

FIG S1 The expression levels of nga and speB, along with their respective inhibitor targets, ifs and spi, for $CovS^+$ and $CovS^-$ at LP and SP. (A, B). The schematic representation of the genomic location of nga and its inhibitor, ifs; and speB and its inhibitor, spi. The four genes nga, ifs, speB, and spi are highlighted in orange. (C, D) The growth-dependent and phenotype-dependent expression of the inhibitors are highly coordinated with their inhibiting target genes with \sim 15-fold (ifs) and \sim 118-fold (spi) changes, corresponding to 12-fold and 91-fold changes in nga and speB, respectively. The expression levels are shown in RPKM.

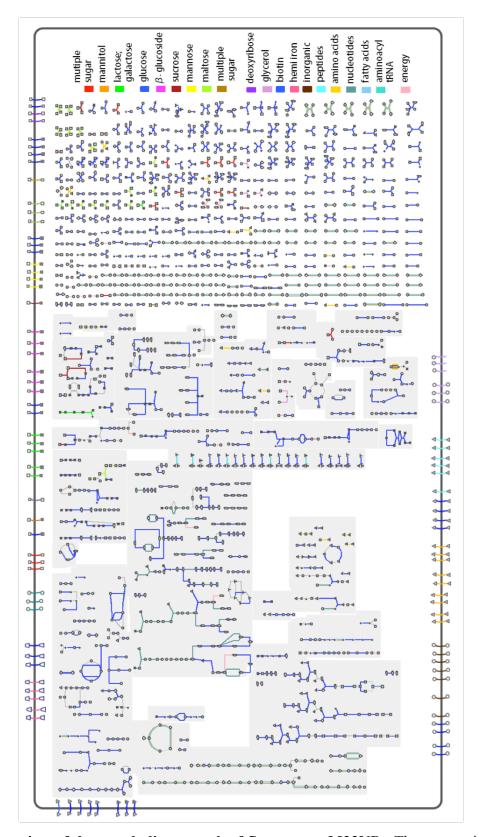


FIG S2 Overview of the metabolic network of *S. pyogenes* M23ND. The connecting lines represent the gene reactions and the nodes represent the metabolites. The CovS regulated nutritional genes are indicated by different colors and all other genes are indicated by blue. The different shapes of nodes represent different metabolites: squares for carbohydrates; downward triangles for cofactors; diamonds for proteins; upward triangles for amino acids; vertical ellipses for purines; horizontal ellipses for pyrimidines; trapezoids for heme

iron; filled symbols for phosphorylated metabolites; T for tRNAs; circles for other metabolites. The black solid frame depicts the bacterial cell membrane, and transporters are shown as located across the membrane.

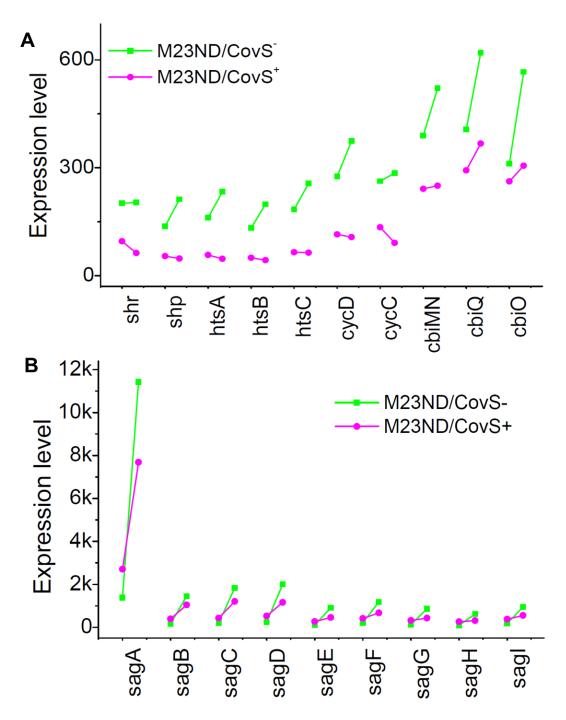


FIG S3 Expression profile of genes associated with heme iron utilization and hemolysin. (A) Expression of genes in *sia* operon for heme iron utilization. (B) Expression of genes in *sagA* operon for hemolylsin. The expression levels of the gene members in the operons are shown for CovS⁺ and CovS⁻ (vertical direction) at LP and SP growth (horizontal direction). The genes in *sia* operon exhibit robust upregulation in CovS⁻ compared to CovS⁺, indicating the importance of the operon for virulence of GAS. The genes in *sagA* operon are coordinately upregulated at SP compared to LP growth. At SP growth, *sagA* operon is shown to be more activated by CovS⁻ compared to CovS⁺. The expression levels are shown as RPKM.

TABLE S1 Primers and probes for Q-RT-PCR of selected genes.

Primer	Sequence (5'->3')	Sequence position [#] (Length)	
cfa-F	CGCACTCAGTTTTAGCTGATGATGC	69 240 (272)	
cfa-R	CTGATAATGCTTCTACTCTTGCCCC	68-340 (273)	
parE-F	GTTCAACAGATGCTACGGGATTGC	101 259 (259)	
parE-R	GCAAACCACCTGACGTTTTGTAGC	101-358 (258)	
inlA-F	CAGATCAGGGAATCGTTGTTGACC	257 466 (210)	
inlA-R	CTTCAGCCACAATATCCGCTGGG	257-466 (210)	
htpA-F	CGATGGATCAAATCAGTGCTGAAG	170 400 (210)	
htpA-R	GTTCCTTTGGCTACTTGCTCAGC	170-488 (319)	
ifs-F	GGGAGATATTTCTGATCCAGAAG	2 220 (22()	
ifs-R	CTTTCGACCATATCAAGCATAG	3-338 (336)	
hypo0-F	GGAGGAAGCACTTGTTTAGCAGATG	07.200 (202)	
hypo0-R	CCATCTTGACTGCCTTGGCTAAATG	97-398 (302)	
htsA-F	GTGTGAATCAGCACCCTAAAACGGC	50 204 (226)	
htsA-R	CTGGTACATGCCCTCAACACTTCG	59-384 (326)	
shr-F	CAGTCACAACTCGTGACAACAGTAG	04.400 (205)	
shr-R	GTGCCTTGGTTTTGTGGCACTGGT	94-488 (395)	
shp-F	GCAGATAGAAGATAGTGGAGGGGAG	00 204 (106)	
shp-R	CTTCCAGTTCCTCCAGGTTGTATCC	99-284 (186)	
mtlA-F	CATTGGTGCATTTATTGCCTGGGG	75 220 (254)	
mtlA- R	CACCAAGTGGTCCCATTGCCATTG	75-328 (254)	
gatC-F	CTATTCAGTTGGGATCAGGTGTGG	47.246 (206)	
gatC-R	CAATATTAACCACCAGCATCACCAGC	47-346 (306)	
ptsD-F	GTCTTTTGGCGCTCATGGACGATG	201 52 (270)	
ptsD-R	CGAAGCCTTAACAGCAGTGATAGC	321-52 (270)	
atpE-F	CCTATTTCGCATTGGCTTTGGCC	7-190 (184)	
atpE-R	GAATGAAGGCCATAACAAGGGTAAC		
atpB-F	GACCCTACTTGCTGTTTGTATTGTC	54.254.(201)	
atpB-R	GTCAAAAGCCAGATTGGCTGTTGG	54-354 (301)	
plr-F	GACGGTACTGAAACAGTTATCTC	241 (55 (224)	
plr-R	GATAGCTTTAGCAGCACCAGTTG	241-655 (234)	

[#] Numbering is from the position of start codon of the specific gene. Length refers to the amplicon length.

TABLE S2 Sequencing statistics of the RNA samples.

Strain/Condition	covS-				covS+			
	LP1	LP2	SP1	SP2	LP1	LP2	SP1	SP2
# of Reads	5,847,068	9,700,716	4,190,672	6,087,132	6,918,530	6,112,658	6,739,006	5,084,304
Yields	468Mbp	776Mbp	335Mbp	487Mbp	553Mbp	489Mbp	539Mbp	407Mbp
Non-redundant	3,461,470	5,625,656	2,327,868	3,206,068	4,039,690	3,766,152	3,589,934	2,533,308
Yields	277Mbp	450Mbp	186Mbp	256Mbp	323Mbp	301Mbp	287Mbp	203Mbp
% non- redundant	59.20	57.99	55.55	52.67	58.39	61.61	53.27	49.83
Total mapped	3,305,756	4,900,081	2,252,833	3,099,328	3,840,394	3,570,483	3,149,839	2,435,677
% mapped	95.50	87.10	96.78	96.67	95.07	94.80	87.74	96.15
Unique mapped	3,111,550	4,573,396	2,085,780	2,759,400	3,668,997	3,412,414	2,904,766	2,248,705
% Unique mapped	89.89	81.30	89.60	86.07	90.82	90.61	80.91	88.77

TABLE S3 Fold changes and conservation of differentially regulated hypothetical genes at LP or SP

			covS+ vs	s. covS-		
Gene ID	Gene	I	LP		SP	- Conservation [#]
Gene id	Symbol	Fold	FDR p-value	Fold	FDR p-value	Conservation
FE90_0104	hypo0	-49.9	0	-15.6	0	Unique to M23ND
FE90_1770	hypo1	-49.8	0	-7.5	0	Conserved
FE90_1362	hypo2	-15.6	0	-14.4	0	Conserved
FE90_1535	hypo4	-21.4	0	-22.4	0	Average similarity < 50%
FE90_1726	hypo6	1.8	0	10.3	0	Conserved
FE90_1729	hypo7	-5.6	0	-3.6	0	Conserved
FE90_1733	hypo8	1.3	0.559	90.1	0	Conserved
FE90_1734	hypo9	1.9	0.091	52.2	0	Conserved
FE90_0391	hypo10	1.3	0.003	1.7	0	Encoded in 20% of M types of S. pyogenes
FE90_0381	hypo11	1.3	0.020	2.1	0	Conserved
FE90_0500	hypo13	1.4	0.014	2.4	0	Conserved
FE90_0648	hypo14	9.9	1	3.0	0	Encoded in 60% of M types of S. pyogenes
FE90_0676	hypo15	-1.6	0	-1.2	0.064	Conserved
FE90_1011	hypo16	-2.4	0.024	-2.4	0	Conserved
FE90_1015	hypo17	-2.1	0	-3.0	0	Conserved
FE90_1083	hypo18	2.0	0	1.5	0.000	Conserved
FE90_1390	hypo19	-4.4	0	-2.1	0	Conserved
FE90_1524	hypo20	1.3	0.033	1.9	0	Conserved
FE90_1532	hypo21	-9.2	0	-8.1	0	Average similarity < 50%
FE90_1673	hypo22	-2.6	0	-4.3	0	Conserved
FE90_1830	hypo24	-1.2	0.163	-2.1	0	Conserved
FE90_0569	hypo25	-1.7	0.024	1.8	0	Conserved
FE90_0571	hypo26	-1.0	0.952	2.7	0	Conserved
FE90_1664	hypo27	1.1	0.631	3.5	0	Conserved
FE90_1666	hypo28	1.1	0.409	2.2	0	Conserved
FE90_1442	hypo29	-2.5	0	-2.7	0	Conserved

[#] Conservation was assessed by comparing each gene to the homologs from other strains of *S. pyogenes* with known genome sequences at both nucleotide and amino acid level.