thytozome	
Musa	MaED2	GSMUA Achr5P11470_001*	The Banana Genome Hub	Tsuii et al
acuminata	MaED3	GSMUA Achr9P24090 001*	(banana-genome cirad fr	(2013) This
(banana)	MaFD4	GSMUA Achr9P21040 001	D'Hont et al., 2012)	study
· · ·	MaFD5	GSMUA_Achr5P11220_001*	. ,	,
	OsAREB3	LOC_Os05g41070	Orvza sativa genome.	
	OsFD1	LOC_Os09g36910	MSU Release 7.0, Rice	
	OsFD2	LOC_Os06g50600	Genome Annotation	Touii et el
(rice)	OsFD3	LOC_Os02g58670	Project	(2013)
(nce)	OsFD4	LOC_Os08g43600	(rice.plantbiology.msu.edu	(2013)
	OsFD5	LOC_Os06g50830	; Kawahara et al., 2013)	
	OsFD6	CT843963	GenBank	
Phaseolus	PvFDa	Phvul.002G105700*	Phaseolus vulgaris	
vulgaris	PvFDb	Phvul.003G266100	genome v1.0 (Schmutz et	This study
(common bean)	PvFDc	Phvul.009G018700	al., 2014) at Phytozome	
Dhooniy			Date palm draft genome	
dactylifera	PdFD1	PDK 30s1175071a003	vs (yalai- weill cornell edu/research/	Tsuji et al.
(date palm)	T di Bi	1 DR_003117007 19000	datepalmGenome: Al-	(2013)
(date pairi)			Dous et al., 2011)	
Pisum sativum	DaEDa	KD720050	ConBonk	This study
(pea)	FSFDa	KF759950	Genbalk	This study
Populus	PtFD1	XP_002327643*		Tsuji et al.
trichocarpa	PtFD2	XP_002307742	GenBank	(2013)
(popiar)	PtFD3	XP_002300691	Descharge and A (The	This study
Prunus nersica	PpFD1	ppa018386m*	Peach genome V1.0 (The	This study
(peach)		nn = 00425 4m *	Genome Initiative, 2013)	
· · · ·	PpFD2	ppa021354m*	at Phytozome	
	SiFD1	Si031077m	Sataria italiaa ganama	
Setaria italica	SiFD2	Si007412m	v2 1 (Bennetzen et al	Tsuji et al.
(foxtail millet)	SiFD3	Si023448m	2012) at Phytozome	(2013)
	SiFD4	Si014546m		
Solanum	SISPGB	Solyc02g083520	Tomato genome ITAG2.3	Pnueli et
lycopersicum			Consortium 2012) at	al.(2001); Park
(tomato)	SISPGB2	Solyc02g061990*	Phytozome	et al. (2014)
		not annotated	Solanum tuberosum	
Solanum	StFD1	Chr02:6034570260350121	genome annotation v3.4	Tsuii et al
tuberosum			at Phytozome (Potato	(2013)
(potato)	StFD2	PGSC0003DMP400041309	Genome Sequencing	(2010)
		VD 002460597	Consortium, 2011)	
Sorghum	SbFD1	XP_002400307 XP_002430030	GenBank	Tsuji et al.
bicolor	ShED3	XP_002453108	Genbank	(2013)
	TaFD1	CK206464		
Triticum	TaFDL2	ABZ91908	-	Li and
aestivum	TaFDL6	ABZ91910	GenBank	Dubcovsky
(wheat)	TaFDL13	ABZ91911	1	(2008); I suji et
. ,	TaFDL15	ABZ91912	1	ai. (2013)
Vitis Vinifera	VvFD1	CBI19920	GenBonk	Tsuji et al.
(grape)	VvFD2	XP_003635259	Gendalik	(2013)
Zea mavs				Muszynski et al.
(maize)	ZmDLF1	NP_001105962	GenBank	(2006); Tsuji et
· · /				ai. (2013)

Supplemental Table 3: Primer details.

Gene	Purpose/details	Primer names	Primer sequences (5' to 3')	Tm (°C)	Source	
ACT	qRT-PCR	PsACT-F PsACT-R	GTGTCTGGATTGGAGGATCAATC GGCCACGCTCATCATATTCA	59	Foo et al. (2005)	
AP3	qRT-PCR	PsAP3-10F PsAP3-6R	TGGGGGATATTGATCTGTGG TCCAACTCCAAACCACCTTCACCT	60	This study	
DET (TFL1a)	qRT-PCR	PsTFL1a-1F PsTFL1a-2R	CGTTGGTAGAGTCATAGG AGGATCACTAGGGCCAGG	58	Hecht et al. (2011)	
	Full-length coding sequence for BiFC construct	PsFD-7F PsFD-5R	ACCATGGAAGAGTTGTGGAAAG GGGAAAGATTCACAACCACAA	60		
	qRT-PCR	PsFD-6F PsFD-3R	ATTTGATCCAAACGTCGGTGT ATCAACTTTTTGCTCCAGTTCG	60		
	in situ probe	PsFD-5F PsFD-6R	TTGCTGGAAGAGAATGCAAAG TCATTCACTTTCCGCATGAA	60		
	PCR marker for isolation of full-length coding sequence for Figure 4D and <i>veo2-1</i> genotyping (presence/absence)	PsFD-7F PsFD-6R	ACCATGGAAGAGTTGTGGAAAG TCATTCACTTTCCGCATGAA	56		
	CAPS marker (BspHI) for veg2-2 genotyping	PsFD-4F PsFD-5R	GATCATTTTCCCTTCGACACTC GGGAAAGATTCACAACCACAA	60		
FDa/VEG2	PCR for fragment present in veg2-1 for Figure 4D	PsFD-9F PsFD-12R	CGCAACTCATATCCGAAAGT CATAAGGCAACATGCAATGG	58	This study	
		PsFD-1F PsFD-7E		62 60		
	Attempted isolation of <i>FDa</i> from <i>veg2-1</i> . Primers were used	PsFD-1R	GCCCGAGTGTTTAAACTGAGAGC	62		
	in various combinations and are shown in order of location $(5' \rightarrow 3')$.	PsFD-5F	TTGCTGCAGGAGAATGCAAAG	60		
		PSFD-5R PsFD-6R	TCATTCACTTCCGCATGAA	56		
		PsFD-7R		62	l	
		FD-1D	TOKCTTC	60		
	Attempted isolation. Primers were used in various	FD-2D	CTAGCBCKKGAHCKWGCWGCAGAYTCYC KRTTCTTGATCA	60	This study	
FDb (putative)	combinations.	FD-3D	MGRGARTCTGCWGCWMGDTCMMGVGCT AGRAARCAGG	60		
		MtFDP-1F	GACGACATAAGCGAATAATGAA	58		
		MtFDP-1R	AGCTCTTGATCGTGCAGCAG	62		
		MtFDP-2R	TGGAGCTGTTGATGTTCGAT	58		
FTa1	Full-length coding sequence for BiFC construct	PsFTLa-9F PsFTLa-4R	AGCGTCTCTGAGTGTAACGTGT	60	This study	
, , , , , , , , , , , , , , , , , , , ,	qRT-PCR	PsFTLa-6F PsFTLa-2R	GCCCAAGCAACCCTACTTTT CCATCCTGGAGCGTAAACCC	60	Hecht et al. (2011)	
FTa2	Full-length coding sequence for BiFC construct	PsFTLb-5F PsFTLb-R4	ATGGCCTGTAGTAGCCGGAATCC AGCACCATTGATGCAGTACC	60	Hecht et al. (2011)	
FTb1	Full-length coding sequence for BiFC construct	PsFTLe-2FF PsFTLe-2R	ATGCGTATGAAATCATCGAATCC ATTATATGATCATCCTCCTTCCACC	62	Hecht et al. (2011)	
FTb2	Full-length coding sequence for BiFC construct	PsFTLe-2FF PsFTLe2-1R	ATGCGTATGAAATCATCGAATCC GGTGCATGGATATGTTTAGAC	60	This study	

Gene	Purpose/details	Primer names	Primer sequences (5' to 3')	Tm (°C)	Source
FTc	Full-length coding sequence for BiFC construct	PsFTLc-9F PsFTLc-3R	ATGCCTAGGAATATGGTCGATCC GAACTAACCCCCGCCCACTTGG	60	
	qRT-PCR	PsFTLc-8F PsFTLc-7R	GATATTCCAGCCACAACAAGC TTATGACGCCACTCTGGAGCAA	62	Hecht et al. (2011)
LARP1C	Isolation of full-length coding sequence for Figure 4D	PsWiHe-1F PsHyp-1R	TCATCATCGGAGAGTCATCG TTCCCTCAGAGGCAGTAGGAAGC	55	This study
LF (TFL1c)	qRT-PCR	PsLF-CR2 PsLF-CR3	AAATAAGCAGCAGCAACAGGG CAGACATTCCAGGGACAACAG	60	Foucher et al. (2003)
PIM	CAPS marker (XmnI) for pim-2 genotyping	PsPIM-F1 PsPIM-R1	ACCTCTTAACATTCTTTGG AAGTGAAGAAAAGAGAATATA	50	This study
	qRT-PCR	PsPIM-4F PsPIM-6R	GCTTCAGAGTTTGGAACAGC GACTCCATGGTGGTTTGG	58	Hecht et al. (2011)
RING-H2	Isolation of full-length coding sequence for Figure 4D	PsZnFin-5F PsZnFin-3R	ACCACCCTTCCAAACCAAG CCATAGGCTGTGGTGGATTT	58	This study
SEP1	qRT-PCR	PsPM6-7F PsPM6-8R	GATTGCCTGTACTGATTTCG TTGTTGAGCTTGACTTGTGG	60	Hecht et al. (2011)
SOC1a	qRT-PCR	PsSOC1a -Q1 PsSOC1a- Q2	GAGTGTAAGCACTGTTAGAGCAAG TCTCGGATGATCATTTGGCGGTGG	65	This study
UNI	qRT-PCR	PsUNI-1F PsUNI-2R	CATCAGAGCTGAAAGAAGG GCTTCCTTTTCACGTTGC	55	Hecht et al. (2011)
VEG1 (FULc)	qRT-PCR and veg1 genotyping (presence/absence)	PsFULc-2F PsFULc-2R	CGATGCCTTGAAACCATAGG AATTCCAATGACCCTCTTGC	58	Berbel et al. (2012)

Supplemental Data. Sussmilch et al. (2015). Plant Cell 10.1105/tpc.114.136150

Supplemental Table 4: Details for *FD* and flanking genes in Arabidopsis and legume species.

This table accompanies Figure 4B and Supplemental Figure 8. Details in this table are based on genome builds for Arabidopsis (TAIR10) from The Arabidopsis Information Resource (www.arabidopsis.org), and Medicago (Mt3.5), common bean (Phvulv v1.0), and soybean (Glyma v1.1) from Phytozome (www.phytozome.net). Single asterisks indicate incorrect annotation in online resources, as determined by alignments with expressed sequences and between legume species, which was corrected for the purposes of this study. Where possible, genes are named according to the closest related Arabidopsis homolog.

Species	Chromosome	Symbol	Gene	Locus ID	Chromosomal location
	At4		LARP1C	AT4G35890	16997139- 17000833
Arabidopsis thaliana		\square	FD	AT4G35900	17004595- 17006287
			DUF343	AT4G35905	17007028- 17008154
			LARP1C	Medtr5g022790*	8775734- 8771155
		\square	FDa	Medtr5g022780*	8758327- 8759707
	Mt5		RING-H2	Medtr5g022770*	8754049- 8754848
Medicago truncatula			DUF343	Medtr5g022760	8749173- 8751848
l'arroataia			LARP1C	Medtr8g075120	20220967-
	Mt8		FDb	Medtr8g075130*	20225953-
			EMB3006	Medtr8g075140	20228872-
	Pv2		LARP1C	Phvul.002G105500	21244748- 21249771
			FDa	Phvul.002G105700*	21293640- 21294548
			RING-H2	Phvul.002G105800	21312952- 21315712
			DUF343	Phvul.002G105900	21317735- 21322244
Common			LARP1C	Phvul.003G266200	49298693- 49303027
(Phaseolus	Pv3	\square	FDb	Phvul.003G266100	49289696-
vugansj			EMB3006	Phvul.003G266000	49272428-
			LARP1C	Phvul.009G018800	3474640- 3480559
	Pv9		FDc	Phvul009G018700	3423224- 3427367
				SBT5.2	Phvul.009G018600

		LARP1C Glyma01g36801	Glyma01g36801	49220680- 49225998		
			FDa1	Glyma01g36810*	49235180- 49236798	
	Gm1		RING-H2	Glyma01g36820	49253298- 49254542	
			DUF343	Glyma01g36830	49256522- 49258723	
			LARP1C	Glyma02g05090	4130098- 4135052	
	Gm2	D	FDb1	Glyma02g05100*	4139368- 4140828	
			EMB3006	Glyma02g05110	4144145- 4151509	
			LARP1C	Glyma04g02405	1673134- 1678845	
	Gm4	D	FDc1	Glyma04g02420	1680703- 1683111	
			SBT5.2	Glyma04g02431	1696836- 1699749	
Sovbean	Gm6		LARP1C	Glyma06g02460	1632699- 1637471	
(Glycine max)		D	FDc2	Glyma06g02470	1639376- 1641643	
			SBT5.2	Glyma06g02481	1654709- 1659109	
	Gm11		LARP1C	Glyma11g08500*	6008627- 6013845	
		Gm11	D	FDa2	Not annotated	5997867- 5996321
			Gilli		RING-H2	Glyma11g08480*
			DUF343	Glyma11g08470	5986226- 5987561	
			LARP1C	Glyma16g23170	26890147- 26894598	
				Histone methyltransferase gene	Glyma16g23191	26899881- 26901749
	Gm16	\square	FDb2	Not annotated	26917990- 26913770	
			Major facilitator superfamily gene	Glyma16g23210	26920731- 26925063	
			EMB3006	Glyma16g23220	26939014- 26946253	

Supplemental References

- Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science **309**, 1052-1056.
- Al-Dous, E.K., George, B., Al-Mahmoud, M.E., Al-Jaber, M.Y., Wang, H., Salameh, Y.M., Al-Azwani, E.K., Chaluvadi, S., Pontaroli, A.C., DeBarry, J., Arondel, V., Ohlrogge, J., Saie, I.J., Suliman-Elmeer, K.M., Bennetzen, J.L., Kruegger, R.R., and Malek, J.A. (2011). De novo genome sequencing and comparative genomics of date palm (*Phoenix dactylifera*). Nature Biotechnology **29**, 521-527.
- Belda-Palazón, B., Ruiz, L., Martí, E., Tárraga, S., Tiburcio, A.F., Culiáñez, F., Farràs, R., Carrasco, P., and Ferrando, A. (2012). Aminopropyltransferases Involved in Polyamine Biosynthesis Localize Preferentially in the Nucleus of Plant Cells. PLoS One 7, e46907.
- Bennetzen, J.L., Schmutz, J., Wang, H., Percifield, R., Hawkins, J., Pontaroli, A.C., Estep, M., Feng, L., Vaughn, J.N., Grimwood, J., Jenkins, J., Barry, K., Lindquist, E., Hellsten, U., Deshpande, S., Wang, X., Wu, X., Mitros, T., Triplett, J., Yang, X., Ye, C.-Y., Mauro-Herrera, M., Wang, L., Li, P., Sharma, M., Sharma, R., Ronald, P.C., Panaud, O., Kellogg, E.A., Brutnell, T.P., Doust, A.N., Tuskan, G.A., Rokhsar, D., and Devos, K.M. (2012). Reference genome sequence of the model plant Setaria. Nature Biotechnology 30, 555-561.
- Berbel, A., Ferrándiz, C., Hecht, V., Dalmais, M., Lund, O.S., Sussmilch, F.C., Taylor, S.A., Bendahmane, A., Ellis, T.H.N., Beltrán, J.P., Weller, J.L., and Madueño, F. (2012). VEGETATIVE1 is essential for development of the compound inflorescence in pea. Nature Communications 3, 797.
- Beveridge, C.A., and Murfet, I.C. (1996). The *gigas* mutant in pea is deficient in the floral stimulus. Physiologia Plantarum **96**, 637-645.
- Corrêa, L.G.G., Riaño-Pachón, D.M., Schrago, C.G., dos Santos, R.V., Mueller-Roeber, B., and Vincentz, M. (2008). The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3, e2944.
- D'Hont, A., Denoeud, F., Aury, J.-M., Baurens, F.-C., Carreel, F., Garsmeur, O., Noel, B., Bocs, S., Droc, G., Rouard, M., Da Silva, C., Jabbari, K., Cardi, C., Poulain, J., Souquet, M., Labadie, K., Jourda, C., Lengelle, J., Rodier-Goud, M., Alberti, A., Bernard, M., Correa, M., Ayyampalayam, S., McKain, M.R., Leebens-Mack, J., Burgess, D., Freeling, M., Mbeguie-A-Mbeguie, D., Chabannes, M., Wicker, T., Panaud, O., Barbosa, J., Hribova, E., Heslop-Harrison, P., Habas, R., Rivallan, R., Francois, P., Poiron, C., Kilian, A., Burthia, D., Jenny, C., Bakry, F., Brown, S., Guignon, V., Kema, G., Dita, M., Waalwijk, C., Joseph, S., Dievart, A., Jaillon, O., Leclercq, J., Argout, X., Lyons, E., Almeida, A., Jeridi, M., Dolezel, J., Roux, N., Risterucci, A.-M., Weissenbach, J., Ruiz, M., Glaszmann, J.-C., Quetier, F., Yahiaoui, N., and Wincker, P. (2012). The banana (*Musa acuminata*) genome and the evolution of monocotyledonous plants. Nature 488, 213-217.
- Foo, E., Bullier, E., Goussot, M., Foucher, F., Rameau, C., and Beveridge, C.A. (2005). The Branching Gene RAMOSUS1 Mediates Interactions among Two Novel Signals and Auxin in Pea. The Plant Cell 17, 464-474.
- Foucher, F., Morin, J., Courtiade, J., Cadioux, S., Ellis, N., Banfield, M.J., and Rameau, C. (2003). DETERMINATE and LATE FLOWERING Are Two TERMINAL FLOWER1/CENTRORADIALIS Homologs That Control Two Distinct Phases of Flowering Initiation and Development in Pea. The Plant Cell 15, 2742-2754.
- Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., and Rokhsar, D.S. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research 40, D1178-D1186.
- Hecht, V., Laurie, R.E., Vander Schoor, J.K., Ridge, S., Knowles, C.L., Liew, L.C., Sussmilch, F.C., Murfet, I.C., Macknight, R.C., and Weller, J.L. (2011). The Pea GIGAS Gene Is a FLOWERING LOCUS T Homolog Necessary for Graft-Transmissible Specification of Flowering but Not for Responsiveness to Photoperiod. The Plant Cell 23, 147-161.
- Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., and Parcy, F. (2002). bZIP transcription factors in *Arabidopsis*. Trends in Plant Science **7**, 106-111.
- Jung, C.-H., Wong, C.E., Singh, M.B., and Bhalla, P.L. (2012). Comparative Genomic Analysis of Soybean Flowering Genes. PLoS One 7, e38250.
- Kawahara, Y., de la Bastide, M., Hamilton, J., Kanamori, H., McCombie, W., Ouyang, S., Schwartz, D., Tanaka, T., Wu, J., Zhou, S., Childs, K., Davidson, R., Lin, H., Quesada-Ocampo, L., Vaillancourt, B., Sakai, H., Lee, S., Kim, J., Numa, H., Itoh, T., Buell, C., and Matsumoto, T. (2013). Improvement

of the *Oryza sativa* Nipponbare reference genome using next generation sequence and optical map data. Rice **6**, 1-10.

- Li, C., and Dubcovsky, J. (2008). Wheat FT protein regulates *VRN1* transcription through interactions with FDL2. The Plant Journal 55, 543-554.
- Muszynski, M.G., Dam, T., Li, B., Shirbroun, D.M., Hou, Z., Bruggemann, E., Archibald, R., Ananiev, E.V., and Danilevskaya, O.N. (2006). *delayed flowering1* Encodes a Basic Leucine Zipper Protein That Mediates Floral Inductive Signals at the Shoot Apex in Maize. Plant Physiology 142, 1523-1536.
- Myburg, A.A., Grattapaglia, D., Tuskan, G.A., Hellsten, U., Hayes, R.D., Grimwood, J., Jenkins, J., Lindquist, E., Tice, H., Bauer, D., Goodstein, D.M., Dubchak, I., Poliakov, A., Mizrachi, E., Kullan, A.R.K., Hussey, S.G., Pinard, D., van der Merwe, K., Singh, P., van Jaarsveld, I., Silva-Junior, O.B., Togawa, R.C., Pappas, M.R., Faria, D.A., Sansaloni, C.P., Petroli, C.D., Yang, X., Ranjan, P., Tschaplinski, T.J., Ye, C.-Y., Li, T., Sterck, L., Vanneste, K., Murat, F., Soler, M., Clemente, H.S., Saidi, N., Cassan-Wang, H., Dunand, C., Hefer, C.A., Bornberg-Bauer, E., Kersting, A.R., Vining, K., Amarasinghe, V., Ranik, M., Naithani, S., Elser, J., Boyd, A.E., Liston, A., Spatafora, J.W., Dharmwardhana, P., Raja, R., Sullivan, C., Romanel, E., Alves-Ferreira, M., Kulheim, C., Foley, W., Carocha, V., Paiva, J., Kudrna, D., Brommonschenkel, S.H., Pasquali, G., Byrne, M., Rigault, P., Tibbits, J., Spokevicius, A., Jones, R.C., Steane, D.A., Vaillancourt, R.E., Potts, B.M., Joubert, F., Barry, K., Pappas, G.J., Strauss, S.H., Jaiswal, P., Grima-Pettenati, J., Salse, J., Van de Peer, Y., Rokhsar, D.S., and Schmutz, J. (2014). The genome of *Eucalyptus grandis*. Nature 510, 356-362.
- Nan, H., Cao, D., Zhang, D., Li, Y., Lu, S., Tang, L., Yuan, X., Liu, B., and Kong, F. (2014). GmFT2a and GmFT5a Redundantly and Differentially Regulate Flowering through Interaction with and Upregulation of the bZIP Transcription Factor GmFDL19 in Soybean. PLoS One **9**, e97669.
- Park, S.J., Jiang, K., Tal, L., Yichie, Y., Gar, O., Zamir, D., Eshed, Y., and Lippman, Z.B. (2014). Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nature Genetics 46, 1337-1342.
- Paterson, A.H., Wendel, J.F., Gundlach, H., Guo, H., Jenkins, J., Jin, D., Llewellyn, D., Showmaker, K.C., Shu, S., Udall, J., Yoo, M.-j., Byers, R., Chen, W., Doron-Faigenboim, A., Duke, M.V., Gong, L., Grimwood, J., Grover, C., Grupp, K., Hu, G., Lee, T.-h., Li, J., Lin, L., Liu, T., Marler, B.S., Page, J.T., Roberts, A.W., Romanel, E., Sanders, W.S., Szadkowski, E., Tan, X., Tang, H., Xu, C., Wang, J., Wang, Z., Zhang, D., Zhang, L., Ashrafi, H., Bedon, F., Bowers, J.E., Brubaker, C.L., Chee, P.W., Das, S., Gingle, A.R., Haigler, C.H., Harker, D., Hoffmann, L.V., Hovav, R., Jones, D.C., Lemke, C., Mansoor, S., Rahman, M.u., Rainville, L.N., Rambani, A., Reddy, U.K., Rong, J.-k., Saranga, Y., Scheffler, B.E., Scheffler, J.A., Stelly, D.M., Triplett, B.A., Van Deynze, A., Vaslin, M.F.S., Waghmare, V.N., Walford, S.A., Wright, R.J., Zaki, E.A., Zhang, T., Dennis, E.S., Mayer, K.F.X., Peterson, D.G., Rokhsar, D.S., Wang, X., and Schmutz, J. (2012). Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423-427.
- Pierre, J.-B., Huguet, T., Barre, P., Huyghe, C., and Julier, B. (2008). Detection of QTLs for flowering date in three mapping populations of the model legume species *Medicago truncatula*. Theoretical and Applied Genetics 117, 609-620.
- Pnueli, L., Gutfinger, T., Hareven, D., Ben-Naim, O., Ron, N., Adir, N., and Lifschitz, E. (2001). Tomato SPinteracting proteins define a conserved signaling system that regulates shoot architecture and flowering. The Plant Cell **13**, 2687-2702.
- Potato Genome Sequencing Consortium. (2011). Genome sequence and analysis of the tuber crop potato. Nature 475, 189-195.
- Prochnik, S., Marri, P., Desany, B., Rabinowicz, P., Kodira, C., Mohiuddin, M., Rodriguez, F., Fauquet, C., Tohme, J., Harkins, T., Rokhsar, D., and Rounsley, S. (2012). The Cassava Genome: Current Progress, Future Directions. Tropical Plant Biology 5, 88-94.
- Sato, S., Nakamura, Y., Kaneko, T., Asamizu, E., Kato, T., Nakao, M., Sasamoto, S., Watanabe, A., Ono, A., Kawashima, K., Fujishiro, T., Katoh, M., Kohara, M., Kishida, Y., Minami, C., Nakayama, S., Nakazaki, N., Shimizu, Y., Shinpo, S., Takahashi, C., Wada, T., Yamada, M., Ohmido, N., Hayashi, M., Fukui, K., Baba, T., Nakamichi, T., Mori, H., and Tabata, S. (2008). Genome Structure of the Legume, *Lotus japonicus*. DNA Research 15, 227-239.
- Schmutz, J., McClean, P.E., Mamidi, S., Wu, G.A., Cannon, S.B., Grimwood, J., Jenkins, J., Shu, S., Song, Q., Chavarro, C., Torres-Torres, M., Geffroy, V., Moghaddam, S.M., Gao, D., Abernathy, B., Barry, K., Blair, M., Brick, M.A., Chovatia, M., Gepts, P., Goodstein, D.M., Gonzales, M., Hellsten, U., Hyten, D.L., Jia, G., Kelly, J.D., Kudrna, D., Lee, R., Richard, M.M.S., Miklas, P.N., Osorno, J.M., Rodrigues, J., Thareau, V., Urrea, C.A., Wang, M., Yu, Y., Zhang, M., Wing, R.A., Cregan, P.B.,

Rokhsar, D.S., and Jackson, S.A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics **46**, 707-713.

- Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., Xu, D., Hellsten, U., May, G.D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M.K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.-C., Shinozaki, K., Nguyen, H.T., Wing, R.A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R.C., and Jackson, S.A. (2010). Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183.
- Shulaev, V., Sargent, D.J., Crowhurst, R.N., Mockler, T.C., Folkerts, O., Delcher, A.L., Jaiswal, P., Mockaitis, K., Liston, A., Mane, S.P., Burns, P., Davis, T.M., Slovin, J.P., Bassil, N., Hellens, R.P., Evans, C., Harkins, T., Kodira, C., Desany, B., Crasta, O.R., Jensen, R.V., Allan, A.C., Michael, T.P., Setubal, J.C., Celton, J.-M., Rees, D.J.G., Williams, K.P., Holt, S.H., Rojas, J.J.R., Chatterjee, M., Liu, B., Silva, H., Meisel, L., Adato, A., Filichkin, S.A., Troggio, M., Viola, R., Ashman, T.-L., Wang, H., Dharmawardhana, P., Elser, J., Raja, R., Priest, H.D., Bryant, D.W., Fox, S.E., Givan, S.A., Wilhelm, L.J., Naithani, S., Christoffels, A., Salama, D.Y., Carter, J., Girona, E.L., Zdepski, A., Wang, W., Kerstetter, R.A., Schwab, W., Korban, S.S., Davik, J., Monfort, A., Denoyes-Rothan, B., Arus, P., Mittler, R., Flinn, B., Aharoni, A., Bennetzen, J.L., Salzberg, S.L., Dickerman, A.W., Velasco, R., Borodovsky, M., Veilleux, R.E., and Folta, K.M. (2011). The genome of woodland strawberry (*Fragaria vesca*). Nature Genetics **43**, 109-116.
- Singer, S.R., Hsiung, L.P., and Huber, S.C. (1990). Determinate (*det*) mutant of *Pisum sativum* (Leguminosae: Papilionoideae) exhibits an indeterminate growth pattern. American Journal of Botany **77**, 1330-1335.
- Stanton-Geddes, J., Paape, T., Epstein, B., Briskine, R., Yoder, J., Mudge, J., Bharti, A.K., Farmer, A.D., Zhou, P., Denny, R., May, G.D., Erlandson, S., Yakub, M., Sugawara, M., Sadowsky, M.J., Young, N.D., and Tiffin, P. (2013). Candidate Genes and Genetic Architecture of Symbiotic and Agronomic Traits Revealed by Whole-Genome, Sequence-Based Association Genetics in *Medicago truncatula*. PLoS One 8, e65688.
- Taoka, K., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y.A., Tamaki, S., Ogaki, Y., Shimada, C., Nakagawa, A., Kojima, C., and Shimamoto, K. (2011). 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature **476**, 332-335.
- Taylor, S.A., Hofer, J.M.I., Murfet, I.C., Sollinger, J.D., Singer, S.R., Knox, M.R., and Ellis, T.H.N. (2002). *PROLIFERATING INFLORESCENCE MERISTEM*, a MADS-box gene that regulates floral meristem identity in pea. Plant Physiology **129**, 1150-1159.
- The International Peach Genome Initiative. (2013). The high-quality draft genome of peach (*Prunus persica*) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics **45**, 487-494.
- Tomato Genome Consortium. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature **485**, 635-641.
- Tsuji, H., Nakamura, H., Taoka, K.-i., and Shimamoto, K. (2013). Functional Diversification of FD Transcription Factors in Rice, Components of Florigen Activation Complexes. Plant and Cell Physiology 54, 385-397.
- Varkonyi-Gasic, E., Moss, S.M.A., Voogd, C., Wang, T., Putterill, J., and Hellens, R.P. (2013). Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. New Phytologist **198**, 732-746.
- Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., Fontana, P., Bhatnagar, S.K., Troggio, M., Pruss, D., Salvi, S., Pindo, M., Baldi, P., Castelletti, S., Cavaiuolo, M., Coppola, G., Costa, F., Cova, V., Dal Ri, A., Goremykin, V., Komjanc, M., Longhi, S., Magnago, P., Malacarne, G., Malnoy, M., Micheletti, D., Moretto, M., Perazzolli, M., Si-Ammour, A., Vezzulli, S., Zini, E., Eldredge, G., Fitzgerald, L.M., Gutin, N., Lanchbury, J., Macalma, T., Mitchell, J.T., Reid, J., Wardell, B., Kodira, C., Chen, Z., Desany, B., Niazi, F., Palmer, M., Koepke, T., Jiwan, D., Schaeffer, S., Krishnan, V., Wu, C., Chu, V.T., King, S.T., Vick, J., Tao, Q., Mraz, A., Stormo, A., Stormo, K., Bogden, R., Ederle, D., Stella, A., Vecchietti, A., Kater, M.M., Masiero, S., Lasserre, P., Lespinasse, Y., Allan, A.C., Bus, V., Chagne, D., Crowhurst, R.N., Gleave, A.P., Lavezzo, E., Fawcett, J.A., Proost, S., Rouze, P., Sterck, L., Toppo, S., Lazzari, B., Hellens, R.P., Durel, C.-E., Gutin, A., Bumgarner, R.E., Gardiner, S.E., Skolnick, M., Egholm, M., Van de Peer, Y., Salamini, F., and Viola, R. (2010). The genome of the domesticated apple (*Malus x domestica* Borkh.). Nature Genetics 42, 833-839.

- Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., and Weigel, D. (2005). Integration of Spatial and Temporal Information During Floral Induction in *Arabidopsis*. Science **309**, 1056-1059.
- Young, N.D., Debelle, F., Oldroyd, G.E.D., Geurts, R., Cannon, S.B., Udvardi, M.K., Benedito, V.A., Mayer, K.F.X., Gouzy, J., Schoof, H., Van de Peer, Y., Proost, S., Cook, D.R., Meyers, B.C., Spannagl, M., Cheung, F., De Mita, S., Krishnakumar, V., Gundlach, H., Zhou, S., Mudge, J., Bharti, A.K., Murray, J.D., Naoumkina, M.A., Rosen, B., Silverstein, K.A.T., Tang, H., Rombauts, S., Zhao, P.X., Zhou, P., Barbe, V., Bardou, P., Bechner, M., Bellec, A., Berger, A., Berges, H., Bidwell, S., Bisseling, T., Choisne, N., Couloux, A., Denny, R., Deshpande, S., Dai, X., Doyle, J.J., Dudez, A.-M., Farmer, A.D., Fouteau, S., Franken, C., Gibelin, C., Gish, J., Goldstein, S., Gonzalez, A.J., Green, P.J., Hallab, A., Hartog, M., Hua, A., Humphray, S.J., Jeong, D.-H., Jing, Y., Jocker, A., Kenton, S.M., Kim, D.-J., Klee, K., Lai, H., Lang, C., Lin, S., Macmil, S.L., Magdelenat, G., Matthews, L., McCorrison, J., Monaghan, E.L., Mun, J.-H., Najar, F.Z., Nicholson, C., Noirot, C., O/Bleness, M., Paule, C.R., Poulain, J., Prion, F., Qin, B., Qu, C., Retzel, E.F., Riddle, C., Sallet, E., Samain, S., Samson, N., Sanders, I., Saurat, O., Scarpelli, C., Schiex, T., Segurens, B., Severin, A.J., Sherrier, D.J., Shi, R., Sims, S., Singer, S.R., Sinharoy, S., Sterck, L., Viollet, A., Wang, B.-B., Wang, K., Wang, M., Wang, X., Warfsmann, J., Weissenbach, J., White, D.D., White, J.D., Wiley, G.B., Wincker, P., Xing, Y., Yang, L., Yao, Z., Ying, F., Zhai, J., Zhou, L., Zuber, A., Denarie, J., Dixon, R.A., May, G.D., Schwartz, D.C., Rogers, J., Quetier, F., Town, C.D., and Roe, B.A. (2011). The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520-524.