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Supplementary Figure 1. Population structure of ToMMo samples. 

Principal component analysis (PCA) was conducted with the smartpca program in EIGENSOFT.  

The individuals were plotted in two-dimensional graphs, with the first (x-axis) and the second (y-

axis) components. (a) PCA plot of 1,553 ToMMo individuals, along with individuals from the 

HapMap project. (b) The PCA plot of ToMMo individuals with the HapMap East Asian individuals 

(JPT and CHB).  The selected 1,070 ToMMo individuals for the reference panel are colored by 

magenta, while the other ToMMo individuals (463) are colored by light pink.   
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Supplementary Figure 2. SNV Filter. 

Overview of six filtering steps to obtain the high-confidence SNVs from the raw variant SNVs; 

Step 1: alignment and variant call to 1,070 samples, Step 2: genotype depth filter for each individual, 

Step 3: depth based group filter, Step 4: genome complexity filter with SNP array, Step 5: tool bias 

filter, and Step 6: population genetics filter. Detailed explanation for each step is described in 

Methods (from SNV Step 1 to SNV Step 6). 
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Supplementary Figure 3. Demographic inference. 

(a) The SFS of high-confidence SNVs from intergenic region. The simulated SFS obtained by 

demographic model with optimized parameters and by constant population model are shown by 

solid and dashed lines, respectively.  (b) The change in effective population size (y-axis) is depicted 

against time in past (x-axis). The mutation rate and generation time are assumed to be 2.5x10
-8

 per 

site per generation and 25 year, respectively.  
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Supplementary Figure 4. FVRV of insertions and deletions of 1KJPN and SNVs of 

1KGP. 

(a) The fraction of very-rare variants for the high-confidence SNVs, insertions, and deletions (≤100 

bp) of 1KJPN. “High impact” and “Moderate impact” are according to the SnpEff annotation. The 

fraction of very-rare variants observed in the 1KGP are depicted with 95% binomial confidential 

interval according to (b) genomic region, (c) probable consequences for coding regions, (d) in 

noncoding regions, and (e) for scaled C scores. A hypergeometric projection, which subsamples 

each variant down to a sample size of 963 was applied to obtain the SFSs. 
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Supplementary Figure 5. Validation of diploid AMY1 copy numbers. 

The estimated diploid copy numbers of AMY1 gene with digital PCR (in x-axis) and WGS (in y-

axis). The details are described in Methods (Diploid copy numbers estimation and validation of 

AMY1 genes). 
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Supplementary Figure 6. CNVs and HLAs. 

(a) A diagram depicting the positions of AMY2B, AMY1A, Region X, AMY1B, AMY1C, Region Y, 

and Region Z on chromosome 1 of GRCh37 is shown. (b) Histograms of diploid copy numbers of 

AMY2B genes and Region Y. (c) Allele frequencies for HLA-B in 1,070 individuals in the 1KJPN 

estimated by high-coverage sequencing (blue), and 1,018 Japanese individuals typed by the PCR-

SSOP
1
 (red). (d) Allele frequencies for HLA-C in 1,070 individuals in the 1KJPN estimated by 

high-coverage sequencing (blue), and 1,018 Japanese individuals typed by the PCR-SSOP
1
 (red). 
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Supplementary Figure 7. GWAS of MMD with imputed genotypes based on 1KGP. 

 (a) A Manhattan plot of p-values from GWAS of the MMD with imputed genotypes based on the 

1KGP reference panel of 1,092 individuals. The SNP sites from original dataset and imputed 

markers are plotted as dots in magenta and grey, respectively. Blue and red horizontal dotted lines 

display significance thresholds of the original and imputed results, respectively. (b) A Manhattan 

plot with imputed genotypes based on the 1KGP reference panel without 89 JPT samples. 
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Supplementary Table 1 Filtering of the raw SNVs to obtain the high-confidence SNVs 

 

SNV status Filter detail Total Known Novel Novelty rate 
Pass 
SNVs 

Removed SNVs 

Raw SNVs Raw call with bowtie2 + bcftools 27,490,104  11,914,146  15,575,958  56.66% 100.00% - 

Step 2 
Filter variants in unreliable depth of 
coverage in the sample. (FDR<0.2%) 26,939,185  11,824,964  15,114,221  56.10% 98.00% 

2.00% 

Step 3 
Filter variants in unreliable depth of 
coverage in population. 25,568,721  11,194,027  14,374,694  56.22% 93.01% 

4.99% 

Step 4 
Filter variants categorized into low 
precision genomic region. (FDR <0.3%) 21,660,722  9,509,974  12,150,748  56.10% 78.79% 

14.22% 

Step 5 Intersect variants with other variant caller. 21,504,896  9,483,893  12,021,003  55.90% 78.23% 0.57% 

Step 6 Remove SNVs with HWE < 0.00001 21,221,195  9,219,783  12,001,412  56.55% 77.20% 1.03% 

SNV status corresponds to the filtering steps in Supplementary Figure 1. Total is the total number of SNVs after filtering the SNVs. Known and Novel 
are the known and novel SNVs in the total SNVs. The known SNVs are the SNVs reported in the dbSNP build 138. Pass SNVs are the passed SNVs 
from the filter. 
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Supplementary Table 2 FDR and CI of SNVs, deletions, and insertions in 1KJPN 

 

SNVs 

MAF class True False 
No 
call 

FDR CI 

Common 40 0 22 0.00% 0.00%-4.66% 

Low 76 0 48 0.00% 0.00%-2.49% 

Rare and very-rare 58 0 38 0.00% 0.00%-3.24% 

Total 174 0 108 0.00% 0.00%-1.10% 

      
Deletion* 

MAF class True False 
No 
call 

FDR CI 

Common 23 0 8 0.00% - 

Low 7 0 5 0.00% - 

Rare and very-rare 2 0 2 0.00% - 

Total 32 0 15 0.00% 0.00%-5.78% 

      
Insertion† 

MAF class True False 
No 
call 

FDR CI 

Common 18 1 5 5.26% - 

Low 2 0 0 0.00% - 

Rare and very-rare 1 0 0 0.00% - 

Total 21 1 5 4.55% 0.49%-19.34% 

* Validated deletions with less than or equal to 30 bases. 

† Validated insertions with less than or equal to 30 bases. 
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Supplementary Table 3 FDR of novel SNVs, estimated from the customized SNP array  

 

MAF 
class 

True False 
Validation 
 failure* 

Novelty 
rate  

in this MAF 
class† 

FDR of  
known 
SNVs‡ 

Fraction of 
SNVs  
in this 
MAF 

class§ 

Total  
FDR || 

CI 

Common 36  267  121  0.1% 0.03% 20.28% 0.16% 
0.02%-
0.30% 

Low 5,446  318  333  15.2% 0.50% 12.60% 1.26% 
1.03%-
1.49% 

Rare 7,513  90  317  61.9% 2.47% 14.82% 1.67% 
1.46%-
1.89% 

Very-rare 7,310  33  318  87.0% 2.30% 52.31% 0.69% 
0.54%-
0.84% 

Total 
FDR ||             

0.80% 
0.63%-
0.97% 

* SNVs with no call frequency > 0 

† Fraction of SNVs that are not in dbSNP build 138 among the high-confidence SNVs of this 
MAF class 

‡ Estimated from the genotyping result of HumanOmni2.5-8 BeadChip 

§ Fraction of SNVs in the MAF class among the high-confidence SNVs 

|| weighted average over whole SNVs 
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Supplementary Methods 

Introduction 

 

This section gives technical information that is not listed in the Method section of the main 

manuscript. 

DNA preparation 

 

Genomic DNA was extracted from buffy coats using the Gentra Puregene Blood Kit with the 

AutoPure LS automated DNA extraction robot (Qiagen). We followed the manufacturer's 

instructions, except that the RNase treatment step was omitted. The concentrations of double-

stranded DNA were quantified using the PicoGreen dsDNA quantitation assay (Life Technologies), 

and adjusted to a concentration of 200 ng/μL with the Elution buffer (Qiagen). The DNA samples 

were stored at 4°C until they were used. 

Sample management 

 

The laboratory information management system (LIMS) was developed in-house and used for 

managing DNA samples, participant information (sex, age, and the type of blood group antigens), 

and genotype data (the results of sex checks and SNPs in the ABO gene). 

The ABO blood typing for the erythrocytes from the corresponding cohort participants was 

performed with anti-A and anti-B monoclonal antibodies (Sysmex, Japan). The genotyping of the 

ABO blood type loci was done with SNPs (rs8176719 and rs8176720), which were called using 

whole genome sequencing (WGS) (described below) and confirmed using real-time PCR
2
. Primer 

sequences (5’ to 3’) were as follows: ABO_O-F: CCT GTG TGG ATG TGC AGT AGG A; 

ABO_O-R: CGT TGA GGA TGT CGA TGT TGA A; ABO_AB-Fam: 6FAM-TCC TCG TGG 

TGA CCC CTT GGC-BHQ1; ABO_O-Hex: 6HEX-ATG TCC TCG TGG TAC CCC TTG GCT-

BHQ1; ABO_B-F: CTG CAC CTC TTG CAC CGA C; ABO_B-R: AGG CCT TCA CCT ACG 

AGC G; ABO_AO-Fam: 6FAM-CCC GAA GAA CCC CCC CAG GTA GTA GAA A-BHQ1; 

ABO_B-Hex: 6HEX-CCC GAA GAA CGC CCC CAT GTA GTA GAA A-BHQ1. 

Quality control of the SNP data 

 

One hundred and sixty nanograms of genomic DNA were analyzed with the HumanOmni2.5-8 v1.1 

DNA Analysis Kit (Illumina), following the manufacturer’s instructions. Briefly, genomic DNA 

was subjected to isothermal amplification followed by fragmentation with nucleases. The DNA was 

precipitated with 2-propanol, then hybridized with oligonucleotide probes immobilized on 

HumanOmni2.5-8 BeadChips (8 samples per BeadChip slide). After washing, probes underwent 

single-base extension using the captured genomic DNA as a template, and incorporating 2, 4-

dinitrophenyl- or biotin-labeled nucleotides to identify the genotypes. Then, immunohistochemical 

staining was performed to amplify the incorporated signal. Two Robotic Universal modules 

(Freedom evo, TECAN, Maennedorf, Switzerland) and the Illumina Infinium LIMS system 

(Illumina) were used for a series of experiments. An iScan scanner system, with an AutoLoader 2.X 

controlled by the iScan Control Software (ver. 3.3.28: Illumina), was adopted for the data 

acquisition. Each SNP call was obtained using the Genotyping Module in the GenomeStudio 

software (ver. 2011.1: Illumina). The default set cluster file was HumanOmni2-5M-8b1-1_B.egt 
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(Illumina). The genotyping calls were based on a clustering algorithm, and classification was 

performed using the Bayesian model
3
. When the genotyping score for a SNP call was below 0.15, 

the corresponding locus was excluded from further analysis. After having calculated the SNP call 

rates, the individuals with overall call rates above 99%, and with a standard deviation of the log R 

ratios for the autosomal SNPs below 0.2, were used for further analysis. 

Identification of cryptic relatedness in the cohort sample 

 

The SNP-QC and the identification of cryptic relatedness were carried out with the PLINK software 

(ver. 1.07)
4
. We extracted SNPs using the following criteria: a Hardy–Weinberg Equilibrium test 

(HWET) with a p-value > 0.05, a minor allele frequency (MAF) > 0.05, and a missing data rate per 

locus (lmiss) < 0.01. 

Closely related individuals within our cohort were identified based on an identity-by-descent 

(IBD) estimation. Before calculating the estimated IBD value (referred as PI-HAT in PLINK) 

between each pair of individuals, we carried out an LD-based pruning to extract a set of SNPs that 

were in nearly linkage equilibrium, using the PLINK option --indep-pairwise 200 4 0.1, as follows: 

SNPs within a 200-SNP window were removed one by one, until no squared correlation between 

the SNPs in the window was >0.1, and the procedure was iterated by sliding the window by 4 SNPs 

at a time. The IBDs for all pairs of individuals were estimated for the pruned SNP set using the 

PLINK option --genome, and individuals were removed one by one, until the PI-HAT value for no 

individual pair was > 0.125. 
 

Population structure analysis  

 

The population structure of the group comprising the selected individuals in the previous section 

was determined using a principal component analysis (PCA) with the smartpca program in 

EIGENSOFT
5
. The program was used without the auto-removal function of outlier(s) for the 

pruned SNP set in the previous section. Outlier individuals in the PCA were removed in the 

following manner: we repeatedly calculated the PCA and removed the individual with the largest 

absolute value of the first principal component (PC1) score, until the p-value of the Tracy-Widom 

statistic for the PC1 value was more than 0.05. 

In addition to the above analysis, we examined the population structure of our cohort of 

selected individuals and HapMap reference panels
6
 using a PCA to detect additional outliers. We 

selected SNPs that are in autosomes and satisfy the following four criteria for further analysis: 

polymorphic (MAF ≥ 0.05) in the ToMMo individuals, with a per-SNP call rate ≥0.95, with a 

HWET p-value > 0.001, and genotyped as part of the HapMap project. A PCA was separately 

applied to the two genotype references: the international HapMap samples and the East Asian 

samples (JPT and CHB). The SNP sets were pruned by LD (r
2
<0.1) using PLINK, and 57,547 SNPs 

and 46,809 SNPs remained for these two reference panels, respectively. 

We inspected the distribution of the ToMMo individuals in the two-dimensional PCA plots 

of the first and second PCs, respectively, and five outliers were removed (Supplementary Fig. 1). 

Furthermore, the population structure of the ToMMo individuals in the Japanese population was 

examined using a PCAj analysis (a population structure prediction system for the Japanese which is 

based on the largest analysis of the Japanese population structure)
7
. By using the PCAj analysis, we 

obtained the distribution of the ToMMo individuals by predicting the top eigenvalues for the 

ToMMo individuals. Using this analysis, we excluded one additional individual who was outside of 

the major (Hondo) cluster of the Japanese population
8
. 
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HLA types of Japanese 

 

The HLA loci on chromosome 6p21.3 together make up one of the most diverse and polymorphic 

regions in the human genome. Conventionally, HLA types have been determined at the 2-digit 

resolution (e.g., A*01), which approximates the serological antigen groupings. More recently, the 

sequence-specific oligonucleotide probes (SSOP) method has been used for HLA typing at the 4-

digit resolution (e.g., A*01:01), which can distinguish amino acid differences
9
. Here, we employed 

a sequencing-based approach to HLA typing. Since the sequence-based approach can directly 

determine both coding and non-coding regions, it can achieve HLA typing at the 8-digit (e.g., 

A*01:01:01:01) resolution. We predicted the HLA types of the 1KJPN samples with a 

computational tool, HLA-VBSeq
10

. HLA-VBSeq estimates the most probable HLA alleles at full 

(8-digit) resolution from whole-genome sequence data. HLA-VBSeq simultaneously optimizes read 

alignments to the HLA allele sequences and the abundance of reads on the HLA alleles by 

variational Bayesian inference. HLA typing with HLA-VBSeq was carried out as follows. 

First, reads obtained by whole-genome sequencing were aligned to the reference genome 

(GRCh37/hg19), using decoy sequences (hs37d5) with an alignment tool, BWA-MEM
11

. Second, 

reads aligned to HLA loci (HLA-A, -B, -C, -DM, -DO, -DP, -DQ, -DR, -E, -F, -G, -H, -J, -K, -L, -P, 

-V, -MIC, and -TAP) and unmapped reads were extracted from the BAM file using SAM tools
12

. If 

one of the paired-end mates was aligned to an HLA locus and the other was not, then both reads in 

the pair were extracted and used in downstream analyses. Then, the extracted reads were re-aligned 

to the collection of all the genomic HLA allele sequences in the IMGT/HLA database
13

 (release 

3.17.0), in which multiple alignments to the reference sequences for each read are allowed, with 

using the “-a” option in BWA-MEM. The expected read counts on the HLA alleles were estimated 

by variational Bayesian inference under a statistical framework. After the inference algorithm 

converges, the HLA types of HLA-A, -B, and -C loci were predicted, based on the expected number 

of reads assigned to each allele. A threshold for the depth of coverage of the HLA alleles was set. In 

our analysis, we set the threshold at a 5x depth of coverage. The details of the algorithm are 

described in the previous literature
10

. We compared the frequencies of HLA alleles predicted in the 

1KJPN with those determined in another Japanese population with 1,018 samples
1
 (Fig. 3d, 

Supplementary Fig. 6c, 6d). The HLA alleles that exist in at least one individual in both populations 

were considered for comparison. 

 

Haplotyping of 1070 Japanese individuals 

 

We first constructed a phased reference panel of the 1KJPN, using the SHAPEIT2
14

 software (ver. 

2.r644) without singletons. The high-sensitive SNVs plus the short insertions and deletions were 

included in the variant set. We then determined the phase of the singletons in the following manner: 

(i) Locally haplotyped regions were obtained using HapMonster
15

 software, which uses sequence 

reads spanning multiple heterozygous positions to perform local haplotyping. 

(ii) If the phasing result of a locally haplotyped region from HapMonster was completely 

concordant with that estimated by SHAPEIT2, we added singletons in the region to the phased 

reference panel and phased them according to the local haplotype in the region from HapMonster. If 
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phasing results from SHAPEIT2 and HapMonster were discordant due to some variants in the 

region, singletons in the region were ignored in the phased reference panel. 

(iii) Singletons not included in locally haplotyped regions were ignored in the phased reference 

panel. 43% of all the singletons were corrected with above procedures. 

Imputation performance 

 

We imputed the genotypes of 131 Japanese individuals not included in the 1KJPN, based on the 

genotypes at designed sites in the HumanOmni2.5-8 BeadChip, by using the IMPUTE2
16

 software 

(ver. 2.2.2). The genotypes of these individuals were obtained using the same sequencing protocol 

and the same variant calling pipeline as were used in determining the high-sensitive SNVs set, and 

used as the gold standard. For the IMPUTE2 options, Ne and k_hap values were set to 20,000 and 

1,000, respectively. In addition to the 1KJPN, we considered the following three reference panels 

for imputation, to evaluate their performance: the reference panel from the 1KGP released in Dec. 

2013 and containing 1,092 cosmopolitans, a reference panel of 89 JPT individuals from the 1KGP, 

and a reference panel comprising both the 1KGP and the 1KJPN. To assess the agreement between 

the imputed genotypes and the genotype calls from NGS, we calculated the squared Pearson 

correlation coefficient between the gold standard genotypes, taking respective integer values of 0, 1, 

and 2, and values of allele dosages of imputed genotypes from 0 to 2, as in the literature
16

. Fig. 4a 

gives r
2
 values averaged for each MAF bin size, for SNVs that exist in both the 1KJPN and the 

1KGP. The MAF for each SNP was calculated independently for each reference panel. The mean r
2
 

value of the 1KJPN was higher than those of the other populations across the range, and the use of 

the ToMMo-1KGP for imputing genotypes in the Japanese population was effective, especially for 

low-frequency variants. 

GWAS of the Moyamoya disease with imputation 

 

We performed imputation based on a genotype dataset from a case-control study on the Japanese 

moyamoya disease (MMD)
17

, using the reference panel of the 1KJPN. The dataset contains the 

genotypes of 72 Japanese MMD patients and of 45 healthy Japanese controls, from the International 

HapMap Project, at 1,140,419 sites designed on the Illumina HumanOmni1-Quad BeadChip. The 

genotypes of the case samples were obtained from the Illumina HumanOmni1-Quad BeadChip, and 

those of the control samples were obtained from the database of the International HapMap Project. 

After converting the genotype coordinate from hg18 to hg19 using liftOver, sites with a missing 

genotype rate > 0.01 were removed, and the remaining 975,719 sites were used in the analysis. The 

strand information was corrected based on the concordance of the alleles or on MAF in the 1KJPN. 

We performed a chi-squared test implemented in PLINK 1.07 --assoc option on these SNPs for the 

original and imputed datasets. For the association study on the imputed dataset, the best-guess 

genotypes on imputed variant positions with info metric from IMPUTE2 more than or equal to 0.5 

were considered. With a significance threshold of p-value < 5.25x10
-8

, only a synonymous SNP, 

rs11870849, located at the coding region of ENDOV (chr17:78411073) and with a p-value of 

6.95x10
-9

 was identified in the original (non-imputed) dataset (Fig. 4b). In the imputed dataset, a 

nonsynonymous SNP, rs112735431, located in RNA213 (chr17:78358945), was identified as 

having the highest SNP association with a p-value of 8.07x10
-10

, which is beyond the significance 

threshold, at a p-value < 5.06x10
-9

 (Fig. 4d). We also applied the reference panel from the 1KGP to 

the MMD dataset for the imputation. A Manhattan plot from the imputed genotypes appeared to 
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contain many spurious associations with MMD (Supplementary Fig. 7a). Since the control samples 

of the MMD dataset are also included in 1KGP as HapMap JPT samples, we performed association 

studies for genotypes imputed with the panel without HapMap JPT samples. Supplementary Fig. 7b 

shows a Manhattan plot from the imputed genotypes, where rs112735431 was not detected as a 

significant variant. 

 

Individual mutation load 

 

We identified overlaps between the high-confidence SNVs and known pathological SNVs from the 

Human Gene Mutation Database (HGMD)
18

. Possible pathological SNVs were identified based on 

the genomic coordinates and on the consistency of the allele bases. After this filtering step, 4,368 

pathological SNVs in the HGMD, including 1,002 disease-causing mutations (DMs), were extracted. 

Stop-gained alleles were annotated using the SnpEff software (ver. 3.3c). For each individual, the 

number of these functional variants (HGMD-DM and stop-gained alleles) was counted for each 

variant class. We used sites of functional variants that satisfy the following conditions; (i) the 

ancestral states were inferred with high-confidence, (ii) the functional variants were non-reference 

(alternative) alleles, and (iii) the functional variants were derived alleles. We discarded stop-gained 

SNVs if the proportion of truncated ORFs was less than 5%. 

 

Variants discovery rate 

 

Although the variants discovery rate can be predicted from preliminary data
19,20

, we estimated the 

discovery rate using variants data obtained in this study. Let us consider a sampling probability of 

variants  (      ) from a population with the allele frequency distribution F(q) where q is an 

allele frequency of a variants in very large population. In a sample of n individuals comprising 2n 

chromosomes from the population, the sampling probability of variants with minor allele frequency 

equal or greater than qmin can be written as follows: 

 

 (      )  
∑ ∫ (

  
 

)  (   )     ( )  
      
    

    
   

∑ ∫ (
  
 

)  (   )     ( )  
      
    

  
   

  
∫    (   )    ( )  
      
    

∫  ( )  
      
    

         (1) 

 

Demographic inference 

 

In a constant population size, the allele frequency distribution under the equilibrium state is  

 ( )  
 

 (   )
. 

However, such setting is not realistic for human population where the complex demographic events 

such as recent size expansion and bottleneck have been experienced. Thus, we inferred the 

demographic history of the 1KJPN was inferred using a forward-time simulation under the Wright-

Fisher diffusion model
21

 (Supplementary Fig. 3). The time-course of the allele frequency (q) 

distribution in a population, f(q, t), is approximated by solving the following diffusion equation: 
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where M(q) and V(q) represent the mean and variance of the change in the allele frequency at 

frequency q, respectively. Consider a variable population size with additive selection in the Wright-

Fisher model, and let ρ(t) and N0 be the relative population size and the effective population size at 

time 0, respectively, V(q) and M(q) are respectively written as follows: 

 ( )  
 (   )

    ( )
 

 ( )    (   ), 

where s is an advantageous selection coefficient. The time unit of Equation (2) can be converted 

into a unit of 2N0 generations: 

  (   )
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where S=2N0s and T=2N0t. Equation (3) was solved numerically with uneven grid spacing, as 

previously described
22

. The changes in the population size are represented by a series of linear 

equations, whose tips are connected each other. 

 (   )  
       

       
     

       

       
   

         , 

where mi is the time in units of 2N0, and λi is the relative population size at time mi. Time intervals 

between mi and mi+1 was set to be proportional to 1/i(i+1) so that the time interval become shorter as 

time is closer to the present time. The expected number of sites with an i derived allele in a sample 

size n, i.e., the site frequency spectrum (SFS), is calculated using the following equation: 

 (     )   ∫ (
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  (   )    (     )  , 

where θ=2N0U and U is the mutation rate for a set of sites of interest (e.g. intergenic).  

Let X=(x1, x2, … , xi, …, xn/2) be the observed number of sites with a minor allele count i. Assuming 

that each x follows an independent Poisson distribution, the likelihood function with folded SFS X 

is written as the following equation. 

 (   )  ∏
    (     )  (       )   (     )   (       )   

   

 

   

 

The mis and time of simulation τ were set a priori, and the λi and θ values were estimated by 

maximizing likelihood function L(λ:X), with the L-BFGS-B algorithm
23

. Applying the maximum 

likelihood estimates of demographic parameter  ̂, the allele frequency distribution F(q) in Equation 

(1) can be obtained as follows: 

 ( )   (     ̂) 

The demographic parameter  ̂ was estimated from the SFS of the high-confidence SNVs of 

intergenic regions (Supplementary Fig. 3a) and the number of time intervals was set to be 12. 

 The inferred demographic model was shown in Supplementary Fig. 3b. The variants 

discovery rate in Fig. 1d was estimated according to Equation (1) under this model.   
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