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1 Materials

The metabolic network used in this paper reproduces the central carbon metabolism
of the Escherichia.coli bacterium. It is described in [1] and downloadable from
http://systemsbiology.ucsd.edu/Downloads/EcoliCore. It comprises 95 metabolic
reactions among 72 metabolites. 49 of these reactions are considered irreversible.
The pathways included in this network are Glycolysis/Gluconeogenesis, Pentose
Phosphate pathway, TCA cycle, Oxidative Phosphorylation and Pyruvate metabolism,
plus a number of exchange reactions.

We assume to be working with wild type strains of E.coli growing exponen-
tially in a rich medium, in aerobic conditions. In the network downloaded from
http://systemsbiology.ucsd.edu/Downloads/EcoliCore, the lower and upper
bounds of all reactions are arbitrarily fixed to be equal to 0 or to ±1000. Following
[2], in this paper the bounds are corrected to fit the experimental substrate uptake
rates of all single carbon sources described in [3]. The lower bounds of essential
chemicals such as oxigen, water, phosphate and ammonia are left sufficiently big so
that these compounds never saturate.

2 Methods

In what follows the stochastic process used in the paper to describe metabolic adap-
tation is described in detail. The idea of using resilencings and adjustments to
describe metabolic adaptation was first proposed in [4], see also [2]. Here it is pre-
sented in a more rigorous mathematical form using replicator equations. It is shown
that if the selection probabilities of the resilencings are computed through basic
replicator equations, then they naturally assume the form of a Boltzmann distri-
bution. The possibility of including enzyme regulation in the model is explored.
This can be done by modulating the shape of the prior probabilities (i.e., the initial
conditions of the replicator equation).

2.1 Population dynamics model for the selection probabili-
ties of the enzyme resilencing.

In this subsection we describe the population dynamics model used for the estima-
tion of the resilencing probabilities, i.e. the transition probabilities of the resulting
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Markov chain.
As explained in the Methods section of the paper, at step k we consider the

flux vector vk−1 and the nk + 1 possible phenotypes that can be obtained from it
by silencing a single reaction (nk possibilities, denoted vk,i, i = 1, . . . , nk) or by
maintaining unaltered the current flux vector (vk,0 = vk−1). Denote qk,i, i =
1, . . . nk, the populations of the nk possible phenotypes vk,i, and qk,0 the population
of the current phenotype vk,0. In the interval τ ∈ [0, ∆t], each phenotype has a
growth rate gk,i which can be computed from the flux distribution vk,i using the
growth rate equation gk,i = ξTvk,i. Viable phenotypes have gk,i > 0 while non-
viable phenotypes (e.g. when an essential reaction is suppressed) have gk,i = 0.
These growth rates can be placed on the diagonal of a fitness matrix

Gk =


gk,0

gk,1
. . .

gk,nk


where gk,0 represents the growth rate of the current phenotype vk,0.

Population dynamics modulate selection probabilities. Case 1: uniform
priors. The simplest possible case of a dynamics is given by a replicator equation
with initial conditions that are uniformly distributed. Consider the following ODE
for the population dynamics in the interval [0, ∆t]:

q̇k = Gkqk τ ∈ [0, ∆t], (S1)

where

qk =


qk,0
qk,1

...
qk,nk

 .
Solving (S1):

qk(τ) = eGkτqk(0) τ ∈ [0, ∆t]. (S2)

The ODE (S1) for the growth of populations in the interval [0, ∆t] can be normalized
to represent probabilities (or frequencies) by using the a replicator equation [5]. The
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frequencies (or probabilities) pk,i, i = 0, 1, . . . , nk, associated to the populations qk,i,
i = 0, 1, . . . , nk, obey the replicator equation

ṗk = Gkpk − φ(pk)pk τ ∈ [0, ∆t], (S3)

where

pk =


pk,0
pk,1

...
pk,nk

 .
By φk we denote the so called average fitness defined as

φk(pk) =

nk∑
i=0

gk,ipk,i

where
pk,i = qk,ie

−ψk ,

with

ψk(τ) =

∫ τ

0

φk(pk(s))ds τ ∈ [0, ∆t].

By construction, pk,i ≥ 0 and ‖pk(τ)‖1 =
∑nk

i=0 pk,i(τ) = 1, ∀ τ ∈ [0, ∆t]. In
particular, it is well-known that eψk(τ) has the meaning of total population at time
t:

eψk(τ) =

nk∑
i=0

qk,i(τ) = qk,tot(τ) τ ∈ [0, ∆t], (S4)

implying that pk,i(τ) is indeed a frequency:

pk,i(τ) =
qk,i(τ)

qk,tot(τ)
, i = 0, 1, . . . , nk (S5)

as expected. In (S4) we can use the explicit expression (S2) for the populations and
have then

qk,tot(τ) = 1T eGkτqk(0) =

nk∑
i=0

egk,iτqk,i(0) (S6)
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where 1 = [1 . . . 1]T . A straightforward calculation leads to

pk(τ) = qk(τ)e−ψk(τ) = e−ψk(τ)eGkτqk(0) τ ∈ [0, ∆t], (S7)

where the last expression follows from e−ψk(τ) being scalar and hence commuting
with the matrix exponential eGkτ . From (S7): pk(0) = qk(0), hence (S6) becomes

qk,tot(τ) =

nk∑
i=0

egk,iτpk,i(0).

If we now assume that the prior probabilities pk,i(0) are uniform (i.e., pk,i(0) =
1

nk+1
) then qk,tot(τ) = Zk(τ)

nk+1
, where Zk(τ) =

∑nk
i=0 e

gk,iτ is formally analogous to a

partition function, in which the fitness gk,i plays the role of the Hamiltonian (or
energy function). Therefore, from (S5),

pk,i(τ) =
e
gk,iτ

nk+1

Zk(τ)
nk+1

=
egk,iτ

Zk(τ)
, τ ∈ [0, ∆t], i = 0, 1, . . . , nk (S8)

i.e., the phenotypes grow with a fitness landscape given by their growth rate. In
our Markov chains, at the k-th step of one of the trajectories, a phenotype can
be selected according to the probabilities pk(∆t) achieved at the end of the time
interval.

In an equation like (S8), the width of the interval, ∆t, plays the role of an
inverse temperature (indeed we have ∆t = β = 1/kBT ). In particular, in the
“low temperature regime” (i.e., when ∆t is high and so is β) the frequencies pk,i(∆t)
concentrate on the fittest phenotypes. The choice becomes deterministic when ∆t→
∞, i.e. T → 0. In the “high temperature regime” (i.e., when ∆t is low) the
pk,i(∆t) tend to resemble the initial uniform distribution, i.e., even viable but low
fitness phenotypes have nonnegligible frequencies. At the end of each time interval,
the “final” frequencies pk(∆t) describe how the fitness landscape modulates the
probability of silencing from the uniform distribution present at the begin of each
interval, see Fig. B for a sketch.

Population dynamics modulate selection probabilities. Case 2: non-
uniform priors. Just like the activation of a large number of latent pathways in
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response to a perturbation can be considered a regulatory program, so it is plausible
that one (or more) enzyme regulation strategies are at work in the adaptation phase.
In our model we have avoided including any type of mechanistic enzyme regulation
information (which could be transcriptional: gene expression regulation, gene muta-
tion, gene context, reaction grouping [6], or post-transcriptional: metabolic sensing
and feedback [7], allosteric effects, phosphorylation/dephosphorylation) because no
systematic knowledge is available and, even when experimental data can be used,
it is difficult to turn this information into an accurate proxy for enzyme activity. It
is anyway likely that these enzyme regulatory programs have been shaped by evo-
lution so as to favor the recovery of the growth rate, and contributing significantly
to this recovery. Even avoiding sophisticated models of the regulatory “causes” of
the improved growth rate, it is possible to improve the plausibility of the model
by including a description of the “effects” (i.e., the growth rate itself). This can
be accomplished by modulating the prior selection probabilities at the begin of the
time interval, pk(0), for example choosing them not from a uniform distribution but
from a Boltzmann distribution. Then the expressions for pk or qk can be split into
two components, one dynamical (due to the time evolution ∆t), the other instead
already active at the begin of each time interval (indicated below as βk). Since Gk

is diagonal, the exponential of a sum factorizes, and the order of the two factors can
be commuted freely:

eGk(∆t+βk) = eGk∆teGkβk = eGkβkeGk∆t,

meaning that considering a single exponential of exponent ∆t + βk is equivalent to
splitting the contribution due to ∆t from that due βk, and incorporating the latter
into the prior probabilities at the begin of each interval. Then straightforward
calculations give for the new priors (i.e., in τ = 0):

qk(0) = eGkβk1 / (nk + 1)

and
pk(0) = qk(0) /qk,tot(0) = eGkβk1 /Znu

k (0)

where Znu
k (0), the partition function for the new priors (“nu”=non-uniform), is

Znu
k (0) = 1T eGkβk1 =

nk∑
i=0

egk,iβk .
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Along the time evolution [0, ∆t], then, the populations and selection probabilities
become

qk(τ) = eGkτqk(0) = eGk(τ+βk)1 / (nk + 1), τ ∈ [0, ∆t]

and
pk(τ) = qk(τ) /qk,tot(τ) = eGk(τ+βk)1 /Znu

k (τ), τ ∈ [0, ∆t]

where

Znu
k (τ) = 1T eGkβkeGkτ1 =

nk∑
i=0

egk,i(τ+βk), τ ∈ [0, ∆t].

Since Znu
k (τ) = Zk(βk + τ), the selection probabilities at time τ still have the form

of a Boltzmann distribution

pk,i(τ) =
egk,i(βk+τ)

Zk(βk + τ)
, τ ∈ [0, ∆t] (S9)

as it is straightforward to check.

2.2 Choosing the ”temperature”

As mentioned above, two factors can be used to modulate the amount of randomness
in the selection probabilities pk(∆t) of the resilencings: the length of the time
interval ∆t and the contribution of the prior probabilities pk(0) (i.e., the parameter
βk). Denoting βglo

k = βk + ∆t, then βglo
k has still the interpretation of an inverse

temperature (in a Boltzmann equation: βglo
k = 1

κBT
, where κB = Boltzmann constant

and T = temperature at the k-th step). In particular, when βglo
k → ∞, at step k

the probability tends to concentrate on the highest growing phenotype, while when
βglo
k → 0 all phenotypes become equiprobable.

If we interpret the prior frequency pk(0) as the contribution of the regulatory
machinery to the activity of the enzymes, then it is plausible to assume that at the
early steps of the adaptation (i.e., right after a perturbation has acted on the system
disrupting its flux distribution), its importance is dominant over the time evolution
of the replicator equation, i.e., βk � ∆t for k small. However it is equally plausible
that the driving of enzyme regulation declines with time, and that the effect of the
dynamics in differentiating the phenotypes becomes more relevant at later times i.e.,
βk < ∆t for k sufficiently large. If for instance we assume that ∆t is kept constant
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throughout the evolution, then we can summarize these considerations by saying
that βglo

k1
> βglo

k2
for k1 < k2, see Fig. B.

In the computation of our trajectories for the E.coli central metabolism, we have
observed that the “cooling” (or, more properly, “heating”) schedule adopted is not
crucial for reaching the dominant attractor with a high probability, at least as long
as βglo

k remains sufficiently high. In practice, also focusing on the deterministic case

(βglo
k = ∞, i.e., always selecting the best phenotype) is a good strategy. For what

could be explored numerically, initial conditions highly sensitive to early choices
(such as the one reported in the bottom row of Fig. F) appear to be quite rare, at
least among the v achieving a high growth.

3 Further considerations on the method and on

its applicability.

Core vs. full metabolic network: a question of computational complex-
ity (but not only). All results of this paper have been obtained using the core
metabolic network of E.coli which, despite its relatively small number of reactions,
contains already many of the features typical of the full E.coli metabolic network
(robustness, redundancy, loops, characteristic motifs, etc.). It is worth observing
that restriction to the central carbon metabolism is a common assumption in many
studies dealing with computationally intense methods (e.g. [8, 9]). Scaling our
method to the full E.coli metabolic network (which has about 2000 reactions [10])
requires extensive computational means (calculating a single Markov chains requires
≈ 2 days on a 2.3 GHz CPU). A limited number of trials seems to indicate that
growth can be recovered only to some extent, and so does alignment with vpFBA. If
instead of vpFBA computed on the original polytope Γ, one looks at the flux vector
vpFBA computed on the current Γk (with k reactions silenced) then the results are
much more impressive and close enough to those of the core metabolic network.

It remains to be investigated if extending the idea of sequential resilencings from
the central carbon metabolism to the entire metabolic network is an acceptable hy-
pothesis, or if it is more reasonable to focus the resilencings on certain classes of
pathways, like those related to energy and to redox metabolism. The metabolic
profiling of [11] and [12] for example indicates that environmental perturbations
affect primarily the early response of the central metabolism, and that it is a con-
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sistent decrease of fluxes on energy-demanding pathways such as glycolysis, pentose
phosphate pathway and TCA cycle that lead to temporary growth arrest. For tra-
jectories computed on the entire network, it is likely that the irreversibility of a
silencing becomes a restrictive assumption. For example, the transcriptional ma-
chinery is almost halted right after the perturbation, but needs to be restarted as
the growth rate recovers, which require certain metabolic pathways (like nucleotide
and aminoacid biosynthesis) to be fully functional regardless of previous silencings.
It is for example shown in [11] that the growth arrest that follows various stress
responses does not forbid these metabolites to accumulate, meaning that the cor-
responding reactions are not halted. Little is known experimentally for most other
pathways.

Reactions that saturate during adaptation. In our trajectories, a number of
bounds become saturated during adaptation. If we group the trajectories based on
the growth achieved at the end-point, then a significant difference can be observed
between low-growth and high-growth trajectories, see Fig. N. In particular, the
latter tend to saturate a larger number of bounds in the early phase of the adapta-
tion. It is possible to separate lower from upper bounds and to break down further
these two classes into the specific pathways that compose the central metabolism,
see Fig. O. When looking at the lower bounds, one category neatly emerges, that of
exchange reactions. For high-growth phenotypes, the uptake bounds become active
in the early steps and stay active until around step 10. If we look at specific reac-
tions, then it is possible to see that uptake of glucose, fructose are nearly always
saturated, and so are succinate, fumarate and malate (entering into the TCA cycle).
Also substrates related to nitrogen metabolism, such as glutamine and glutamate,
are highly saturated. As for the upper bounds, two pathways saturate with high
significance: pyruvate metabolism and transport reactions, notably the secretion
of ethanol, pyruvate and 2-oxoglutarate. Taken together, these active constraints
suggest that in order to achieve maximal growth the cell has to be able to efficiently
use resources at the early stages of the adaptation. When instead in the first steps a
trajectory remains “internal” to the polytope Γk then it will settle to a lower growth
once adapted.

Influence of bound values of the metabolic network on adaptation As
mentioned in the Material section, with respect to the standard E.coli core network
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downloadable from http://systemsbiology.ucsd.edu/Downloads/EcoliCore, in
our model the lower and upper bounds of the reactions have been rendered more
realistic using the experimental supply uptake rate provided in [3]. This choice
has a minor influence on the quality of the results. As a matter of fact, using
the original bounds provided with the model (all, except ATP maintenance, are
0 or ±1000), while the growth rate achieved by the adaptation processes worsens
considerable, the correlation at absorption, corr(vpFBA,v), is only slightly worse.
Details are given in Fig. Q and Fig. R. Statistics for this case are computed over
2·104 trajectories. The difference is due to the original bounds being more “artificial”
than those adopted here, and leading more frequently to trajectories that remain
internal in the polytope Γk, see Fig. S. In spite of the reduced growth what is
important is that the alignment of v on vpFBA is confirmed. Therefore we can
conclude that also in this case the normalized pFBA vector, vpFBA

‖vpFBA‖ , plays the role
of dominant attractor for the metabolic adaptation process.

Effect of stochasticity on the trajectories. As shown in Figs. D-F, when
repeated trajectories are computed starting from an identical initial condition, then
in some cases the stochasticity encoded in the metabolic adaptation process may
lead to end-points having different growth and correlation properties. If we think of
these trajectories as strains evolving in parallel, then it is plausible that the fittest
strain tends to prevail over the others in terms of absolute abundance. If in our
Markov chains we keep only the best trajectory for each initial condition, then all
statistical parameters improve of a small fraction, see Fig. T. In particular the lack
of substantial improvement in the growth rate tells us that most initial conditions
have limited sensitivity to the randomness of the Markov chains. This confirms that
cases like the bottom row of Fig. F are indeed rare. The low sensitivity to early
choices is one of the reasons of the massive convergence we see in our Markov chains.
It is a sign of the “structural”robustness of the attractor.
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vpFBA	  

vj	  

vk-‐1	  vk	  

vi	  

vk+1	  

(i) (ii)

Figure A: Metabolic adaptation: convergence of the vector of fluxes to the pFBA
optimum. (i): Iterating the resilencing procedure, the correlation between vpFBA and
vk normally increases, i.e., the two vectors tend to become aligned, although they
need not have the same length. (ii): For most initial conditions in Γ, vk

‖vk‖
→ vpFBA

‖vpFBA‖ .
Many local maxima exist, but they have a very limited basin of attraction.
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(i) (ii)

(iii)

Figure B: Sketch of the selection probabilities resulting from the replicator equation.
In (i) uniform priors are used for the probabilities (i.e., the influence of enzyme
regulation is considered irrelevant). In (ii) instead the priors are not uniform, but
computed through a Boltzmann distribution (representing the effect of the enzyme
regulation), effects which adds up with the dynamical evolution. (iii): sketch of a
potential procedure for the “temperature” of the global Boltzmann distribution of
the selection probabilities. In the early phase of the adaptation the probabilities are
more focused on the fittest phenotypes as an enzyme regulatory program strongly
influences the selection of the resilencings. At later stages of the adaptation, the
influence of the regulatory machinery weakens and selection can become biased
towards random events such as gene mutations.
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(i) (ii)

(iii) (iv)

Figure C: Time evolution of the histogram of Fig. 3 during adaptation. The steps
k = 0, 2, 7, 12 are shown. Starting from 0-growth, and a correlation normally
distributed around corr(vpFBA,v) ≈ 0.6, the histogram gradually moves towards the
high growth / high correlation corner, where most trajectories eventually converge.
In doing so, no transient peak emerge, meaning that the trajectories explore a broad
number of different resilencing strategies. This is one of the main clues that the
domain of attraction of the high growth / high correlation corner is indeed very
large.
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Figure D: Time course of 100 trajectories from 2 different initial conditions. The
3 columns of panels show: gk/g

FBA (left), corr(vpFBA,vk) (middle), and number
of active reactions R(vk) (right). All trajectories of the first row converge to
the maximal growth (more precisely to g/gFBA > 0.99), to maximal correlation
(corr(vpFBA,v) > 0.99) and to a number of active reactions which is one more than
the pFBA (red dotted line) which however does not alter significantly g. The path
that leads to maximal growth is not unique, in particular in the order of the resi-
lencings. Concerning the second initial condition, no trajectory achieves a growth
ratio g/gFBA bigger than 0.72, although all trajectories achieve a correlation of at
least 0.9 (and nearly all of at least 0.98). The influence of two different (nearby)
local attractors is visible in the trajectories.
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Figure E: Two sets of 100 trajectories from 2 different initial conditions. Notation is
the same as in Fig. D. In the first row the trajectories reach vpFBA or a nearby point
of growth rate slightly lower. In the second row, all trajectories achieve maximal
growth (up to a negligible difference). However, some of them do not converge to
vpFBA but to another FBA flux distribution (the green trajectory has a correlation
of 0.7 with vpFBA).
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Figure F: A few more trajectories reaching the optimum from 2 different initial
conditions. In the top row all 100 trajectories are overlapping, i.e., the stochasticity
of the selection probability is not enough for the Markov chain to explore more than
a single resilencing strategy. In the bottom row, instead, the initial condition is
susceptible to follow different routes, and these alternatives are highly sensitive to
the early choices. This leads to a wide variety of trajectories, some of which can
reach vpFBA, while the majority does not, leading in some cases to minimal growth
and low correlation. While the situation in the top row is quite common, the one in
the bottom row is quite rare.
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(i) (ii)

Figure G: Length of a trajectory and number of active reactions vs. growth rate. (i):
The histogram shows the length L of a trajectory (i.e., the number of steps before
absorption into an ergodic state) v.s. the growth rate reached at the end-point for
the trajectories of Fig. 3. The trajectories achieving high growth utilize less steps
than those attaining a lower growth. (ii): The histograms shows the number of active
reactions R in the ergodic states reached by the trajectories. The number of active
reactions is essentially proportional to the growth rate. The red line represents the
number of active reactions of vpFBA.

19



10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1

n. steps

c
o
rr

(v
k
, 
v

p
F

B
A
) 

all  g

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1

n. steps

c
o
rr

(v
k
, 
v

p
F

B
A
) 

g/g
FBA

 < 0.5

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1

n. steps

c
o
rr

(v
k
, 
v

p
F

B
A
) 

0.5 < g/g
FBA

 < 0.85

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1

n. steps

c
o
rr

(v
k
, 
v

p
F

B
A
) 

g/g
FBA

 > 0.85

Figure H: Average correlation corr(vpFBA,vk) during adaptation, for all trajectories
(top-left panel) and for 3 classes of g (achieved at the end-point). Mean ± standard
deviation are shown. The correlation is growing monotonically in all plots.
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Figure I: Average growth rate during adaptation for all trajectories (top-left panel)
and for 3 classes of g (achieved at the end-point). In all plots g is monotonically
growing.
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(i) (ii)

(iii)

Figure J: Correlation vs. growth rate for the E.coli metabolic network with 1/3 of
irreversible reactions made reversible. When a (randomly chosen) fraction of the
irreversible reactions of the metabolic network are made reversible by modifying
the corresponding `i, then the time profiles for growth g/gpFBA, are still similar to
those Fig. 3, but the correlation with vpFBA worsens considerably. As can be seen
in the 3D histogram, this implies that trajectories reaching maximal growth do not
converge all to vpFBA, but partly also to other degenerate optimal flux distribution
vFBA.

22



(i) (ii)

(iii)

Figure K: Correlation vs. growth rate for the E.coli metabolic network with 1/2 of
irreversible reactions made reversible. When the fraction of the irreversible reactions
of the metabolic network which are made reversible by modifying the corresponding
`i is increased, then maximal growth is still achieved but the peak of correlation
corr(vpFBA,v) disappears, in favor of other flux distributions vFBA giving equivalent
biomass.
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(i) (ii)

(iii)

Figure L: Correlation vs. growth rate for the E.coli metabolic network with all
reversible reactions. When all reactions are reversible, the trajectories achieve the
best growth rate at absorption with a mean value 〈g〉

gFBA = 0.91, a median of 0.997,

and 76.4% of trajectories reaching a growth rate of at least 0.85gpFBA. The peak of
correlation corr(vpFBA,v) has completely disappeared, and the correlation histogram
between v and vFBA is centered at 0. Notice how achieving maximal growth requires
now less silencings than with the proper irreversibility constraints of Fig. 3.
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Figure M: ”Nominal” versus random initial conditions: correlation between the
end-points of the trajectories. Following [12], adaptation of 4 knockout strains of
E.coli to a switch in substrate from rich medium (Luria-Bertani) to glucose as single
carbon source is considered. In this case, following [2], the initial condition of the
Markov chains can be computed using the same procedure described in the Methods
section of the paper. It can however also be chosen randomly inside Γ, as in the
rest of this paper. When the two types of trajectories (from ”nominal” and from
random initial conditions) are computed and their terminal point compared, it can
be seen that the correlation is always very high (i.e., both types of trajectories
tend to converge towards vpFBA). The pgi mutant has a second minor peak at
low correlation, corresponding to an alternative phenotype of sub-optimal growth,
sometimes observed in both types of trajectories, and documented experimentally
in [12].
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Figure N: Average number of active bounds during adaptation, for all trajectories
(top-left panel) and for 3 classes of g (achieved at the end-point). Mean ± standard
deviation are shown. The trajectories achieving low g have a low number of active
bounds in the early phase of adaptation (top right panel), while the trajectories that
approach gFBA saturate the most of bounds during the transient.
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(ii)

Figure O: Average number of active lower (i) and upper (ii) bounds during adapta-
tion, divided by pathway, for all trajectories (top-left panel of each subfigure) and
for 3 classes of g (achieved at the end-point). Mean ± standard deviation are shown.
If the active bound of Fig. N are split into lower and upper bounds and subdivided
into the various pathways forming the central metabolism, then it can be seen that
the substantial difference between high growth and modest growth is due to the
saturation of the lower bounds in the exchange reactions (green curve in (i)) and
due to the pyruvate metabolism (blue curve in (ii)) and to the transport reactions
(red curve in (ii)).

27



0 10 20 30 40
0.2

0.4

0.6

0.8

1

n. steps

a
c
ti
v
e
 f
lu

x
e
s

all  g

0 10 20 30 40
0.2

0.4

0.6

0.8

1

n. steps
a
c
ti
v
e
 f
lu

x
e
s

g/g
FBA

 < 0.5

0 10 20 30 40
0.2

0.4

0.6

0.8

1

n. steps

a
c
ti
v
e
 f
lu

x
e
s

0.5 < g/g
FBA

 < 0.85

0 10 20 30 40
0.2

0.4

0.6

0.8

1

n. steps

a
c
ti
v
e
 f
lu

x
e
s

g/g
FBA

 > 0.85

Figure P: Average number of active reactions during adaptation, for all trajectories
(top-left panel) and for 3 classes of g (achieved at the end-point). The trajecto-
ries achieving high g maintain all (or nearly all) active reactions in the TCA cycle
(yellow), pentose phosphate pathway (magenta) as well as all exchange reactions
(green). Those leading to poor growth instead tend to underuse these pathways,
notably the TCA cycle.
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(i) (ii)

(iii)

Figure Q: Correlation vs. growth rate for the E.coli metabolic network with original
lower and upper bounds. This network differs from the one used in the current paper
in the choice of lower and upper bounds (those used in [1] are more symmetric than
ours, and nearly all identical). Comparing with Fig. 3 of the paper, mean and
median for the growth rate at absorption are now resp. 0.6 and 0.64, hence they
have worsened when compared with Fig. 3. This is mostly due to a large peak
at low growth visible in the vertical histogram. For what concerns corr(vpFBA,v),
the situation is more similar to what seen in Fig. 3: mean is 0.87 and median is
0.94. The histogram is still significantly skewed towards maximal alignment of v on
vpFBA, with 68% of end-point above the mean. The pattern of the 3D histogram is
still faithful to that of Fig. 3: of the trajectories having g/gpFBA > 0.85, 98.5% have
correlation > 0.9.
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Figure R: Norm of v vs. growth rate for the E.coli metabolic network with original
lower and upper bounds. Analogously to Fig. 4, the growth rate is decided by the
norm ||v|| at the time of absorption.
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Figure S: Average number of active bounds during adaptation for the E.coli
metabolic network with original lower and upper bounds, for all trajectories (top-left
panel) and for 3 classes of g (achieved at the end-point). Mean ± standard devi-
ation are shown. Unlike in Fig. N, no substantial difference is visible between the
trajectories achieving low g (top right panel) and those that approach gFBA (bottom
right panel).
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(i) (ii)

(iii)

Figure T: Correlation vs. growth rate for the E.coli metabolic network. Best trajec-
tory for every initial condition. For the resulting ∼ 5000 trajectories, mean, median
and std are slightly improved with respect to those of Fig. 3. 52% reach a growth
rate of 0.85gpFBA, while 97.6% reach a correlation of at least 0.85 with vpFBA.
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