
Supplemental Figures and Text.

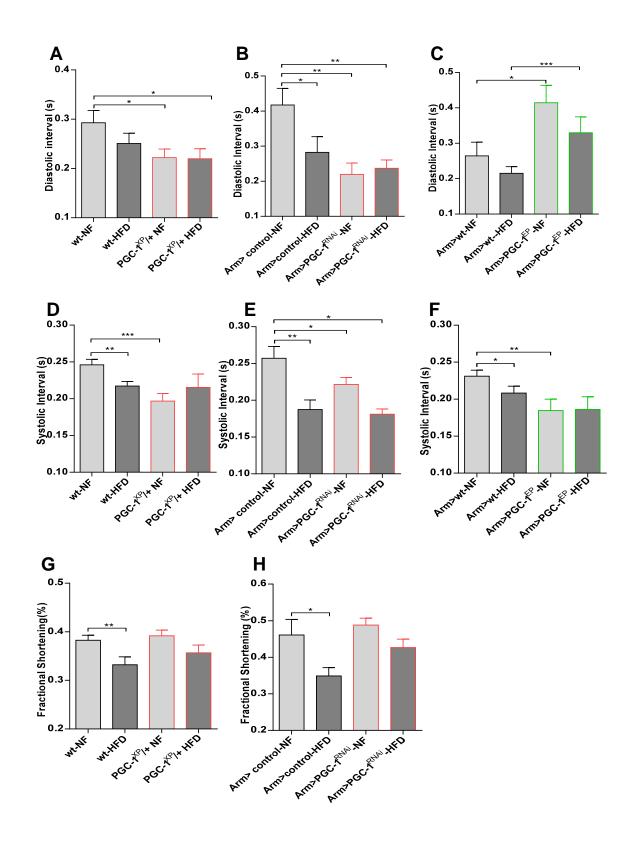
PGC-1/spargel counteracts high fat diet-induced obesity and cardiac lipotoxicity downstream of TOR and Brummer ATGL lipase

Soda Balla Diop¹, Jumana Bisharat-Kernizan¹, Ryan Tyge Birse¹, Sean Oldham¹,Karen Ocorr¹, Rolf Bodmer¹*

Figure S1. Reduced *PGC-1/srl* Function Mediates the Effect of HFD on Obesity, related to Figure 1.

(A) Relative TAG content of wt and PGC-1'srl mutant flies on NF or HFD. Results are expressed as the fold difference in whole fly TAG compared with wt-NF flies and are the mean ± SEM of at least 27 for all genotypes and conditions. *P < 0.05, one way ANOVA test. ns: not significant

(B) Relative TAG content in muscle rich thoracic tissue of *wt* and *PGC-1/srl* heterozygous flies. Results are expressed as the fold difference compared with wt-NF flies and are the mean \pm SEM of 35 \leq n \geq 24. *P < 0.01, one way ANOVA test.


(C) Relative whole fly TAG content of control flies or flies with adipose-specific and musclespecific knockdown of *PGC-1/srl*. Results are expressed as the fold difference compared with *lsp/+-*NF or *24B/+-*NF flies and are the mean \pm SEM of 36 \leq n \geq 16. ***P < 0.001, one way ANOVA test.

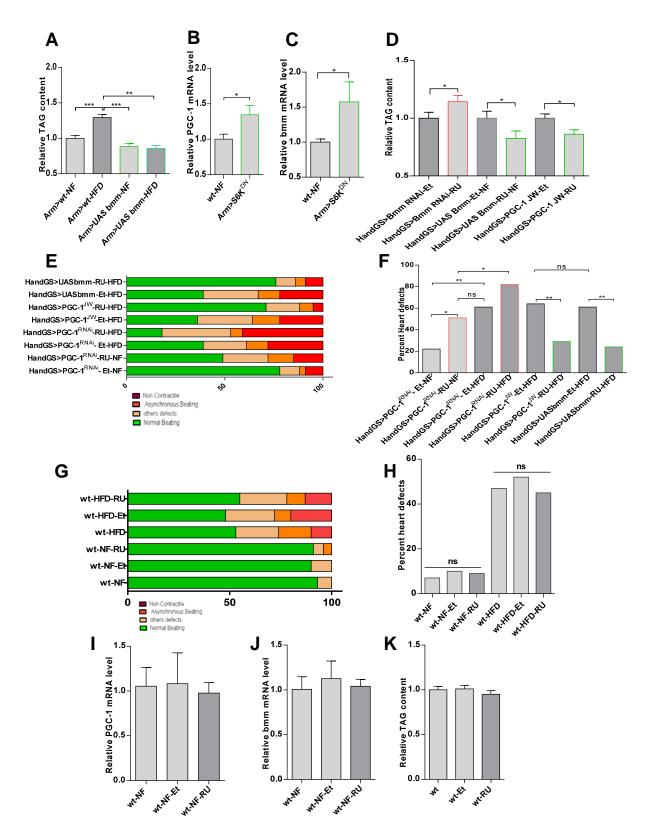
(D) PGC-1/srl mRNA expression in the thorax of wt flies fed NF and HFD. Results are the mean of n = 20.

(E-F) Whole fly TAG content of flies with (E) muscle-specific or (F) adipose-specific *PGC-1/srl* overexpression. Results are expressed as the fold difference compared with lsp'^+ -NF or 24B/+-NF flies and are the mean ± SEM of 24 ≤ n ≥ 21. **P < 0.01, ***P < 0.001, one way ANOVA test.

(G) Relative *PGC-1/srl* expression in controls (*Arm/wt*, *PGC-1^{JW}/wt*) and *PGC-1/srl* overexpression flies (*Arm/PGC-1^{JW}*) on NF or HFD. Results are expressed as the fold difference compared with *Arm/wt* on NF.

(H-J) Relative *PGC-1/srl* expression in *PGC-1^{PBAC}* (H), adipose-specific *PGC-1^{RNAi}* (I), and Arm>*PGC-1^{EP}* flies (J). Results are expressed as the fold difference compared with the indicated wt or NF-fed flies and are the mean \pm SD of n = 20.

Figure S2. As HFD, reduced PGC-1/srl function increases heart rate, related to Figure 2.


(A) Mean diastolic intervals of wt and *PGC-1* heterozygous flies on NF and HFD. Results are the mean \pm SEM of 45 \leq n \geq 33. *P < 0.05, one way ANOVA test.

(B) Mean diastolic intervals of control and *PGC-1* knockdown flies. Results are the mean \pm SEM of 20 \leq n \geq 22. *P < 0.05, **P < 0.01, one way ANOVA test.

(C) Mean diastolic intervals of control and *PGC-1*-overexpressing flies. Results are the mean \pm SEM of $32 \le n \ge 16$. *P < 0.05, ***P < 0.001, one way ANOVA test.

(D–F) Mean systolic intervals of control and (D) *PGC-1* mutant flies, (E) *PGC-1* knockdown flies, and (F) *PGC-1*-overexpressing flies on NF and HFD. Results are the mean \pm SEM. *P < 0.05, **P < 0.01, ***P < 0.001, one way ANOVA test.

(G–H) Contractility changes (measured as % fractional shortening) in hearts from control and (G) *PGC-1* mutant flies, (H) *PGC-1* knockdown flies. Results are the mean \pm SEM. Statistical significance for all experiments was determined using one-way ANOVA test, *P < 0.05, **P < 0.01, one way ANOVA test.

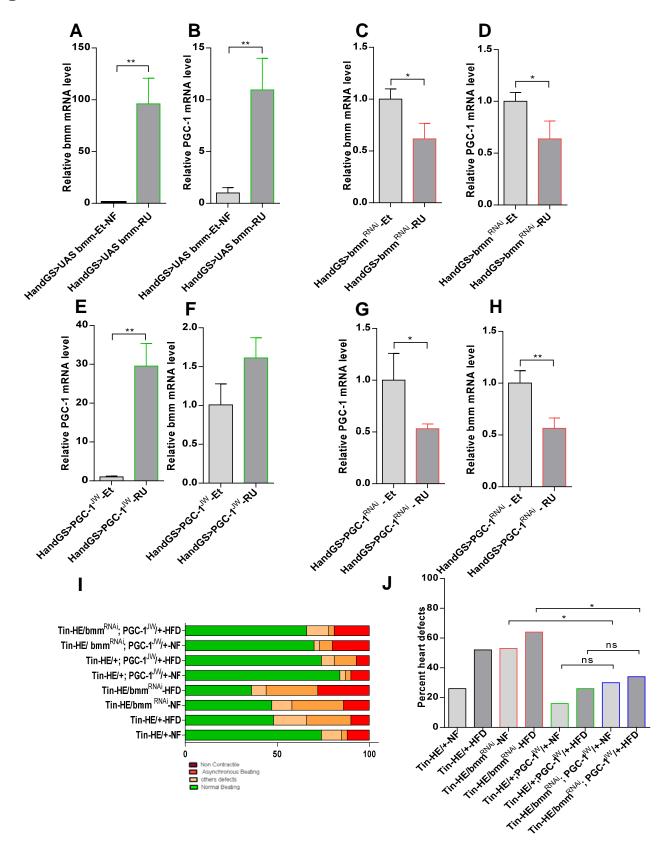
Figure S3. Adult-specific PGC-1/srl manipulation in the heart, related to Figure 3.

(A) TAG content of control and *bmm*-overexpressing (UAS-*bmm*) flies. Results are expressed as the fold difference in whole fly TAG compared with Arm>wt-NF flies and are the mean \pm SEM of n = 36 for all genotypes. **P < 0.01, ***P < 0.001, one way ANOVA test.

(B-C) Relative *PGC-1/srl* (B) and *bmm* (C) mRNA levels in wt and dominant-negative *S6K* flies. Results are expressed as the fold difference compared with wt flies. *P < 0.05, student t-test.

(D) TAG content of control (ethanol vehicle) and RU treatment of $HandGS>bmm^{RNAi}$, HandGS>UASbmm and HandGS>PGC-1^{JW} flies. Results are expressed as the fold difference from wt in whole fly TAG. $36 \le n \ge 18$. *P < 0.05, ANOVA test.

(E) Graphical representation of the proportion of flies with adult cardiac specific manipulation of *PGC-1/srl* and *bmm* displaying heart dysfunction phenotypes, classified as non-contractile regions, asynchronous beating, and other defects (dysfunctional ostia, narrowed heart regions, and transmission defects).


(F) Quantification of heart defects shown in D, $39 \le n \ge 17$. Statistics: Chi-square test. *Hand-GS>PGC-1^{RNAi}*-Et-NF vs. *Hand-GS>PGC-1^{RNAi}*-RU-NF, $\chi^2 = 6.44$; P < 0.05. *Hand-GS>PGC-1^{RNAi}*-RU-NF vs. *Hand-GS>PGC-1^{RNAi}*-RU-HFD, $\chi^2 = 4.79$; P < 0.05. *Hand-GS>PGC-1^{RNAi}*-Et-NF vs. *Hand-GS>PGC-1^{RNAi}*-Et-HFD, $\chi^2 = 7.69$; P < 0.01. *Hand-GS>PGC-1^{RNAi}*-RU-NF vs. *Hand-GS>PGC-1^{RNAi}*-RU-NF vs. *Hand-GS>PGC-1^{RNAi}*-RU-NF vs. *Hand-GS>PGC-1^{RNAi}*-Et-HFD, $\chi^2 = 0.47$; ns. *Hand-GS>PGC-1^{JW}*-Et-HFD vs. *Hand-GS>PGC-1^{JW}*-RU-HFD, $\chi^2 = 8.46$; P < 0.01. *Hand-GS>UAS-bmm*-Et-HFD vs. *Hand-GS>UAS-bmm*-RU-HFD, $\chi^2 = 5.57$; P < 0.05. *Hand-GS>PGC-1^{JW}*-Et-HFD vs. *Hand-GS>UAS-bmm*-Et-HFD, $\chi^2 = 0.03$; ns. *Hand-GS>PGC-1^{JW}*-RU-HFD vs. *Hand-GS>UAS-bmm*-RU-HFD, $\chi^2 = 0.03$; ns. *Hand-GS>PGC-1^{JW}*-RU-HFD vs. *Hand-GS>UAS-bmm*-RU-HFD, $\chi^2 = 0.20$; ns.

(G) Graphical representation of the proportion of flies displaying cardiac defects from ethanol or RU treatment of wt flies.

(H) Quantification of heart defects shown in G, $25 \le n \ge 18$.

(I-J) Relative expression of ATGL/*bmm* (E) or *PGC-1/srl* in the heart of wt flies treated with ethanol or RU, compared to non-treated wt.

(K) Relative TAG content of wt flies treated with ethanol or RU compared to non-treated wt. Results are expressed as the fold difference in whole fly TAG. $36 \le n \ge 33$.

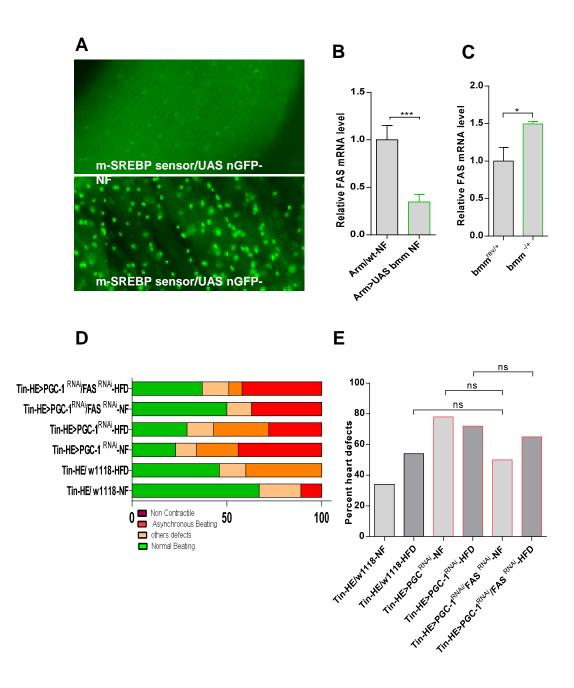


Figure S4. Genetic interaction between *PGC-1/srl* and ATGL/*bmm*, related to Figure 4.

(A-H) Relative expression of *bmm* (A, C, F, H) *and PGC-1/srl* (B, D, E, G) in the heart of ethanol vehicle or RU treated *Hand-GS>UASbmm*, *Hand-GS>bmm*^{*RNAi*}, Hand-GS>*PGC-1*^{*RNAi*}, Hand-GS>*PGC-1*, *R*, Hand-GS>*PGC-1*, *R*, Hand-GS>*PGC-1*, *R*, Hand-GS>*PGC-1*, *R*, Hand-GS>*PGC-1*, *R*, Hand-GS + *R*, Hand-GS

(I) Graphical representation of the proportion of flies with cardiac specific manipulation of *bmm* and/or *PGC-1/srl* displaying heart dysfunction phenotypes, classified as non-contractile regions, asynchronous beating, and other defects (dysfunctional ostia, narrowed heart regions, and transmission defects).

(J) Quantification of heart defects shown in (A), $29 \le n \ge 24$. Statistics: Chi-square test. *Tin-HE/bmm*^{RNAi}-NF vs. *Tin-HE/bmm*^{RNAi}; *PGC-1*^{JW}-*NF*, $\chi^2 = 4$; P < 0.05. *Tin-HE/bmm*^{RNAi}-HFD (n = 25) vs. *Tin-HE/bmm*^{RNAi}; *PGC-1*^{JW}-*HFD*, $\chi^2 = 5$; P < 0.05. *Tin-HE/+; PGC-1*^{JW}-*NF* vs. *Tin-HE/bmm*^{RNAi}; *PGC-1*^{JW}-NF, $\chi^2 = 0.9$; not significant (ns). *Tin-HE/+; PGC-1*^{JW}-HFD vs. *Tin-HE/bmm*^{RNAi}; *PGC-1*^{JW}-HFD, $\chi^2 = 0.2$; ns.

Figure S5. Genetic interaction between PGC-1/srl and FAS, related to Figure 5.

(A) Representative micrographs of sections of thoracic muscles of flies carrying a UAS-GFP/SREBP sensor and fed NF (top) or HFD (bottom). Sections were stained with anti-GFP antibody (green).

(B-C) Relative *FAS* mRNA levels in *bmm* overexpression (B) and mutant (C) flies. Results are expressed as the fold difference compared to Arm/wt (B) and *bmm^{rev}*(C). *P < 0.05, ***P < 0.001, student t-test.

(D) Graphical representation of the proportion of flies with cardiac specific manipulation of *PGC-1/srl* and/or *FAS* displaying heart dysfunction phenotypes, classified as non-contractile regions, asynchronous beating, and other defects (dysfunctional ostia, narrowed heart regions, and transmission defects).

(E) Quantification of heart defects shown in (D), $20 \le n \ge 12$. Statistics: Chi-square test. *Tin*-*HE/+; PGC-1^{RNAi}-NF* vs. *Tin-HE/+; PGC-1^{RNAi}/FAS*^{RNAi}-NF, $\chi^2 = 0$; ns. *Tin-HE/+; PGC-1*^{RNAi}-HFD (n = 12) vs. *Tin-HE/+; PGC-1*^{RNAi}/FAS^{RNAi}-HFD, $\chi^2 = 0.34$; ns. *Tin-HE/wt*-HFD (n = 20) vs. *Tin-HE/+; PGC-1*^{RNAi}/FAS^{RNAi}-HFD, $\chi^2 = 0.08$, ns. not significant (ns).

Supplemental movies

Movie S1: normal heart beating of wildtype flies fed NF, related to heart dysfunction graphs

Movie S2: HFD feeding induces increased heart rate, related to heart dysfunction graphs

Movie S3: Reduced *PGC-1/srl* function induces increased heart rate under normal conditions, related to heart dysfunction graphs

Movie S4: Reduced *PGC-1/srl* function induces increased heart rate under HFD conditions, related to heart dysfunction graphs.

Movie S5: HFD or reduced *PGC-1/srl* function causes non-contractile regions, related to heart dysfunction graphs.

Movie S6: HFD or reduced *PGC-1/srl* function causes heart asynchronous beating, related to heart dysfunction graphs.

Movie S7: HFD or reduced *PGC-1/srl* function causes dysfunctional ostia, related to heart dysfunction graphs.

Supplemental Experimental Procedures

Drosophila stocks

(wildtype controls), PGC-1^{XP} (CG9809^{d04518}), PGC-1^{PBAC} (CG9809^{c05624}), PGC-1^{EP} w¹¹¹⁸ (CG9809^{EY0593}), and Arm-Gal4 (ubiquitous driver) flies were obtained from the Bloomington Drosophila Stock Center. Flies containing a genomic rescue transgene (PGC-1^{GR}) were obtained from Christian Frei (Tiefenböck et al, 2010). UAS-PGC-1^{RNAi1} flies were obtained from the NIG Stock Center in Japan. UAS-PGC-1^{RNAi2} flies, GD controls lines and *bmm*^{RNAi} flies were obtained from the VDRC Stock Center in Vienna. dPGC-1^{JW} ("J" meaning Jones and "W" meaning Walker) was from L. Jones and D. Walker (Rera et al., 2011), *bmm*¹ mutants, Bmm^{Rev} and the UAS-bmm overexpression line were from R. Kuehnlein (Gronke el al., 2005), TOR^{7/P} flies were as described in Luong et al. (2006), S6K^{DN} was from M. Stewart. Hand(GS)-Gal4 flies driving expression in myocardial as well as pericardial cells upon induction was generous gifts from L. Perrin; Monnier et al., 2013). The *lsp-Gal4* (fat body driver) was reported in Cherbas et al. (2003), and GMH5 and TinHE (myocardial-specific heart drivers) were described in Wessells et al. (2004). Hand4.2-Gal4 flies driving strong expression in myocardial as well as pericardial cells were from Z. Han (Han et al., 2006). pP{GAL4-dSREBPq} flies (SREBP cleavage sensor line) were from R. Rawson (Kunte et al., 2006). In this construct, the DNA-binding domain of SREBP (mature SREBP) is replaced with VP16-Gal4; thus, when SREBP is cleaved, VP16-Gal4 activates genes downstream of UAS sites (i.e., UAS-nGFP).

Triglyceride assay

For each genotype and gender, 36 flies were weighed and placed into a 96-well grinding plate (Brand Tech Scientific, 96 Deep Well plates Cat. # 701350). One metal ball (OPS Diagnostics, 5000 44C SS 5/32-inch, part # GBSS156-5000-01), three flies, and 600 µl of PBS containing 0.05% Triton X-100 were added to each well. The plate was transferred to a shaker (Talboys Cat. # 930145) and shaken for 3 min at the highest speed setting. The plate was centrifuged for 15 min at 4500 rpm and 4°C, and aliquots of 20 µl supernatant were transferred to a new plate containing 200 µl/well of lipid reagent (Thermo Electron, Cat. # TR22421/2780-250). The reaction mixture was incubated at 37°C for 10 min, and the absorbance at 550 nm was then measured (Spectramax M2e, Molecular Devices). Triglyceride (TAG) content was calculated from a standard curve constructed with triglyceride solutions of known concentrations (Thermo Electron, Cat. # TR22421/2780) according to the manufacturer's instructions.

Real-time quantitative PCR (qPCR) analysis

For whole fly samples, total RNA was extracted with Trizol reagent (Roche Diagnostics). Reverse transcription (RT) was performed on aliquots of 1 µg total RNA using a QuantiTect Reverse Transcription Kit (Qiagen) according to the manufacturer's instructions. qPCR amplification reactions were prepared with 5 µl of the RT reaction diluted in qPCR reaction mix (LightCycler FastStart DNA MasterPlus SYBR Green I, Roche) containing the PCR primers. Thermal cycling and fluorescence monitoring were performed in a LightCycler 2.0 sequence detector (Roche Diagnostics). Samples were analyzed in triplicate.

For heart-specific qPCR, a Cells-to-CT[™] Kit (Ambion) was used. 20 hearts were dissected as described in the main text for semi-intact heart preparation, washed twice with PBS, and extracted and pool by group of 5 hearts in an Eppendorf tube containing 49.5 µl of Cells-to-CT lysis buffer and 0.5 µl DNase I. The lysis mixture was incubated for 5 min at 22°C, then 5 µl of Cells-to-CT stop solution was added and the mixture was incubated for 2 min at 20°C. The RT reaction was performed by mixing 20 µl of lysate with 30 µl of RT master mix (1× RT buffer, 1× primer, and 1× RT enzyme), and incubating in the thermal cycler. qPCR amplification was performed by mixing 5 µl of the RT reaction with 15 µl of Cells-to-CT qPCR master mix containing the appropriate PCR primers. Thermal cycling and fluorescence monitoring were performed in a LightCycler 2.0.

Western Blotting

Wildtype and *PGC-1/srl* mutant flies were aged for 5–10 days on NF and then placed on NF or HFD (NF containing 30% coconut oil) for a further 5 days. Twenty each of NF and HFD flies were homogenized in RIPA buffer (Thermo Scientific) containing phosphatase and protease inhibitors (Roche). Protein levels were quantified using Bradford Reagent (Bio-Rad, Cat. # 500-0201), and samples of 40 µg total protein were separated by SDS/PAGE using Novex NuPAGE® 4–12% Bis-Tris Gels (Invitrogen). Proteins were transferred to nitrocellulose membranes (Invitrogen) and the membranes were blocked with 1x TBS-T tween O/N. Blots were incubated for 1 h at room temperature with rabbit anti-phospho-Akt, rabbit anti-phospho-S6K (both Cell Signaling Technologies), rabbit anti-SREBP (BD Pharmingen), mouse anti-actin (Millipore), or mouse anti-GFP (Invitrogen) primary antibodies diluted 1:1000 in Tris-buffered saline containing 1xTBS-T tween and 5% BSA. After washing, blots were incubated for 1 h at room temperature anti-rabbit or anti-mouse secondary antibodies (Amersham) diluted 1:5000 in 5% BSA in TBST. Blots were washed again and bands were visualized using the ECL plus enhanced chemiluminescence reagent (Amersham, Cat. # RPN2132).

Immunocytochemistry

Hearts were dissected as described above, incubated with 10 mM EGTA for 30 s to induce muscle relaxation, fixed with 4% paraformaldehyde in PBS for 20 min at room temperature, and then washed three times for 10 min with PBS containing 0.05% Triton X-100 (PBT). Hearts were transferred to a 96-well plate (10–15 per well) and incubated in blocking buffer (PBT containing 5% BSA) for 1 h. Mouse anti-GFP and anti-phalloidin primary antibodies were diluted 1:500 in PBT and added to the wells for 1 h at room temperature or overnight at 4°C. Hearts were washed three times with PBT and incubated for 1 h at room temperature with the appropriate Alexa Fluor-conjugated secondary antibody diluted 1:1000 in PBT. Samples were washed three times with PBS, and then placed on a slide in a drop of Vectashield mounting medium. For staining of lipid droplets, a stock solution of 1 mg/ml Nile Red was prepared in acetone and stored protected from light at 4°C. Hearts were fixed with 4% formaldehyde for 20 min at room temperature, washed three times with PBS for 5 min. Stained hearts were washed with PBS and mounted in Vectashield for analysis. Images were acquired with a Zeiss ApoTome microscope using Zeiss imaging software.

GeneSwitch

GeneSwitch system uses a RU-dependent Gal4 that allow the spatiotemporal activation of specific UAS line in the fly (Monnier et al., 2012; Osterwalder et al., 2001; Roman et al., 2001). We established a stock solution of 25 mg/ml of RU486 (Mifepristone) dissolved in ethanol. For adult flies feeding, this stock solution was diluted to 100ug/ml directly into the fly food with or without HFD. Flies carrying Hand-GS-Gal4 Gene Switch (Hand-GS) drivers were crossed to PGC-1^{RNAi} for KD, UAS-*PGC-1^{JW}* and UAS-*bmm* flies for overexpression. The offspring Hand-GS>*PGC-1^{RNAi}*, Hand-GS>*PGC-1^{JW}* and Hand-GS>UAS-*bmm* flies aged 3-5days after eclosion were transferred into tubes (25 flies/tube) of normal fly food containing RU or vehicle (ethanol). After 5 days feeding, flies were transferred into new tubes containing NF or HFD with RU or vehicle for 5 more days. The fly hearts are then dissected for heart function analysis and qPCR experiments.

Statistical Analysis

Statistical analysis was done using Student's t-tests, ANOVA, chi-square or Kruskal-Wallis tests where appropriate. The analysis was performed using GraphPad Prism versions 5.00 and 6.00 for Windows.

Supplemental References

Cherbas, L., Hu, X., Zhimulev, I., Belyaeva, E., and Cherbas, P. (2003). EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development *130*, 271–284.

Han, Z., Yi, P., Li, X., and Olson, E.N. (2006). Hand, an evolutionarily conserved bHLH transcription factor required for Drosophila cardiogenesis and hematopoiesis. Development *133*, 1175–1182.

Monnier, V., Iche-Torres, M., Rera, M., Contremoulins, V., Guichard, C., Lalevee, N., Tricoire, H., and Perrin, L. (2012). dJun and Vri/dNFIL3 are major regulators of cardiac aging in Drosophila. PLoS Genet *8*, e1003081.

Osterwalder, T., Yoon, K.S., White, B.H., and Keshishian, H. (2001). A conditional tissuespecific transgene expression system using inducible GAL4. Proc Natl Acad Sci U S A *98*, 12596-12601.

Wessells, R.J., Fitzgerald, E., Cypser, J.R., Tatar, M., and Bodmer, R. (2004). Insulin regulation of heart function in aging fruit flies. Nat. Genet *36*, 1275–1281.