
Supplementary Information

Symbol Explanation

L ⊂ Zd d-dimensional regular square lattice

r ∈ L node on the lattice

σ ∈ {m, r} cell phenotype in the model (moving m and resting r)

K ≥ 2d capacity of each lattice node (2d velocity channels and K − 2d
resting channels)

n(r, k) ∈ {0, . . . ,K} cell number at a node r and time k

%(r, k) = n(r, k)/K cell density at a node r and time k (0 ≤ %(r, k) ≤ 1)

ρ(r, k) = 〈n(r, k)〉/K mean cell density at a node r and time k (0 ≤ ρ(r, k) ≤ 1)

k ∈ N automaton time step

rd probability that a cell dies

rb probability that a resting cell undergoes mitosis

rs probability that a moving cell changes to resting

1− rs probability that a resting cell changes to moving

κ ∈ R intensity of the phenotypic switch

θ ∈ (0, 1) critical cell density value at which the probabilities to switch
from resting to moving and vice versa are equal

P(·) probability

Tb average cell cycle time

Rb birth rate (Tb = 1/Rb)

Td average life time of a cell

Rd death rate (Td = 1/Rd)

Table 1. List of symbols

1 LGCA model description

Our LGCA is defined on a 2-dimensional square lattice L ⊂ Z2. To every lattice node r ∈ L,
velocity channels (r, ci), i = 1, . . . , b, are associated. The parameter b defines the number of
nearest neighbors on the lattice. Here, we choose b = 4 and ci ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}.
In addition, a fixed number of rest channels, (r, ci), i = b + 1, . . . ,K with ci = {(0, 0)} is
introduced. The LGCA imposes an exclusion principle on channel occupation, i.e. at any time
at most one cell is allowed in each channel at every lattice node. Thus K defines the maximal
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capacity of cells per node. We represent the healthy cells by empty channels and model explicitly
two tumor cell phenotypes, denoted by σ ∈ {m, r}: moving (m) and resting (r) tumor cells. The
occupation numbers at time k, ηi(r, k), i = 1, . . . ,K, are random Boolean variables that indicate
the presence (ηi = 1) or absence (ηi = 0) of a tumor cell in channel (r, ci). The local configuration
of cells at a node r at time k is described by a vector η(r, k) = (η1(r, k), . . . , ηK(r, k)) ∈ {0, 1}K .
The total number of tumor cells at a node r and time k is defined by

n(r, k) = nm(r, k) + nr(r, k) =
b∑
i=1

ηi(r, k) +
K∑

i=b+1

ηi(r, k),

where nm(r, k) and nr(r, k) are the number of moving and resting cells at a node r at time k,
respectively.

The dynamics of our LGCA arise from the repeated application of three operators: prop-
agation (P), reorientation (O) and cell reactions (R). The propagation and reorientation
operators define cell movement, whereas the cell reaction operator changes the local number of
cells on a node. The composition R ◦ O ◦ P of the three operators is applied independently at
every node r of the lattice and at each time k to evaluate the configuration at time k + 1.

The cell reactions operator comprises cell death and cell proliferation where the latter is
affected by the migration-proliferation dichotomy. In detail, we consider three stochastic pro-
cesses: phenotypic switching (S), cell death (D) and proliferation(B). For the sake of simplicity,
the interaction between cells is restricted to the node itself. Moreover, we consider interaction
rules which are independent of the cells’ distribution to channels and solely depend on the total
number of cells n(r, k) within the node. During one automaton time step, the number of cells
on a node r changes by subsequent application of a switch (S), death (D) and proliferation (B)
step,

n = (nm, nr)
S−→ (n′m, n

′
r)
D−→ (n′′m, n

′′
r)
B−→ (n′′m, n

′′′
r ) = nR. (1)

The precise update rules are described below. Since we assume that individual cells decide to
switch, die or divide independently from each other, the corresponding transition probability for
the cell number per node follows a binomial distribution.

• Phenotypic switch (S): Cells can either rest or move. The phenotypic switch depends on
the local cell density1 % = n/K. Phenotypes are changed with probabilities rs(%) and
1− rs(%) that denote the probabilities of a moving cell to become resting and vice versa.
Moving and resting populations can exchange cells if there is enough free space on the
lattice. Two steps are independently performed:

(1) Define M1 = min(nm, (K − b) − nr) which is the potential number of cells that can
switch from the moving to the resting phenotype, taking into account the effect of
local volume exclusion. The transition probability that there are j1 successful events

1Cell density is defined as number of cells per unit volume. Given a typical size of a tumor cell, Vcell (units
mm3), one can easily estimate the cell density % at a lattice node % = n/(K · Vcell) = n/Vnode, where n is the
number of cells at a lattice node, K is the maximal node capacity and Vnode = K · Vcell (units mm3) is the size
of each lattice node. Thus, cell density can be easily rescaled to cell number.
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‘moving→resting’ is modeled by

PS1((nm, nr)→ (nm−j1, nr+j1)) =

{(
M1

j1

)
rs(%)j1(1− rs(%))M1−j1 if 0 ≤ j1 ≤M1,

0 otherwise.

(2)

(2) Define M2 = min(nr, b − nm) which is the potential number of cells that can switch
from the resting to the moving phenotype, taking into account the effect of local
volume exclusion. The transition probability that there are j2 successful events
‘resting→moving’ is given by

PS2((nm, nr)→ (nm+j2, nr−j2)) =

{(
M2

j2

)
(1− rs(%))j2rs(%)M2−j2 if 0 ≤ j2 ≤M2,

0 otherwise.

(3)

Finally, the difference between successful switches ‘moving→resting’ and ‘resting→moving’
is used to update the number of moving and resting cells so that (nm, nr)→ (nm − (j1 −
j2), nr + (j1 − j2)) = (n′m, n

′
r). Note that the switching process does not change the total

number of cells but the ratio between moving and resting cells.

• Cell death (D): Each tumor cell is assumed to die with probability rd, independently from
the other cells. Thus, the probability that j1 moving and j2 resting cells die, starting with
n′ cells is

PD((n′m, n
′
r)→ (n′m− j1, n′r− j2)) =

{(
n′

j

)
rjd(1− rd)

n′−j if j1 ≤ n′m and j2 ≤ n′r, j = j1 + j2,

0 otherwise.

(4)

• Cell proliferation (B): Birth of cells is dictated by the migration-proliferation dichotomy,
which means that cells are allowed to proliferate only when they rest, i.e. when they are
positioned on a rest channel. In addition, there must be empty rest channels to place
the offspring into. Therefore, M = min(n′′r , (K − b)− n′′r) defines the potential number of
resting cells that are allowed to proliferate starting from n′′ cells after the switch and death
processes. The transition probability that there are j new cells after the proliferation step
is then given by

PB((n′′m, n
′′
r)→ (n′′m, n

′′
r + j)) =

{(
M
j

)
rjb(1− rb)

M−j if j′ ≤M,

0 otherwise.
(5)

Altogether changes occurring in the cell number of a given node between two consecutive times
k and k + 1 can be encoded in a transition matrix P with

P = PSPDPB, (6)

where the entries of the transition matrix of the switch process PS is determined by (2) and (3),
and the transition matrices PD and PB of the death and proliferation processes, respectively, are
defined by (4) and (5).

3



Subsequent to the cell reactions step, a reorientation step takes place where cells are randomly
redistributed to the channels, providing a new local cell configuration at each node. Because of
the migration-proliferation dichotomy, only the cells of migratory phenotype move. Therefore,
moving cells are distributed to the velocity channels, while resting cells are distributed to the
resting channels, resulting in a configuration ηR◦O(r).

The final update step is the application of a propagation operator. Cells in the velocity
channels, i.e. moving cells, are transported one lattice unit in directions determined by their
velocities. The movement of cells in the propagation step is purely deterministic. The spatio-
temporal automaton dynamics is therefore completely described by the microdynamical equation

ηi(r+ ci, k+ 1)− ηi(r, k) = ηR◦Oi (r, k)− ηi(r, k) ∈ {−1, 0, 1}, r ∈ L, i = 1, . . . ,K, k = 0, 1, . . . ,
(7)

where the change in the occupation numbers is −1 if a channel looses a cell, 0 if nothing is
changed and 1 if a channel gains a cell, respectively.

2 Scaling of the LGCA

We have chosen a nondimensional scaling with unit lattice spacing and unit time scale k ∈ N in
our LGCA simulation. Thus, cells residing at velocity channels move one lattice unit per unit
time step. Our dimensionless simulations can easily be rescaled such that the temporal and
spatial scales fit to specific applications. In our case, cell death and proliferation probabilities
are related to the real-dimensional average life time Td of a cell and the average cell cycle time
Tb, respectively, by

rd(τ) =
τ

Td
, rb(τ) =

τ

Tb
, (8)

where τ is a sufficiently small real-dimensional time step length. This scaling is chosen because
of the following arguments, detailed for the case of cell death. Let X1, X2, . . . be independent
Bernoulli trials with possible outcomes “cell dies” (Xi = 1) and “cell survives” (Xi = 0). The
corresponding probability distribution is given by P(Xi = 1) = rd. Let N be the number of
trials up to the first time a cell dies, i.e. N := min{n|X1 = . . . Xn−1 = 0, Xn = 1}. Then N is
geometrically distributed such that P(N = n) = (1−rd)n−1rd with expected value E[N ] = 1/rd.
If τ is the real-dimensional time step length, the life time of a cell is given by τN . Hence,
the average cell life time in the model is T = E[τN ] = τ/rd which must be related to the
real-dimensional average life time Td.

Similar arguments hold for the real macroscopic time taken for a cell to proliferate (cell cycle
time) and for a cell to change its phenotype. Please note that if the LGCA parameters rs, rd
and rb depend on time τ , the transition matrix of the cell reactions becomes time-dependent:

P = P (τ) = PS(τ)PD(τ)PB(τ). (9)

Besides scaling the LGCA time intervals, also the lattice spacing can be adjusted. If the
lattice spacing is ε, the mean-square displacement of a cell per time step τ in the LGCA is
proportional to ε2/τ . Thus, by scaling x = εr ∈ R, the relationship between the LGCA motility
and measured movement of cells is characterized by the diffusion constant D = ε2/τ .
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3 Equilibrium state under fast switching assumption

When deriving the mean-field equation, we assume that the switch dynamics is much faster
than the cell number changes due to proliferation and death, that is rs, 1− rs � rb, rd. Further,
we consider the low density regime where the carrying-capacity effects can be neglected when
considering the switching. Then, by time scale separation, the fractions pσ := nσ/n, σ ∈ {r,m}
of resting and moving cells, respectively, are in detailed balance with respect to the switch
dynamics. This amounts to

pr(1− rs) = pmrs

= (1− pr)rs.

Hence pr = rs or, equivalently,
nr = rsn. (10)

4 Mean-field approximation of the LGCA dynamics

The LGCA model is composed of a cell movement and a cell reaction process. In the following,
we separate the two processes and derive mean-field approximations for each one. We show that
the cell movement in the automaton model can be approximated by a degenerate diffusion term,
while cell reaction in the automaton leads to a nonlinear reaction term in the resulting partial
differential equation description.

4.1 Scaling limit of the cell reaction process

In the following, we are interested in the time evolution of the cell density and neglect any spatial
dependence between nodes. We assume that the system is in equilibrium with respect to the
switching (fast switching assumption, see section 3). We consider the Markov process (Nk)k≥0
which describes the number of cells at a node r ∈ L in the discrete phase space {0, . . . ,K}. The
transition matrix of this process, derived from (6) and (10), is given by W = WDWB, where

WD(i, j) =

{(
i
j

)
(1− rd)jri−jd if j ≤ i,

0 otherwise
(11)

and

WB(i, j) =

{(
M

rsj−rsi
)
rrsj−rsib (1− rb)M−rsj+rsi if rsj − rsi ≤M = min(rsi,K − i),

0 otherwise.
(12)

Here, the minimum function min(x,K − x) ≈ x(K − x) 1
K , x ∈ (0,K). This approximation

underestimates the minimum function but provides an intuitive explanation as it describes the
fraction of cells that are able to proliferate times the fraction of space that can be filled. Please
note that, for simplicity, we use a notation where the dependence of the switch function rs from
the node density % is dropped.
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The probability to be in state j after one time step is

Pk+1(j) := P(Nk+1 = j) =
K∑
i=0

W (i, j)P(Nk = i) =
K∑
i=0

W (i, j)Pk(i)

and in matrix notation
Pk+1 = WPk.

The transition of a microscopic process to a macroscopic description requires a temporal scaling
relation between the macroscopic and microscopic variables (see section 2 for details). We
assume a small parameter τ > 0 that scales the time variable t = kτ such that

Pt+τ = W (τ)Pt,

where now the transition matrix W depends on the real-dimensional time step size τ . Rearrang-
ing terms gives

Pt+τ − Pt = (W (τ)− I)Pt,

Pt+τ − Pt
τ

=
W (τ)− I

τ
Pt.

Then, for τ ↓ 0
∂

∂t
Pt = QPt (13)

with intensity matrix Q := lim
τ↓0

W (τ)−I
τ = ∂

∂τW (τ)
∣∣
τ=0

. Since W (τ) = WD(τ)WB(τ) it follows

that

Q =
∂

∂τ
W (τ)

∣∣∣∣
τ=0

=

[(
∂

∂τ
WD(τ)

)
WB(τ) +WD(τ)

(
∂

∂τ
WB(τ)

)]∣∣∣∣
τ=0

=
∂

∂τ
WD(τ)

∣∣∣∣
τ=0

+
∂

∂τ
WB(τ)

∣∣∣∣
τ=0

= QD +QB, (14)

where QD and QB are the intensity matrices for the death and birth processes, respectively. A
direct calculation gives

QD = lim
τ↓0

1

τ
WD(τ ; i, j) = lim

τ↓0

1

τ

{(
i
j

)
(1− rd(τ))jrd(τ)i−j if 0 ≤ j ≤ i,

0 else,

(8)
= lim

τ↓0

1

τ


(
i
j

) (
1− τ

Td

)j (
τ
Td

)i−j
if 0 ≤ j ≤ i,

0 otherwise,

= lim
τ↓0

 1
Td

(
i
j

) (
1− τ

Td

)j (
τ
Td

)i−j−1
if 0 ≤ j ≤ i,

0 otherwise,

=

{
i
Td

if j = i− 1,

0 otherwise
(15)
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and similarly

QB = lim
τ↓0

1

τ
WB(τ ; i, j) =

{
1
Tb
rsi
(
1− i

K

)
if rsj = rsi− 1,

0 otherwise.
(16)

From the master equation (13), the temporal evolution of the mean cell density ρt = 〈Nt〉/K is
obtained by

∂

∂t
ρt =

1

K

K∑
j=0

j
∂

∂t
Pt(j) =

1

K

K∑
j=0

j
K∑
i=0

Q(i, j)Pt(i). (17)

=
1

K

K∑
i=0

Pt(i)
K∑
j=0

jQ(i, j)

(14)
=

1

K

K∑
i=0

Pt(i)

K∑
j=0

jQD(i, j) +
1

K

K∑
i=0

Pt(i)

K∑
j=0

jQB(i, j)

(15),(16)
=

1

K

1

Td

K∑
i=0

(−i)Pt(i) +
1

K

1

Tb

K∑
i=0

rsi

(
1− i

K

)
Pt(i)

= − 1

Td
ρ+ rs

1

Tb
ρ− rs

1

K

1

Tb

K∑
i=0

i2Pt(i). (18)

Assuming that E[N2
t ] = E[Nt]

2, which holds if the variance of Nt is small, for instance if K is
large, we finally arrive at a macroscopic description of the LGCA birth-death process

∂

∂t
ρt = −Rdρ+ rs(ρ)Rbρ(1− ρ), (19)

where Rd = 1/Td and Rb = 1/Tb are the real death and proliferation rates, respectively, see
section 2.

4.2 Scaling limit of the cell migration process

In the following, we consider the automaton cell migration process without cell reactions, under
the fast switching assumption, see section 3. In our LGCA, the probability of a cell to jump
from one node r to a neighboring node r+ ci is equal to the probability of a cell residing in the
respective velocity channel. In the isotropic case, cells within velocity channels are redistributed
with probability 1/b. To connect the discrete mechanism with a continuum model we consider
the expected cell density of a node r at time k, defined by ρ(r, k) = 〈%(r, k)〉, in the scaling limit
when time step length and lattice spacing go to 0.

The change in average occupancy of a moving cell at site r during the next time step is given
by

(20)ρ(r, k + 1) =
b∑
i=1

1− rs(ρ(r + ci, k))

b
ρ(r + ci, k) + rs(ρ(r, k))ρ(r, k),

where the terms can be interpreted as the probability that a cell at site r + ci, i = 1, . . . , b, is
moving to site r and the probability that a moving cell at site r does not attempt to leave the
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site. In the following, for simplicity, we will analyze a one-dimensional situation where motility
events only take place in the horizontal direction. This approach can easily be extended to
higher dimensions, because of the model isotropy.

In one dimension, equation (20) reduces to

ρ(r, k + 1) =
1− rs(ρ(r− 1, k))

2
ρ(r− 1, k) +

1− rs(ρ(r + 1, k))

2
ρ(r + 1, k) + rs(ρ(r, k))ρ(r, k),

(21)

where the terms correspond to the probability that a cell at site r − 1 is moving and moves to
the right, the probability that a a cell at site r + 1 is moving and moves to the left and the
probability that a moving cell at site r does not attempt to leave the site. Approximating rs(ρ)
around ρ� 1 such that rs(ρ) = rs(0) + r′s(0)ρ+ r′′s (0)ρ2 +O(ρ3), equation (21) becomes

(22)

ρ(r, k + 1) =
1

2
(ρ(r + 1, k) + ρ(r− 1, k))− 1

2
rs(0)(ρ(r + 1, k) + ρ(r− 1, k))

− 1

2
r′s(0)(ρ2(r + 1, k) + ρ2(r− 1, k))− 1

2
r′′s (0)(ρ3(r + 1, k) + ρ3(r− 1, k))

+ rs(0)ρ(r, k) + r′s(0)ρ2(r, k) + r′′s (0)ρ3(r, k).

To convert the finite difference equation (22) into a continuous macroscopic partial differential
equation (PDE), we identify the average density ρ(r, k) by its continuous counterpart ρ(x, t),
where x = rε ∈ R and t = kτ ∈ R+, with ε, τ ∈ R+, which gives

(23)

ρ(x, t+ τ) =
1

2
(ρ(x + ε, t) + ρ(x− ε, t))− 1

2
rs(0)(ρ(x + ε, t) + ρ(x− ε, t))

− 1

2
r′s(0)(ρ2(x + ε, t) + ρ2(x− ε, t))− 1

2
r′′s (0)(ρ3(x + ε, t) + ρ3(x− ε, t))

+ rs(0)ρ(x, t) + r′s(0)ρ2(x, t) + r′′s (0)ρ3(x, t).

Expanding all terms in (23) in truncated Taylor series in powers of ε and τ up to second order
gives

(24)

ρ+ τ∂tρ+
τ2

2
∂ttρ = ρ+

ε2

2
∂xxρ− rs(0)ρ− rs(0)ε2

2
∂xxρ− r′s(0)ρ2 − r′s(0)ε2(∂xρ)2

− r′s(0)ρε2∂xxρ−
r′s(0)ε4

2
(∂xxρ)2 − r′′s (0)ρ3 − 3r′′s (0)ρε2(∂xρ)2

− 3r′′s (0)ε2

2
ρ2∂xxρ−

3r′′s (0)ε4

2
(∂xρ)2∂xxρ−

3r′′s (0)ε4

4
ρ(∂xxρ)2

− r′′s (0)ε4

2
(∂xxρ)3 + rs(0)ρ+ r′s(0)ρ2 + r′′s (0)ρ3.

To proceed, we consider the diffusive limit, i.e. ε → 0, τ → 0 and lim
ε,τ→0

ε2

τ = const := D. This
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gives

(25)

∂tρ=
D

2
− D

2
rs(0)∂xxρ− r′s(0)D(∂xρ)2− r′s(0)Dρ∂xxρ−3r′′s (0)Dρ(∂xρ)2− 3D

2
r′′s (0)ρ2∂xxρ

= D∂xxρ

(
1− rs(0)

2
− r′s(0)ρ− 3

2
r′′s (0)ρ2

)
︸ ︷︷ ︸

=:D(ρ)

+D(∂xρ)2
(
−r′s(0)− 3r′′s (0)ρ

)︸ ︷︷ ︸
=D′(ρ)

.

Finally, the jump process of our LGCA can be approximated by a degenerate diffusion equation

∂tρ = D∂x(D(ρ)∂xρ). (26)

5 Kernel density estimation of the averaged cell density

The kernel density estimation, also known as Parzen-Rosenblatt density estimation, is a well
known nonparametric way of estimating the probability density function underlying a finite
set of observations [1, 2]. We use a built-in Mathematica function to estimate the kernel
density of the averaged cell density. For details see the Wolfram Demonstrations Project
http://demonstrations.wolfram.com/KernelDensityEstimation/ and http://reference.

wolfram.com/mathematica/ref/SmoothKernelDistribution.html.

6 Stability analysis of cell reaction mean-field equation

In the following, we analyze the stability behavior of the macroscopic growth equation (19)
derived in section 4.1. Thus, let us consider the kinetic equation

∂tρ = F (ρ), (27)

where
F (ρ) = rs(ρ)rbρ(1− ρ)− rdρ, (28)

with positive constants rb and rd and

rs(%) =
1

2
(1 + tanh(κ(%− θ))), ρ ∈ [0, 1], κ ∈ R, θ ∈ (0, 1). (29)

Obviously, F (0) = 0 and F (1) = −rd < 0. The first derivative of F with respect to % is

F ′(%) = rb%(1− %)r′s(%) + rbrs(%)(1− 2%)− rd, (30)

where r′s(%) = 1
2κ sech2(κ(%− θ)). For the trivial fixed point ρ1 = 0 of (27), it is

F ′(0) =
1

2
rb(1− tanh(κθ))− rd.

In order to identify fixed points of (27) and to determine their switch behavior, we will consider
two conditions

tanh(κθ) > 1− 2
rd
rb

(31)
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and
tanh(κθ) < 1− 2

rd
rb
. (32)

Lemma 1. The zero ρ1 = 0 of F (%) is a stable equilibrium of (27) if condition (31) holds.
Under condition (32), ρ1 = 0 is an unstable equilibrium of (27).

Proof. Obviously, ρ1 = 0 is a fixed point of (27). It is

F ′(0) =
1

2
rb(1− tanh(κθ))− rd < 0

if and only if 1 − 2 rdrb < tanh(κθ). In contrast, F ′(0) > 0 if and only if 1 − 2 rdrb > tanh(κθ).

Therefore, if condition (31) holds it is F ′(0) < 0 and ρ1 = 0 is stable. However, if condition (32)
is satisfied, it is F ′(0) > 0 and ρ1 = 0 is unstable

Lemma 2. Let rb < rd. Then ρ1 = 0 is the only fixed point of (27).

Proof. For ρ ∈ (0, 1], it is (1− ρ) ∈ [0, 1) and rs(%) ∈ (0, 1). Thus

F (ρ) = ρ(rbrs(ρ)(1− ρ)︸ ︷︷ ︸
∈[0,rb]

−rd) < 0

if and only if rb < rd. In this case, ρ1 = 0 is the only zero of F (ρ).

Remark 1. For rb < rd, it is 1 − 2 rdrb < −1. Then condition (31) is always satisfied if κ < 0,
because in this case it is tanh(κθ) ∈ (−1, 0).

For rb > rd, we will consider the two cases κ < 0 (repulsive case) and κ > 0 (attractive case).

Lemma 3. Let κ < 0 and rb > rd. If condition (32) holds, one unstable fixed points ρ1 = 0
and one stable fixed point 0 < ρ2 < 1 of (27) exist.

Proof. Under condition (32), it is F ′(0) > 0 and F has exactly one maximum in ρmax, where
0 < ρmax < 1. F is strictly monotonic increasing in [0, ρmax) and strictly decreasing in [ρmax, 1].
By the intermediate value theorem it exists one ρ2 ∈ (0, 1) with F (ρ2) = 0 and F ′(ρ2) < 0. This
ρ2 is unique by the strict monotony of F .

Lemma 4. Let κ > 0 and rb > rd. If condition (32) is satisfied, one unstable fixed points
ρ1 = 0 and one stable fixed point 0 < ρ2 < 1 of (27) exist.

Proof. For κ > 0 and under condition (32) it is F ′(0) > 0 and F has one maximum in ρmax,
where 0 < ρmax < 1, and one minimum in ρmin = 1. F is strictly monotonic increasing in
[0, ρmax) and strictly decreasing in [ρmax, 1]. By the intermediate value theorem, there exists
a ρ2 ∈ (0, 1) with F (ρ2) = 0 and F ′(ρ2) < 0. This ρ2 is unique by the strict monotony of
F .
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Lemma 5. Let κ > 0, rb > rd and condition (31) be true. If rs(ρ)(1−ρ) < rd
rb

for all 0 ≤ ρ ≤ 1,
then ρ1 = 0 is the only fixed pint of (27). Otherwise, an unstable fixed point ρ2 and two stable
fixed points ρ1 = 0, ρ3 of (27) exist, with 0 < ρ2 < ρ3 < 1.

Proof. For κ > 0 and under condition (31) it is F ′(0) < 0. Moreover, F has one minimum in
ρmin, where 0 < ρmin < 1 and one maximum in ρmax, where ρmin < ρmax < 1. F is strictly
monotonic decreasing in [0, ρmin], strictly increasing in (ρmax, ρmax) and again strictly decreasing
in [ρmax, 1]. If (1 − ρ)rs(ρ) < rd

rb
for all 0 ≤ ρ ≤ 1, then F (ρ) < 0 for all 0 < ρ ≤ 1 and no

other fixed point than the unstable ρ1 = 0 exist. If, however, values of ρ exist for which
rs(ρ)(1− ρ) > rd

rb
, then it exists ρ∗ ∈ (0, 1) with F (ρ∗) > 0. By the intermediate value theorem

it exists a ρ2 and ρ3, with 0 < ρ2 < ρ∗ and ρ∗ < ρ3 < 1, where F (ρ2) = 0 and F ′(ρ2) > 0, and
F (ρ3) = 0 and F ′(ρ3) < 0. This ρ2 and ρ3 are unique by the strict monotony of F .

Remark 2. For large values of θ and κ, it is rs(ρ)(1− ρ) < rd
rb

for all 0 ≤ ρ ≤ 1 .

Remark 3. If, values of ρ exist for which rs(ρ)(1− ρ) > rd
rb

, then (27) shows bistable behavior
and population extinction can be observed for small densities if (27)

rs(ρ) <
rd
rb

(33)

holds.

Finally, for rb > rd, we conclude that in the repulsive case (κ < 0), equation (27) has one
unstable (ρ1 = 0) and one stable (0 < ρ2 < 1) fixed point. In the attractive case (κ > 0), three
cases can be distinguished: (i) Equation (27) has one stable steady state if tanh(κθ) > 1− 2 rdrb
and rs(ρ)(1 − ρ) < rd

rb
for all 0 ≤ ρ ≤ 1, (ii) one unstable (ρ1 = 0) and one stable (0 < ρ2 < 1)

fixed point, (iii) one unstable (0 < ρ2 < 1) and two stable (ρ1 = 0, ρ2 < ρ3 < 1) fixed points. An
illustration of the stability behavior under different parameter combinations is shown in Figure
7.
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Figure Legends

Figure 1. Stability analysis of the kinetic growth equation (27). The colored lines
represent the kinetic growth function F (%) (28) for different values of κ and θ. Zeros of the
function F (%) correspond to fixed points of the LGCA cell reaction mean-field equation (27).
The sign of the slope of function F (%) at the zero reveals the stability behavior of the fixed point.
(a) In the repulsive case (κ < 0), there are exactly two fixed points. Parameters are κ = −4
and θ = 0.25. (b) In the attractive case (κ > 0), three cases can be distinguished: (i) one fixed
point (orange-red line, κ = 4, θ = 0.98), (ii) two fixed points (brown line, κ = 4, θ = 0.125) or
(iii) three (orange line, κ = 4, θ = 0.75) fixed points.

Movie Legends

Movie S1. Population extinction in the LGCA go-or-grow model. Initially, in a radius of
10 from the center one rest and one velocity channel is randomly occupied (threshold 0.25).
rm = 0.2, rd = 0.01, K = 8, θ = 0.375 and κ = 1.1. (1000 simulation time steps)

Movie S2. Population growth in the LGCA go-or-grow model. Initially, in a radius of 10 from
the center one rest and one velocity channel is randomly occupied (threshold 0.25). rm = 0.2,
rd = 0.01, K = 8, θ = 0.375 and κ = 1.1. (1000 simulation time steps)
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