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Supplementary Figure 1. Hierarchical model selection follows a single predefined path through model space.

A B C

Supplementary Figure 2. Testing the robustness of adaptive inference in the multi-site phosphorylation

example. In each case, the original performance curves from the main text’s Figure 2 (smaller symbols) are

compared to an altered version of the model selection process (larger symbols). (A) Comparing fitting to the

same data but using an incorrect standard deviation σassumed when calculating the Bayesian log-likelihood.

(B) Comparing fitting to data with log-normally distributed noise; the two lines overlap and are hard to

distinguish on the plot. (C) Comparing to adding parameters in random order, averaged over 10 realizations.

See text for details.
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Supplementary Figure 3. Typical in-sample data points for the planetary motion and multi-site phospho-

rylation model examples. For the planetary motion, r0 is treated as input, and for each in-sample r0, r is

measured, with added noise, at a single randomly chosen time between 0 and 100. For multi-site phospho-

rylation, the single parameter V is treated as input, and the total phosphorylation is measured, with added

noise, at a single randomly chosen time between 0 and 10 minutes. Dotted lines show the original model

behavior, filled circles with error bars show the in-sample data, and unfilled circles show the varying initial

conditions in the planetary motion case. The original planetary motion model includes a single hidden

variable X2 corresponding to the time derivative of r. (For the yeast glycolysis example, a similar depiction

of typical in-sample data is shown in the left panel of Figure 4.)
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Supplementary Figure 4. Fit of sigmoidal model to planetary data. We know that the sigmoidal network

model class is not likely to perform as well for the planetary data case because gravitational interactions

do not saturate. Here we show the performance of a model fit to N = 180 data points, which contains

three hidden variables. The model still fits well in the time region where data is given (between 0 and 100

GM/v30 , corresponding to the left half of A and the dark blue part of the trajectories in B), but has a larger

divergence from the expected behavior at the extremes of the range of given r0s in the extrapolated time

region (corresponding to the right half of A and the light blue part of the trajectories in B).
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Supplementary Figure 5. Selected adaptive sigmoidal models in the phosphorylation example have both

fewer total parameters and fewer effective parameters than the full microscopic model. Solid colored lines

indicate the total number of parameters in each model, as in Figure 2 in the main text. Solid symbols

connected by dotted lines indicate the effective number of parameters, which we define as the number

of directions in parameter space that are constrained by the data such that the corresponding Hessian

eigenvalue λ > 1 (compared to parameter priors with eigenvalue 10−2). Shown are the mean and standard

deviation of values over 10 data realizations. For comparison, the solid black line indicates the number of

data points ND = N used to infer the model.
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Supplementary Figure 6. A typical example of out-of-sample performance in the multi-site phosphorylation

example. Here, each model is fit using N = 50 datapoints. With this small amount of data, the differences

between model classes are more apparent, with the sigmoidal model class clearly better predicting the

dynamics than the S-systems model class and the full phosphorylation model.
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Supplementary Figure 7. The performance of models fit to data from the multi-site phosphorylation model

as a function of the number of parameters in each model. This is a replotting of the data in Figure 2 in the

main text. If we think of a model as more efficient if it can produce the same level of predictive power with

fewer parameters, then the best models lie at the Pareto front, drawn in solid lines for each model type.
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Supplementary Figure 8. (Left) Network depicting the yeast glycolysis model defined by Eqns. (13). Solid

arrows represent excitation, solid lines with circles represent inhibition, and dashed arrows represent other

types of interaction terms. (Right) Selected sigmoidal network fit to N = 40 noisy measurements from the

yeast glycolysis model, as shown in Figure 4. Again, arrows represent excitation and circles inhibition, with

the thickness of arrows indicating interaction strength. For clarity, self-inhibitory terms for each variable

are not shown.
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Supplementary Figure 9. Performance of inferred models of yeast glycolysis as a function of the number

of measurements N (left) and the mean number of parameters Np in the selected model (right). The

given sigmoidal model hierarchy requires about 30 measurements (corresponding to 90 datapoints) and 60

parameters to produce reasonable predictions. Here we compare mean correlations produced for out-of-

sample initial conditions chosen from ranges twice as large as in-sample ranges (“wide ranges,” plotted in

red, listed in the “out-of-sample” column of Supplementary Table 4) to when out-of-sample conditions are

chosen from the same ranges as in-sample ranges (“narrow ranges,” plotted in purple, listed in the “in-

sample” column of Supplementary Table 4). For comparison, the simple sinusoidal model defined in (15) is

shown in shades of blue. The mean and standard deviation over 5 realizations of in-sample data are shown

by filled symbols and shaded regions. Also plotted are the Pareto fronts for each model (solid lines on right

plot) indicating the maximal correlation for a given mean Np.
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Supplementary Figure 10. The number of model evaluations (integrations) used at each N , for the multi-site

phosphorylation and yeast glycolysis examples. Once the size of model has saturated, we expect the number

of evaluations to scale linearly with N (black lines). If the selected model size is growing with N , as in the

yeast glycolysis example below N = 20 (see Supplementary Figure 11), we expect faster than linear growth.
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Supplementary Figure 11. Fitting sigmoidal models to the yeast glycolysis oscillation data, the number of

total parameters in the selected model, plotted with red open squares, saturates to roughly 65. Plotted

with red solid squares is the effective number of parameters, which we define as the number of directions

in parameter space that are constrained by the data such that the corresponding Hessian eigenvalue λ > 1

(compared to parameter priors with eigenvalue 10−2). Corresponding values for the simple sinusoidal model

are plotted in blue. Since the blue curve does not grow for N ≥ 5, we conclude that the simple model

does not have the statistical power to fit the data and is too simple for this case. For comparison, the solid

black line indicates the number of data points ND = 3N used to infer the model. We expect the optimal

effective number of parameters to stay below ND. Shown are the median and full range of values over 5

data realizations.
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Model No. i Num. parameters Np Form of power-law ODEs

0 3 x1(0) = xinit1

dx1
dt

= xg10I xg111 − β1

1 4 x1(0) = xinit1

dx1
dt

= xg10I xg111 − β1xh10

I

2 5 x1(0) = xinit1

dx1
dt

= xg10I xg111 − β1xh10

I xh11
1

3 6 x1(0) = xinit1

dx1
dt

= α1x
g10
I xg111 − β1xh10

I xh11
1

4 8 x1(0) = xinit1

x2(0) = xinit2

dx1
dt

= α1x
g10
I xg111 xg122 − β1xh10

I xh11
1

dx2
dt

= xg222 − 1

5 9 x1(0) = xinit1

x2(0) = xinit2

dx1
dt

= α1x
g10
I xg111 xg122 − β1xh10

I xh11
1 xh12

2

dx2
dt

= xg222 − 1

6 10 x1(0) = xinit1

x2(0) = xinit2

dx1
dt

= α1x
g10
I xg111 xg122 − β1xh10

I xh11
1 xh12

2

dx2
dt

= xg211 xg222 − 1

Supplementary Table 1. The first seven models of an example hierarchy in the S-systems class with one

input xI and fixed initial conditions xinit1 and xinit2 .

10



Model No. i Num. parameters Np Form of sigmoidal ODEs

0 3 x1(0) = xinit1

dx1
dt

= −x1/τ1 +W11ξ(x1) +W10xI

1 4 x1(0) = xinit1

dx1
dt

= −x1/τ1 +W11ξ(x1 + θ1) +W10xI

2 6 x1(0) = xinit1

x2(0) = xinit2

dx1
dt

= −x1/τ1 +W11ξ(x1 + θ1) +W12ξ(x2) +W10xI

dx2
dt

= −x2

3 7 x1(0) = xinit1

x2(0) = xinit2

dx1
dt

= −x1/τ1 +W11ξ(x1 + θ1) +W12ξ(x2) +W10xI

dx2
dt

= −x2 +W20xI

4 8 x1(0) = xinit1

x2(0) = xinit2

dx1
dt

= −x1/τ1 +W11ξ(x1 + θ1) +W12ξ(x2) +W10xI

dx2
dt

= −x2 +W21ξ(x1 + θ1) +W20xI

5 9 x1(0) = xinit1

x2(0) = xinit2

dx1
dt

= −x1/τ1 +W11ξ(x1 + θ1) +W12ξ(x2) +W10xI

dx2
dt

= −x2 +W22ξ(x2) +W21ξ(x1 + θ1) +W20xI

Supplementary Table 2. The first six models of an example model hierarchy in the sigmoidal class with one

input xI and fixed xinit1 and xinit2 .
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J0 2.5 mM min−1

k1 100. mM−1 min−1

k2 6. mM−1 min−1

k3 16. mM−1 min−1

k4 100. mM−1 min−1

k5 1.28 min−1

k6 12. mM−1 min−1

k 1.8 min−1

κ 13. min−1

q 4

K1 0.52 mM

ψ 0.1

N 1. mM

A 4. mM

Supplementary Table 3. Parameters for the yeast glycolysis model defined in Eqns. (13).

12



Variable In-sample IC (mM) Out-of-sample IC (mM) In-sample σ (mM)

S1 [0.15, 1.60] [0.15, 3.05] 0.04872

S2 [0.19, 2.16] [0.19, 4.13] 0.06263

S3 [0.04, 0.20] [0.04, 0.36] 0.00503

S4 0.115 0.115 N/A

S5 0.077 0.077 N/A

S6 2.475 2.475 N/A

S7 0.077 0.077 N/A

Supplementary Table 4. Initial conditions (IC) and standard deviations of experimental noise (σ) used in

the yeast glycolysis model. Initial conditions for visible species S1, S2, and S3 are chosen uniformly from the

given ranges, chosen to match Ref. [1]. Out-of-sample ranges are each twice as large as in-sample ranges.

Initial conditions for the remaining hidden species are fixed at reference initial conditions from Refs. [1] and

[2]. In-sample noise is set at 10% of the standard deviation of each variable’s concentration in the limit

cycle, as quoted in Ref. [1].
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∆p (gravitation and phosphorylation examples) 2

∆p (yeast example) 5

iovershoot 3

Ensemble temperature T (full phosphorylation model)a 10

Ensemble temperature T (all other models) 103

Total number of Monte Carlo steps (full phosphorylation model)a 102

Total number of Monte Carlo steps (all other models) 104

Number of ensemble members used 10

avegtol 10−2

maxiter 102

Supplementary Table 5. Adaptive inference algorithm parameters. 1In the full phosphorylation model, we

fit parameters in log-space since they are known to be positive. This makes the model more sensitive to

large changes in parameters, meaning that we are forced to be more conservative with taking large steps in

parameter space to achieve reasonable acceptance ratios.
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Supplementary Note 1. HIERARCHICAL BAYESIAN MODEL SELECTION

For consistent inference, we need a hierarchy of models that satisfies criteria laid out in Ref. [3].

First, we desire a model hierarchy that will produce a single maximum in L, up to statistical

fluctuations, as we add complexity. For this, the hierarchy should be nested (but not necessarily

regular or self-similar), meaning that once a part of the model is added, it is never taken away.

Second, the hierarchy should be complete, meaning it is able to fit any data arbitrarily well with

a sufficiently complex model. Intuitively, instead of searching a large multidimensional space of

models, hierarchical model selection follows a single predefined path through model space (Supple-

mentary Figure 1). While the predefined path may be suboptimal for a particular instance (that

is, the true model may not fall on it), even then the completeness guarantees that we will still

eventually learn any dynamical system F given enough data, and nestedness assures that this will

be done without overfitting along the way.1

Ordering of hierarchies: An advantage of the S-systems and sigmoidal representations is

the existence of a natural scheme for creating a one-dimensional model hierarchy: simply adding

dynamical variables xi. The most general network is fully connected, such that every variable xi

has an interaction term in every other dxj/dt. Our hierarchy starts with a fully-connected network

consisting of the necessary number of input and output variables, and adds “hidden” dynamical

variables to add complexity. With each additional xi, we add parameters in a predetermined order.

In the S-systems class, without connections, variable xi’s behavior is specified by 5 parameters:

xinit
i , αi, βi, gii, and hii. Each connection to and from xj is specified by 4 parameters: gij , gji, hij , and

hji. When adding a new dynamic variable, we first fix its parameters (to zero for the exponential

parameters and one for the multiplicative parameters), and then allow them to vary one at a time

in the following order: gii, gji, hji, gij , hij , βi, hii, αi (adding connections to every other xj one at a

time). An example is shown in Supplementary Table 1.

The sigmoidal class is similar: without connections, variable xi’s behavior is specified by 4

parameters: xiniti ,Wii, τi, and θi. Each connection to and from xj is specified by 2 parameters: Wij

1 In general, we are not guaranteed good predictive power until N → ∞, but we can hope that the assumptions

implicit in our priors (consisting of the specific form of the chosen model hierarchy and the priors on its parameters)

will lead to good predictive power even for small N .
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and Wji. When adding a new dynamic variable, we first fix its parameters (to zero for W and θ and

one for τ), and then allow them to vary one at a time in the following order: Wij ,Wji,Wii, τi, θi

(adding connections to every other xj one at a time). An example is shown in Supplementary

Table 2.

For every adaptive fit model and the full multi-site phosphorylation model, we use the same

prior for every parameter αk, which we choose as a normal distribution N (0, 102) with mean 0 and

standard deviation ς = 10.2 (For the simple model fit to the phosphorylation data, parameters are

always well-constrained and priors are unimportant, and we therefore do not use explicit priors.)

Representation of sharp nonlinearities: Both the sigmoidal and S-systems classes can

represent arbitrary dynamics. However, it is important that they can efficiently represent sharp

nonlinearities that are often present in biological systems, such as those typically represented by

large Hill coefficients. While this is straightforward for the S-systems class [4], it is less obvious for

sigmoidal models.

The sigmoidal model class relies on ξ(y), which has the largest derivative ξ′(0) = −1. Thus it

may seem that sharp nonlinearities could be hard to produce. In fact, the introduction of hidden

variables that perform multiple transformations can produce arbitrarily sharp production rate laws.

As an example, we show here that the nonlinearity captured by the Hill equation,

f = Sn/(Sn +K), (1)

(where S is the substrate concentration, K is the dissociation constant, and f is the fraction of

bound receptors) can be represented exactly in the sigmoidal class using two dynamical variables.

Treating I = logS as the input to the system, the sigmoidal system

dx1

dt
= −x1

τ1
− I,

dx2

dt
= −x2 + ξ(x1 + θ1), (2)

where we set τ1 = n and θ1 = logK, has a steady state solution that reproduces (1):

lim
t→∞

x2(t) = ξ(−n logS + logK) = f. (3)

2 Some parameters (α and β in the S-systems model class, τ in the sigmoidal model class, and k and K parameters

in the full phosphorylation model) are restricted to be positive, which we accomplish by optimizing over the log of

each parameter. The priors are still applied in non-log space, effectively creating a prior that is zero for negative

parameter values and 2N(0, 10) for positive parameter values.
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Robustness of adaptive inference: In Supplementary Figure 2, we test the robustness of

the performance of adaptive models in the multi-site phosphorylation example (see below) when

various assumptions of the modeling framework are violated.

First, the derivation in Supplementary Note 5 assumes that the distribution of noise on measured

data is Gaussian with known variance. In Supplementary Figure 2A, we compare fitting to the same

data but using an incorrect standard deviation for noise on the data when calculating the Bayesian

log-likelihood. When the data is thought to be noisier than it actually is (purple and red points),

performance remains unchanged until large N , when, as expected, simpler than optimal models

are chosen, and comparatively more data is required to select complex models that produce better

performance. When the data is thought to be less noisy than it actually is (yellow points), more

complex models are selected, which in this case yields performance that can be better or worse,

depending on N . In Supplementary Figure 2B, we compare fitting to data with log-normally

distributed noise, keeping the mean and variance fixed. The closely overlapping performance

suggests that, in the absence of knowledge about the true noise distribution, a good estimate of σ

may be enough to attain consistent inference.

Finally, a somewhat arbitrary choice must be made to define an ordering for adding parameters

in the model hierarchy; we chose to use the “node order” that is described in Supplementary Table 2.

In Supplementary Figure 2C, we instead add parameters for each dynamical variable in random

order. This includes orderings that first add parameters controlling only hidden nodes, which may

be decoupled from the visible variables and hence cannot improve the fit. To compensate for this

and avoid erroneously stopping fitting due to adding these unproductive parameters, we increase

the number of models checked by increasing iovershoot from 3 to 4 (see Supplementary Note 6). One

could additionally avoid unproductive orderings by checking that each additional parameter has

some causal influence on visible variables. But even including these orderings, mean performance

is largely unaffected.
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Supplementary Note 2. THE LAW OF GRAVITY MODEL

For a mass m in motion under the influence of the gravitational field of a mass M � m, the

distance r between the two evolves as [5]

d2r

dt2
=
h2

r3
− GM

r2
, (4)

where h = (v0 · θ̂)r0 is the specific angular momentum, v0 is the initial velocity, r0 is the initial

distance, θ̂ is the unit vector perpendicular to the line connecting the two masses, and G is the

gravitational constant. Setting the initial velocity parallel to θ̂ and measuring distance in units of

GM
v20

and time in units of GM
v30

, the dynamics become3

d2r

dt2
=

1

r2

(
r2

0

r
− 1

)
. (5)

When written as two first-order differential equations, we see that this system can be represented

exactly in the S-systems class if the particle does not fall onto the Sun:

dr

dt
= χ− 1

dχ

dt
= r2

0r
−3 − r−2, (6)

where we use the variable χ = dr
dt + 1, so that the resulting system’s variables are never negative,

a requirement of the S-systems class.

To illustrate constructing an adaptive model for planetary motion, we consider as input the

initial distance from the sun r0. We sample r0 uniformly between 1 and 3 (in units of GM/v2
0),

which covers the possible types of dynamics: at r0 = 1, the orbit is circular; when 1 < r0 < 2 the

orbit is elliptical; when r0 = 2 the orbit is parabolic; and when r0 > 2 the orbit is hyperbolic. In

this and later examples, to best determine the minimum number of measurements needed for a

given level of performance, we sample the system at a single time point for each initial condition

(Supplementary Figure 3), rather than sampling a whole trajectory per condition. This ensures

that samples are independent, which would not be the case for subsequent data points of the

same trajectory, and hence allows us to estimate the data requirements of the algorithm more

3 Note that r0 sets the (conserved) angular momentum: h = GM
v0
r0 with r0 in rescaled units.

18



reliably. Further, this is similar to the sampling procedure already used in the literature [1]. In the

planetary motion case, we assume only the distance r is measured, meaning the total number of

of datapoints ND = N , where N is the number of initial conditions sampled. We choose the time

of the observation as a random time uniformly chosen between 0 and 100, with time measured in

units of GM/v3
0. To each measurement we add Gaussian noise with standard deviation equal to

5% of the maximum value of r between t = 0 and t = 100 GM/v3
0.

Typical training data for the model can be seen in Supplementary Figure 3. Fits to N = 150

data points are shown in Figure 1. Here our adaptive fitting algorithm selects a model of the

correct dimension, with one hidden variable. The selected model ODEs in this case are

dr

dt
= e−3.405r3.428

0 r0.049X7.372
2 − e−2.980r2.936

0 r0.046X2−4.925

dX2

dt
= r−0.651

0 r−3.435X−0.014
2 − e−0.006r−4.288

0 r−1.595. (7)

Note that certain transformations of the hidden variable and parameters can leave the output

behavior unchanged while remaining in the S-systems class. First, the initial condition of hidden

parameters can be rescaled to 1 without loss of generality, so we remove this degree of freedom and

set X2(0) = 1. Second, we have the freedom to let the hidden variable X2 → Xγ
2 for any γ 6= 0 with

appropriate shifts in parameters. To more easily compare the fit model with the perfect model, in

the rightmost column of Figure 1we plot X2
2 on the vertical axes instead of X2 when comparing it

to the dynamics of the true hidden variable χ.

Finally, we may compare performance when we fit the gravitation data using sigmoidal models,

a model class that we know is not representative of the underlying mechanics. The results are

shown in Supplementary Figure 4; the selected sigmoidal network, which contains three hidden

variables, still provides a good fit to the data, as expected, but it does not generalize as well when

r0 is near the edge of the range contained in the data and timepoints are outside of the range of

data to which they were fit. This is expected since forces can diverge in the true law of gravity,

and they are necessarily limited in the sigmoidal model.
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Supplementary Note 3. MULTI-SITE PHOSPHORYLATION MODEL

To explore a complicated biological system with relatively simple output behavior, we imagine

a situation in which an immune receptor can be phosphorylated at each of five sites arranged in

a linear chain. The rates of phosphorylation and dephosphorylation at each site are affected by

the phosphorylation states of its nearest neighboring sites. A site can be unphosphorylated (U) or

phosphorylated (P ), and its state can change via one of two processes. The first process does not

depend on states of neighboring sites:

Ui ⇀↽ Pi, (8)

with on-rate kon
i ([Ui]) and off-rate koff

i ([Pi]) that depend on the concentration of the corresponding

substrate. The second, cooperative process happens only when a neighboring site j is phosphory-

lated:

UiPj ⇀↽ PiPj (9)

with on- and off-rates kon
ij ([UiPj ]) and koff

ij ([PiPj ]). All rates k are modeled as Michaelis-Menten

reactions: k([S]) = V [S]
Km+[S] . With each reaction specified by two parameters (V and Km) and

26 possible reactions, the phosphorylation model has a total of 52 parameters. To more easily

generate the differential equations that govern the multi-site phosphorylation model, we use the

BioNetGen package [6, 7].

When fitting this phosphorylation model, we use as input the parameter V on
23 , which is chosen

from a uniform distribution in log-space between 10−3 and 103 min−1. The remaining 51 V and

Km parameters we sample randomly from our priors on these parameters. As output, we measure

the total phosphorylation of the 5 sites Ptot at a single random time uniformly chosen between 0

and 10 minutes. To each measurement we add Gaussian noise with standard deviation equal to

10% of the Ptot value at t = 10 min.

Typical training data for the model is shown in Supplementary Figure 3. The out-of-sample

mean squared error, as plotted in Figure 2, is measured over 100 new input values selected from

the same distribution as the in-sample values, each of which is compared to the true model at 100
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timepoints evenly spaced from 0 to 10 minutes.

As a simple guess to the functional form of the total phosphorylation timecourse as a function of

our control parameter V = V on
23 (the “simple model” in Figure 2), we use an exponential saturation

starting at 0 and ending at a value P∞ that depends sigmoidally on V :

Ptot = P∞(V )

[
1− exp

(
t

t0

)]
, (10)

where

P∞(V ) = a+
b

2

[
1 + tanh

(
log(V )− d

c

)]
(11)

and a, b, c, d, and t0 are parameters fit to the data. Figure 2 shows that this simple ad hoc model

can fit the data quite well.

For the example shown in Figure 3, the selected sigmoidal model consists of the ODEs

dPtot

dt
=
−Ptot

e−1.219
+

0.409

1 + exp(Ptot − 4.469)
+

7.087

1 + exp(X2)
+ 0.0005V

dX2

dt
= −X2 −

2.303

1 + exp(Ptot − 4.469)
− 0.071V (12)

X2(0) = 0.101,

with Ptot(0) = 0.

The selected sigmoidal models contain fewer parameters than the microscopic exact model, even

when taking into account that the full model is effectively lower dimensional, with many directions

in parameter space unconstrained by typical data; see Supplementary Figure 5.

In this multi-site phosphorylation example, the sigmoidal model class is a better performer

than the S-systems class. A typical example of performance is depicted in Supplementary Figure 6.

Though the S-systems class makes predictions that are still qualitatively correct, and its predictions

steadily improve as N increases, the sigmoidal class comes closer to the true underlying model with

an equal amount of data.

The confidence intervals on the dynamics in Figure 3 correspond to samples from the posterior

over parameters given N = 300 data points. In the notation of Supplementary Note 5, this

posterior P (α | data) ∝ exp
[
−χ̃2(α)/2

]
. To generate samples from this distribution, we use
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Metropolis Monte Carlo as implemented in SloppyCell [8, 9]. As a starting point, we use the best-

fit parameters from the model selection procedure, and we sample candidate steps in parameter

space from a multidimensional Gaussian corresponding to the Hessian at the best-fit parameters.4

From 104 Monte Carlo steps, the first half are removed to avoid bias from the initial condition,

and every 50 of the remaining steps are used as 100 approximately independent samples from the

parameter posterior.

Supplementary Figure 7 replots the performance data from Figure 2 as a function of the number

of parameters in each model, showing a Pareto front indicating the minimum number of parameters

needed to reach a given level of performance using these models.

Supplementary Note 4. YEAST GLYCOLYSIS MODEL

As an example of inference of more complicated dynamics, we use a model of oscillations in

yeast glycolysis, originally studied in terms of temperature compensation [2] and since used as a

test system for automated inference [1]. The model’s behavior is defined by ODEs describing the

dynamics of the concentrations of seven molecular species (the biological meaning of the species is

not important here):

dS1

dt
= J0 −

k1S1S6

1 + (S6/K1)q

dS2

dt
= 2

k1S1S6

1 + (S6/K1)q
− k2S2(N − S5)− k6S2S5

dS3

dt
= k2S2(N − S5)− k3S3(A− S6)

dS4

dt
= k3S3(A− S6)− k4S4S5 − κ(S4 − S7) (13)

dS5

dt
= k2S2(N − S5)− k4S4S5 − k6S2S5

dS6

dt
= −2

k1S1S6

1 + (S6/K1)q
+ 2k3S3(A− S6)− k5S6

dS7

dt
= ψκ(S4 − S7)− kS7.

Parameter values, listed in Supplementary Table 3, are set to match with those used in Ref. [1]

and Table 1 of Ref. [2], where our S5 = N2, our S6 = A3, and our S7 = Sex
4 .

4 Unconstrained parameter directions in the proposal distribution, corresponding to singular values smaller than

λcut = λmax/10, where λmax is the largest singular value, are cut off to λcut to produce reasonable acceptance

ratios (near 0.5).
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For the yeast glycolysis model, we use as input the initial conditions for the visible species S1,

S2, and S3. These are each chosen uniformly from ranges listed in the “In-sample IC” column of

Supplementary Table 4. Each of the three visible species are then measured at a random time

uniformly chosen from 0 to 5 minutes, meaning the total number of datapoints ND = 3N for this

system, where N is the number of initial conditions sampled. Gaussian noise is added to each

measurement with standard deviations given in Supplementary Table 4. To evaluate the model’s

performance, we test it using 100 new input values selected uniformly from the ranges listed in the

“Out-of-sample IC” column of Supplementary Table 4, each of which is compared to the true model

at 100 timepoints evenly spaced from 0 to 5 min. The correlation between the adaptive fit model

and the actual model over these 100 timepoints is calculated separately for each visible species, set

of initial conditions, and in-sample data, and the average is plotted as the “mean out-of-sample

correlation” in Figure 4. The topology of the selected sigmoidal model in an example with N = 40
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is illustrated in Supplementary Figure 8. The model ODEs in this case are

dS1

dt
=
−S1

e2.284
+

2.520

1 + exp(S1 − 0.4246)
+

14.04

1 + exp(S2 − 0.4943)
− 19.56

1 + exp(S3 + 0.6711)

− 10.68

1 + exp(X4 + 2.240)
+

6.759

1 + exp(X5 − 0.7566)
− 3.051

1 + exp(X6)

dS2

dt
=
−S2

e−1.288
− 3.015

1 + exp(S1 − 0.4246)
+

2.244

1 + exp(S2 − 0.4943)
+

14.55

1 + exp(S3 + 0.6711)

+
25.77

1 + exp(X4 + 2.240)
− 6.699

1 + exp(X5 − 0.7566)
− 4.380

1 + exp(X6)

dS3

dt
=
−S3

e1.514
− 2.463

1 + exp(S1 − 0.4246)
− 10.99

1 + exp(S2 − 0.4943)
+

0.6530

1 + exp(S3 + 0.6711)

− 0.07038

1 + exp(X4 + 2.240)
− 6.806

1 + exp(X5 − 0.7566)
+

12.61

1 + exp(X6)

dX4

dt
=
−X4

e1.771
+

25.77

1 + exp(S1 − 0.4246)
− 50.05

1 + exp(S2 − 0.4943)
− 6.648

1 + exp(S3 + 0.6711)

− 59.44

1 + exp(X4 + 2.240)
+

52.34

1 + exp(X5 − 0.7566)
+

1.148

1 + exp(X6)
(14)

dX5

dt
=
−X5

e−2.513
+

16.39

1 + exp(S1 − 0.4246)
+

33.15

1 + exp(S2 − 0.4943)
+

0.6452

1 + exp(S3 + 0.6711)

− 33.65

1 + exp(X4 + 2.240)
− 8.976

1 + exp(X5 − 0.7566)
+

0.01966

1 + exp(X6)

dX6

dt
= −X6 +

0.3391

1 + exp(S1 − 0.4246)
− 2.514

1 + exp(S2 − 0.4943)
− 4.479

1 + exp(S3 + 0.6711)

− 3.396

1 + exp(X4 + 2.240)
+

1.219

1 + exp(X5 − 0.7566)
+

2.313

1 + exp(X6)

X4(0) = 3.437

X5(0) = 1.453

X6(0) = −0.7183.

Note that our model fitting approach assumes that the model timecourse is fully determined (aside

from measurement error) by the concentrations of measured species. To be consistent with this

assumption we do not vary the initial conditions of the three hidden variables. In future work

it may be possible to relax this assumption, allowing the current state of intrinsic variations in

hidden variables to be learned as well.

Simple sinusoidal model: As with the multi-state phosphorylation example, we can use

a simple ad hoc model of yeast glycolysis for comparison to our adaptive models. The long-term

behavior of the yeast network consists of stable oscillations with a roughly fixed period; a minimally

complicated model of the measured concentrations S1, S2, and S3 then consists of three sinusoidal
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oscillators with equal frequency ω and phase relationship fixed by two parameters, φ2 and φ3:

S1(t) = y1 +A1 sin(ωt+ φ)

S2(t) = y2 +A2 sin(ωt+ φ+ φ2) (15)

S3(t) = y3 +A3 sin(ωt+ φ+ φ3).

The phase φ depends on the initial conditions S1(0), S2(0), S3(0). Specifically, when the initial

condition is a valid point on the one-dimensional elliptical curve specified by Eqs. (15), φ can be

determined by any two initial values; for instance,

φ = arctan
x1 sin(φ2)

x2 − x1 cos(φ2)
, (16)

where xi = (Si(0) − yi)/Ai. Because the model is not exact, however, we cannot assume that

initial conditions will lie on this curve. Instead, we will assume that transient dynamics infinitely

quickly bring the state of the system into the plane defined by the curve. This plane has normal

vector n = (sin(φ2 − φ3), sinφ3,− sinφ2), so that any initial conditions x can be projected onto

a point on the plane x′ = x − cn, where c = (x · n)/(n · n) = (x1 sin(φ2 − φ3) + x2 sinφ3 −

x3 sinφ2)/(sin2(φ2−φ3) + sin2 φ2 + sin2 φ3). Thus x′ is a modified initial condition that is inserted

into (16) to obtain φ. Unlike the adaptive model, this simple sinusoidal model does not capture

the jagged shape of the yeast glycolysis oscillations, but when its 9 parameters are fit to data, its

rough approximation is moderately predictive. Its performance is compared to sigmoidal adaptive

models in Supplementary Figure 9.

Comparing to EUREQa: In Ref. [1], the EUREQa engine is used to infer the same yeast

glycolysis model that we use here. We can roughly compare performance as a function of com-

putational and experimental effort by measuring the number of required model evaluations and

measurements (Figure 4). Here we compare the two approaches in more detail. However, we em-

phasize that they have different goals: EUREQa aims at finding the exact microscopic model of the

process, while Sir Isaac strives for accurate prediction with the simplest phenomenological model.

The former is a harder task, and thus one expects it to require more data and computation.

Reference [1] attempts to match time derivatives of species concentrations as a function of

species concentrations, instead of species concentrations as a function of time as we do. This
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means that each model evaluation5 is more computationally costly for us, since it requires an

integration of the ODEs over time. It also means, however, that we are able to match well the

phases of oscillations, which remain unconstrained in Ref. [1]. The fitting of time courses instead

of derivatives also makes our method focus on the fitting of dynamics near the attractor, rather

than attempting to constrain dynamics through the entire phase space.

To consistently infer exact equations for the full 7-dimensional model, Ref. [1] used 20, 000

datapoints and roughly 1011 model evaluations. We contrast this with our method that produces

reasonable inferred models using 40 datapoints and less than 5×108 model evaluations (Figure 4).

Finally, in the main text we test the performance of our yeast glycolysis models for out-of-sample

ranges of initial conditions that are twice as large as the in-sample ranges from which data is taken,

as in Ref. [1], in order to more directly test their ability to extrapolate to regimes that were not

tested in training. In Supplementary Figure 9, we compare this to performance when out-of-sample

initial conditions are chosen from the same ranges as in-sample data (note that, nonetheless, none

of the test examples has appeared in the training set). Here we see that the mean correlation can

reach 0.9 using N = 40 measurements.

Comparing to dynamical inference with alternation regression: In Ref. [10], we used

a somewhat similar dynamical inference algorithm for analysis of the same glycolysis model. It is

worthwhile contrasting the two methods.

First, as we have argued here, the crucial difficulty of adaptive dynamical inference is to account

for both arbitrary nonlinearities and an arbitrary number of hidden variables underlying data. Sir

Isaac does this by traversing hierarchies of models that are complete and can deal with any number

of missing variables (e. g., four in the glycolysis example). In contrast, Ref. [10] required knowing

every variable in the system, similarly to the EUREQa implementation discussed above [1]. While

Ref. [10] controlled the number of (nonlinear) interactions in the system adaptively using Bayesian

model selection, similarly to Sir Isaac, there new variables could not be added. Thus the maximum

complexity of the model was limited, the model hierarchy was not complete, and the process was not

guaranteed to find accurate solutions even with an infinite amount of data. Second, the aim of Sir

5 In our setup, we define a model evaluation as a single integration of the model ODEs (see Supplementary Note 7).

26



Isaac is to predict the temporal dynamics of the studied system by inferring the dynamical system

from time series and by integrating the inferred dynamics with new initial conditions. In contrast,

in Ref. [10], we followed the same route as Ref. [1] and required knowing derivatives in addition

to values of variables. Further, the aim of the approach was to predict the derivatives, but not

the variables themselves. In particular, there were no guarantees that the integrated trajectories

would be close to the true ones, or even that they would stay within a physically reasonable range

(such as positive concentrations).

The strong limitations of Ref. [10] resulted in a much smaller computational complexity when the

S-systems model hierarchy was used. Indeed, just like Sir Isaac, that method was able to reach out-

of sample correlations of 0.6 or higher (for derivatives, rather than the variables themselves) after

only a few dozens of training samples. (Parenthetically, we note that the performance saturated

then, in agreement with the understanding that the model hierarchy was not complete.) However,

the computational time was nearly negligible. It required only a handful of evaluations of linear

regressions to infer the model, in contrast to Sir Isaac, which performs a non-convex optimization at

each model fitting step. Whether such computational speedup is worth the additional limitations

imposed by the algorithm of Ref. [10] will depend on the problem being solved.

Supplementary Note 5. DERIVATION OF BAYESIAN LOG-LIKELIHOOD ESTIMATE L

Multiple previous approaches have used approximate sampling methods to perform Bayesian

model selection on a small number of alternate models in the context of systems biology; e. g., [11–

13]. For our approach that relies on a search over an infinite set of models, even such approximate

sampling is slow. Yet with sufficiently large N , an expansion resembling that used to derive the

Bayesian Information Criterion produces good performance without sampling. The derivation here

largely follows Refs. [14, 15], but can be traced to the 1970s [16].

For a given model M that depends on parameters α, our model selection algorithm requires

an estimate of the probability that M is the model that produced a given set of data {yi} with

corresponding error estimates {σi} (measured at a set of timepoints {ti}), and i = 1, . . . , N , so that

there are N measurements. Since the parameters α are unknown aside from a prior distribution

27



P (α), we must integrate over all possible values:

P (M | data) = P (M | {yi, σi, ti}) (17)

= Z−1
α

∫
dNpα P (M | {yi, σi, ti};α) P (α), (18)

where the normalization constant Zα =
∫
dNpα P (α) and Np is the number of parameters. In

terms of the output given the model, Bayes rule states

P (M | {yi, σi, ti};α) =
P (M)

P ({yi})
P ({yi} | M(α); {σi, ti}) . (19)

Assuming that the model output has normally distributed measurement errors,

P ({yi} | M(α); {σi, ti}) =
N∏
i=1

P (yi | M(α);σi; ti) (20)

=
N∏
i=1

1√
2πσ2

i

exp

[
−1

2

(
yi −M(ti, α)

σi

)2
]

= Z−1
σ exp

[
−1

2

N∑
i=1

(
yi −M(ti, α)

σi

)2
]

= Z−1
σ exp

[
−1

2
χ2(M(α), {yi, σi, ti})

]
,

where χ2 is the usual goodness-of-fit measure consisting of the sum of squared residuals, and Zσ is

the normalization constant
∏N
i=1

√
2πσ2

i . Thus we have:6

P (M | data) = CZ−1
α

∫
dNpα exp

[
−1

2
χ̃2(α)

]
, (21)

where C ≡ 2P (M)/ZσP ({yi}) and χ̃2(α) = χ2(α)−2 logP (α). Since we will be comparing models

fitting the same data, and we assume all models have the same prior probability P (M), C will be

assumed constant in all further comparisons (but see Ref. [17] for the discussion of this assumption).

If there are enough data to sufficiently constrain the parameters (as is the case for ideal data

in the limit N → ∞), then the integral will be dominated by the parameters near the single set

of best-fit parameters αbest. To lowest order in 1/N , we can approximate the integral using a

saddle-point approximation [15]:

P (M | data) ≈ CZ−1
α exp

[
−1

2
χ̃2(αbest)

] ∫
dNpα exp [−(α− αbest)H(α− αbest)], (22)

6 We simplify notation by letting χ2(α) = χ2(M(α), {yi, σi, ti}).
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where H is the Hessian:7

Hk` =
1

2

∂2χ̃2(α)

∂αkdα`

∣∣∣∣
αbest

. (23)

If we assume normally distributed priors on parameters with variances ς2
k , the log posterior prob-

ability becomes

logP (M | data) ≈ const− 1

2
χ̃2(αbest)−

1

2

Np∑
µ=1

log λµ −
1

2

Np∑
k=1

log ς2
k , (24)

where λµ are the eigenvalues of H, and the last term comes from Zα. We thus use as our measure

of model quality

L ≡ −1

2
χ̃2(αbest)−

1

2

∑
µ

log λµ −
1

2

∑
k

log ς2
k . (25)

Eq. (25) is a generalization of the Bayesian Information Criterion (BIC) [16] when parameter

sensitivities and priors are explicitly included.8 The first term is the familiar χ2 “goodness of fit,”

and the last two terms constitute the fluctuation “penalty” for overfitting or complexity. Note

that here the goodness of fit and the complexity penalty are both functions of the entire dynamics,

rather than individual samples, which is not a common application of Bayesian model selection

techniques.

Supplementary Note 6. FITTING ALGORITHM

We are given N data points xi at known times ti and known exogenous parameters Ii, and with

known or estimated variances σ2
i . We are approximating the functions Fx and Fy in Eq. (1), where

y are hidden dynamic model variables, and x = x(t, I) and y = y(t, I) in general depend on time t

and inputs I. As described in Supplementary Note 5, we fit to the data xi using a combination of

squared residuals from the data and priors P (α) on parameters α, which we assume to be Gaussian

and centered at zero:

χ̃2 =

N∑
i=1

(
xi − x(ti, Ii)

σi

)2

+ 2

Np∑
k=1

(
αk
ςk

)2

, (26)

7 Near the best-fit parameters where residuals are small, and when priors are Gaussian, H is approximated by the

Fisher Information Matrix, which depends only on first derivatives of model behavior: H ≈ JTJ + Σ−2, where the

Jacobian Ji` = 1
σi

∂Mi
∂α`

and the diagonal matrix Σ−2
k` = δk`ς

−2
k expresses the effects of parameter priors.

8 For well-constrained parameters, we expect, to lowest order in 1/N , our result to be equal to the BIC result of

− 1
2
χ̃2(αbest) + 1

2
Np logN .
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where F ’s are integrated to produce the model values x and y:

x(t, I) = x0(I) +

∫ t

0
Fx(x(s, I),y(s, I)) ds (27)

y(t, I) = y0(I) +

∫ t

0
Fy(x(s, I),y(s, I)) ds. (28)

To fit parameters, we use a two step process akin to simulated annealing that uses samples

from a “high temperature” Monte Carlo ensemble as the starting points for local optimization

performed using a Levenberg-Marquardt routine. The phenomenological models are implemented

using SloppyCell [8, 9] in order to make use of its parameter estimation and sampling routines.

Following is a high-level description of the fitting algorithm, with choices of parameters for the

examples in the main text listed in Supplementary Table 5.

1. Choose a model class, consisting of a sequence of nested models indexed by i, where the

number of parameters Np monotonically increases with i. Choose a step size ∆p.

2. Given data at Ntotal timepoints, fit to data from the first N timepoints, where N is increased

to Ntotal in steps of ∆N .

3. At each N , test models of increasing number of parameters Np (stepping by ∆p) until L

consistently decreases (stopping when the last iovershoot models tested have smaller L than

the maximum). For each model, to calculate L:

(a) Generate an ensemble of starting points in parameter space using Metropolis-Hast-

ings Monte Carlo to sample from P (α) ∝ exp(−χ̃2(α)/2TND) with χ̃2 from (26). The

temperature T is set large to encourage exploration of large regions of parameter space,

but if set too large can result in a small acceptance ratio. Infinities and other integration

errors are treated as χ̃2 =∞.

i. Use as a starting point the best-fit parameters from a smaller Np if a smaller model

has been previously fit, or else default parameters.

ii. As a proposal distribution for candidate steps in parameter space, use an isotropic

Gaussian with standard deviation
√
TND/λmax, where ND is the total number of
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data residuals and λmax is the largest singular value of the Hessian [Eq. (23)] at

the starting parameters.

iii. If this model has previously been fit to less data, use those parameters as an

additional member of the ensemble.

(b) Starting from each member of the ensemble, perform a local parameter fit, using

Levenberg-Marquardt to minimize χ̃2 from (26). Stop when convergence is detected

(when the L1 norm of the gradient per parameter is less than avegtol) or when the

number of minimization steps reaches maxiter. The best-fit parameters α∗ are taken

from the member of the ensemble with the smallest resulting fitted χ̃2.

(c) At α∗, calculate L from (25).

4. For each N , the model with largest log-likelihood L is selected as the best-fit model.

Supplementary Note 7. SCALING OF COMPUTATIONAL EFFORT

In Supplementary Figure 10, we plot the number of model evaluations used in each search for the

best-fit phenomenological model. We define a model evaluation as a single integration of a system

of ODEs. (Note that the amount of necessary CPU time per integration is dependent on the size

and stiffness of the system.) This includes both integration of model ODEs and the derivatives of

model ODEs, used in gradient calculations.9 Note that in Figure 4, to indicate the total number

of evaluations used as N is gradually increased to its final value, we plot the cumulative sum of

the number of model evaluations depicted in Supplementary Figure 10. We see that the number

of model evaluations scales superlinearly with N if the selected model size is growing with N ,

as is the case in the yeast glycolysis model below about N = 20 (Supplementary Figure 10 and

Supplementary Figure 11). When the model size saturates, the number of model evaluations scales

roughly linearly with N .

9 The number of integrations per gradient calculation is proportional to the number of parameters. This means that

the computational effort used to fit large models is dominated by gradient calculations.
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Supplementary Note 8. COMPARISON TO BAYESIAN NETWORK APPROACHES

A related set of methods for inferring causal structure from time series data comes from the field

of Bayesian Networks (BN), and specifically Dynamic Bayesian Networks (dBN). Implementations

typically make the following assumptions:

1. Variables are updated at a discrete set of times, rather than continuously.

2. Latent variables are not allowed, or their number is known a priori.

3. The state space of dynamical variables is itself discrete (and often of low cardinality, such as

binary or ternary).

Many generalizations of (d)BNs have been presented that lift each of these assumptions. Below

we include a brief literature review of current implementations of (d)BNs that address each issue.

However, our method is distinct from (d)BNs in that it is designed to perform inference simultane-

ously for continuous variables, in continuous time, with potentially a very large number of unknown

hidden nodes, and we are not aware of an approach that is able to lift all three assumptions in

order to analyze the type of data handled by Sir Isaac.

Continuous time: It is known that exact inference is intractable in continuous time versions

of dBNs because calculating a node’s distribution at a given time step does not easily factor into

conditionally independent subsets, as it does in cases with discrete time. Instead, each node’s

distribution will in general depend on the entire history of all other variables [18]. Approximate

methods have been developed to deal with such Continuous Time Bayesian Networks (CTBNs)

[18, 19]. Conversely, converting a set of ODEs, such as those explored by Sir Isaac, into the dBN

framework generally leads to an exponentially large model [20] that cannot be readily inferred from

data.

Continuous states: Most implementations deal with discrete state variables, to avoid the

need to infer multidimensional distributions over continuous variables, which can require very

large data sets. It is also relatively common to use continuous variables by specifying the state of

nodes as finite-parameter continuous distributions, such as Gaussians. However, these differ from
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Sir Isaac in that they are typically parameterized with means that are simply linear combinations

of parent nodes (e. g., [21, 22]). One approach uses biochemically inspired functions relating means

of continuous-valued nodes [23], but does not use continuous time.

Unspecified network size: Though some approaches attempt to discover that hidden nodes

are necessary for a better description of a system (e. g., [23–25]), this is not a typical feature of

Bayesian network implementations. Approaches that are complete, in the sense that they allow,

in principle, infinitely many latent variables, are relatively rare (e. g., [26]), and do not address

continuous space-time requirements.
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