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Figure 1: Since there every x € S[p| there is y € S[p] such that there is a path
from x to y there can not be an attractor that intersect S[p] \ S[p].

Proposition 1 (Fig. 1). Ifp is a trap space and A C S[p] an attractor of (S, —)
then A C S[p].

Proof. The percolation p of a trap space p is defined by iterative substitution
(see Sec. 3.1 in main text), i.e., by a sequence of trap spaces

D =DP0,P1,P2---,PK =D

where each pair pg, pr41 is a single percolation step and K the first index that
satisfies px = pr41. Witout loss of generality we can assume that K = 1
because the statement is trivially true for K = 0 and will follow for K > 1 by
induction. Hence, let p be a trap space whose percolation is achieved by a single
step.

Synchronous update: Any state in the subspace p will reach the subspace
P by a single transition because f,(z) = p(v) holds for any v in the domain of



P (by definition of p). Since p'is a trap space this implies that there can not be
a SCC in between p and p, i.e., intersecting S[p] \ S[p].

Asynchronous update: For any state x in the subspace p and any variable
v that is fixed in p’ there is a transition to some state y such that p(v) = y(v).
Since this argument can be repeated for y there is a path from z to the subspace
P (of at most | Dy \ Dp| transitions). As before, since p'is a trap space there can
be no attractor in between p and p. O
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Figure 2: Iff all states z that are reachable from y satisfy EF (g, ) then y belongs
to an attractor A C S[p].

Proposition 2 (Attractor State, Fig. 2). Let p be a trap space and x € S[p].
The state x belongs to an attractor A C S[p] of (S,—) iff

TS = (Sv,, = {y}) = AG(EF(5,))

where y € Sy, is the projection of x € Sy onto V,, i.e., y(v) := x(v) for all
veV,.

Proof. Let p be a trap space and = € S[p] with 2 € A for some attractor A C [p].
Since A is an attractor it is an inclusion-wise minimal trap set (by definition)
and must therefore be strongly connected because otherwise it would contain a
smaller trap set. Hence any state in A, and therefore any state reachable from
x, has a path back to x. With respect to the reduced system (Sy,,—) this
means that any state z € Sy, that is reachable from the projection y satisfies
EF(p,). Since the states reachable from y are referenced by AG it follows that
AG(EF(yp,)) is true for y. So the transition system (Sy,, <) with initial states
{y} satisfies = AG(EF(py)).

Let p be a trap space such that TS = (Sy,,—,{y}) F AG(EF(p,)) where
y € Sy, is the projection of some state x € Sy onto V,. Then all states reachable
from y (AG) have a path back to y (EF(p,) and hence y belongs to a strongly
connected component A’ (all states of A’ are connected via y). A’ must also
be a trap set because the connectedness holds for every state reachable from y.
Hence A’ is an attractor. Note that A" C Sy, so far, but given p we can position
A" in Sy, call it A, by assigning values to the variables D, according to p such
that A C Sy is an attractor of (S, —) and x € A. O
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Figure 3: Iff for every state z € Sy, there is a path to y then A is be the unique
attractor of S[p].

Proposition 3 (Univocality, Fig. 3). Let p be a trap space and x € A such that
A C S[p] is an attractor of (S,—). p is univocal in (S, —) iff

TS = (Sy,,—,Sy,) F EF(py)
where y € Sy, is the projection of x € Sy onto V.

Proof. If p is univocal in (S, —) then A is the only attractor of (S, —) and x € A
can be reached from every state in Sy,. Hence the transition system (Sy,,—)
with initial states Sy, satisfies EF(ip,).

If the transition system TS = (Sy, , —, Sy, ) satisfies EF(,) then y belongs
to the unique attractor A" C Sy, of (Sy,,—). As in the previous proof we can
use p to position A’ in the original transition system (S, —) and this set A will
be the unique attractor A C S[p] and x € A holds. O
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Figure 4: The attractors of a trap space p are faithful iff for every y € Sy, and
v € V, there is a path to a state z that satisfies z |= J,, # 0.

Proposition 4 (Faithfulness, Fig. 4). A trap space p is faithful in (S, —) iff

TS = (Sv,.— Sv,) = [\ EF(6, #0).
veEV)
Proof. Let p be faithful and x € Sy, arbitrary. We want to prove that

vl /\ EF(5, #0). (1)

veV)



Since p is faithful, every attractor A C S[p] satisfies Sub(A4) = p. Let A be an
attractor of S[p] that is reachable from z. Since Sub(A) = p there are x1,29 € A
such that z1(v) # z2(v) for every v € V,,. Since x1,z2 belong to A there is a
path between z; and x5 and hence a transition in which the activity of v € V},
changes. Let 27 — % be such that 2} (v) # x4(v). Hence d,(x}) # 0. Since A
is reachable from z and 2/ from z it follows that z |= EF(d, # 0). Since v € V,,
was chosen arbitrarily, Eq. 1 holds.

For the other direction let the transition system (Sy,,—) with initial states
Sy, be such that Eq. 1 holds for every x € Sy,. The equation therefore holds
in particular for every x € A where A is an attractor of S[p]. Hence, for every
v € V, and attractor A there is y € A such that 6, (y) # 0 and hence a transition
y — ¢’ such that y(v) # y'(v). Hence Sub(A) = p and so p is faithful. O
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Figure 5: The trap spaces P := {p1,pe,ps} are complete iff for every initial
state x there is a path to some trap space p € P.

Proposition 5 (Completeness, Fig. 5). A set of trap spaces P is complete in
(8, =) iff

peP

Proof. Let P be a complete set or trap spaces of (S, —) and € S arbitrary.

We want to show that
z = \/ EF(gp). (2)
peP

Let A be an arbitrary attractor that is reachable from z. Since P is complete
there is p € P such that A C S[p]. Since there is a path from z to A it follows
that x = EF(p,) and therefore Eq. 2 holds.

For the other direction note that if Eq. 2 holds for all z € S that it holds
in particular for all states of every attractor. But if for every attractor A there
is a p € P such that there is a path from A to S[p] then A C S[p] and P is
complete. O

Proposition 6 (Refinement of Complete Sets, Fig. 6). Let P C Sk be complete
in (S,—) and p € P some trap space. If Q C S}p is complete in (Sy,,—) then
P = (P\{p}H)U{qnp|qeQ} is complete in (S, —).
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Figure 6: Refinement works by replacing a trap space p by some set of trap
spaces that is complete in Sy, .

Proof. Let P be a complete set of trap spaces of (S,—) and p € P arbitrary.
Consider the reduced system (£, V}) and its trap spaces Sz and let @ C Si. be
complete in (Sy,, —). Note that we defined subspaces as mappings p : D, — B.
Hence, although a trap space ¢ of (V,,, F},) is well-defined when considered as a
subspace of (V, F'), we need to intersect it with p to assign values to the variables
that are implicitly fixed in ¢ when considered as a subspace of (V},, F},). The
completeness of P’ then follows from the completeness of Q in (Sy,, —) because
the dynamics inside p is identical with the dynamics of the reduced system
(Vy ). O
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Figure 7: .

Proposition 7 (Failure Criterion, Fig. 7). If there is a trap space p such that
min(S}p) is not complete in (Sy,,—) then min(Sf) is not complete in (S, —).

Proof. Suppose p is such that Q := min(S}p) is not complete in (Sy,, —). The
main observation is that P := {pMq¢ | ¢ € min(Sg )} C min(Sg). That is, if
the subspace @ are positioned correctly within (S, —), i.e., intersected with p,
then they are also minimal trap spaces of (V}, F,). The statement then follows
because if @ is not complete in (Sy,, —) then there is a state x € S[p] that can



not reach any trap space in P. But, since p is a trap space x must reach some
attractor A which is therefore outside of P and hence outside of min(S}) which
implies that min(S}) is not complete in (S, —). O
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Figure 8: A schematic drawing of the interaction graph, enclosed are SCCs, and
an autonomous set U.

Proposition 8 (Fig. 8). Let U be autonomous and Q := min(S};‘U) the minimal
trap spaces of the restriction (U, Fly).

(a) If Q is complete in (Sy,—) then Q is also complete in (S, —).
(b) If Q is not complete in (Sy,—) then min(Sf) is not complete in (S, —).

Proof. Observations: The dynamics in the restricted and full transition sys-
tems can be related to each other. For any path (yo,y1,...,yx) of (Sy,—) and
any o € S[yo] there is a path (xg,z1,...,2x) of (S, —) such that x;(u) = y;(u)
forallu € U and 1 < i < k. Also, for any path (xg,21,...,2%) of (S, —) there is
a unique path (yo,y1,...,y,) in (Sy,—) with r < k, xo € S[yo] and zx € S[y,]
that describes the projected dynamics. It follows that a trap space g of (U, Fjy)
is also a trap space of (V, F') because otherwise we could consider the projection
of the path that proves that ¢ is not a trap space in (V, F') and deduce that ¢ is
not a trap space in (U, Fjy), a contradiction. Hence @ is a set of trap spaces of
(V, F).

Proof of (a): Let Q be complete in (S, —) and x € S an arbitrary state.
We want to show that there is a path from x to some ¢ € Q. Let y be the

projection of z onto U. Since @ is complete there is a path (yo,y1,---,yx) such
that yo = y and y, € S[q] for some ¢ € Q. By the observations above there
is therefore a path (xg,z1,...,2;) with 9 = z and z, € S[q]. Hence Q is

complete in (S, —).

Proof of (b): The main observation is that since U is autonomous and
since ) = min(SZﬂ‘U) it follows that for any p € min(S}) there is ¢ € @ such
that p < ¢. If @ is not complete in (Sy,—) then there is y € Sy that can not
reach any ¢ € (. Any = whose projection on U is equal to y can therefore not
reach any ¢ € Q in (S, —). Hence it can not reach any p € min(Sy) (because
for any p there is a ¢ € Q with ¢ < p). Hence min(S}) is not complete in
(S,—). O

Proposition 9 (Fig. 8). Let U C V. The following statements are equivalent:

(a) U is a minimal autonomous set of (V,—).
(b) U is autonomous and U € SCCs(V,—).



Proof. (a) = (b): Let U be minimal and autonomous in (V, —). We need to
show that U is strongly connected. Let w,v € U be arbitrary. If there is no
path from u to v then w is not above v and so Above(v) is a proper autonomous
subset U, a contradiction to minimality. Hence, there is a path from « to v and
so U is stronlgy connected.

(b) = (a): Let U be autonomous and strongly connected. We need to show
that U does not contain a smaller autonomous set. Assume there is U’ C U with
U’ # U and U’ is autonomous. Let w € U \ U’. Since U is strongly connected
there is a path from u to any v’ € U’. Hence u is above v’ and so u € U’ which

contradicts u € U \ U’. Hence such U’ does not exist and U is minimal. O
(5, =)
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Figure 9: For every attractor A there are p € P and ¢ € @ such that A C S[p]
and A C S[q|. Hence p and ¢ are consistent and A C S[pMgq].

Proposition 10 (Fig. 9). If P,Q C Sy are complete in (S,—) then PMQ :=
{pNq|p€ P,qgeQ:p andq are consistent} is also complete in (S, —).

Proof. Let A be an attractor of (S, —). Since P and @ are complete there are
p € Pand g € Q such that A C S[p] and A C S[g]. Hence, p and ¢ are consistent
and (pMgq) € PN Q. Hence PMQ is complete in (S, —). O

Proposition 11. Let (Z,1>) be the condensation graph of a constant-free net-
work (V,F). A set U CV is minimal and autonomous iff U € Z and Lay(U) =
1.

Proof. Let U be minimal and autonomous. It follows from Prop. 9 that U €
SCCs(V,—). We need to show that Lay(U) = 1. If Lay(U) > 1 then Above(U) 2
U with Above(U) # U which contradicts U being autonomous.

For the other direction assume that U € Z and Lay(U) = 1. We will again
use Prop. 9. Note that Z = SCCs(V,—). Also, U is autonomous because if
Above(U) D U with U # Above(U) then Lay(U) > 1, i.e., there would have to
be an SCC above U. Note that the last deduction uses the fact that (V, F) is
constant-free. O

2 Update Functions

The update functions for the three Boolean networks are given in Fig. 10.



010 «~——— =110 010«——110 010=——110
011 111 011«—111 011-—111
001=—101 001~—101 001+—101

000 100 000 100 000 «—— X 100

(a) Not univocal (b) Not complete (c) Not faithful

Figure 10: The asynchronous STGs of the three Boolean networks given in
Fig. 1 of the main text.

f1 1= V1 V2V + V1v2V3 + v1V2 U3 + v1V2U3
fo :=T1 U2 U3 + Dvavs + V1T203 + V1V T3 (a)
f3 := D1 Vav3 + V1v2U3 + V102 U3 + V10203
f1 =01 vav3 + V102 V3
Jo =013 +viv3 (b)
f3 =01 v3 +v1v2
f1 =01 voU3
fo 1 =7 + 703 (c)

f3 =01 v2U3





