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Figure 1: Since there every x ∈ S [p] there is y ∈ S [~p ] such that there is a path
from x to y there can not be an attractor that intersect S [p] \ S [~p].

Proposition 1 (Fig. 1). If p is a trap space and A ⊆ S [p] an attractor of (S ,→)
then A ⊆ S [~p ].

Proof. The percolation ~p of a trap space p is defined by iterative substitution
(see Sec. 3.1 in main text), i.e., by a sequence of trap spaces

p = p0, p1, p2 . . . , pK = ~p

where each pair pk, pk+1 is a single percolation step and K the first index that
satisfies pK = pK+1. Witout loss of generality we can assume that K = 1
because the statement is trivially true for K = 0 and will follow for K > 1 by
induction. Hence, let p be a trap space whose percolation is achieved by a single
step.

Synchronous update: Any state in the subspace p will reach the subspace
~p by a single transition because fv(x) = ~p(v) holds for any v in the domain of
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~p (by definition of ~p). Since ~p is a trap space this implies that there can not be
a SCC in between p and ~p, i.e., intersecting S [p] \ S [~p].

Asynchronous update: For any state x in the subspace p and any variable
v that is fixed in ~p there is a transition to some state y such that ~p(v) = y(v).
Since this argument can be repeated for y there is a path from x to the subspace
~p (of at most |D~p \Dp| transitions). As before, since ~p is a trap space there can
be no attractor in between p and ~p.

y

S[p]

full system (S,→)

z |= EF(ϕy)

reduced system (SVp ,→)

Figure 2: Iff all states z that are reachable from y satisfy EF(ϕy) then y belongs
to an attractor A ⊆ S [p].

Proposition 2 (Attractor State, Fig. 2). Let p be a trap space and x ∈ S [p].
The state x belongs to an attractor A ⊆ S [p] of (S ,→) iff

TS = (SVp
,→, {y}) |= AG(EF(ϕy))

where y ∈ SVp is the projection of x ∈ SV onto Vp, i.e., y(v) := x(v) for all
v ∈ Vp.

Proof. Let p be a trap space and x ∈ S [p] with x ∈ A for some attractor A ⊆ [p].
Since A is an attractor it is an inclusion-wise minimal trap set (by definition)
and must therefore be strongly connected because otherwise it would contain a
smaller trap set. Hence any state in A, and therefore any state reachable from
x, has a path back to x. With respect to the reduced system (SVp

,→) this
means that any state z ∈ SVp

that is reachable from the projection y satisfies
EF(ϕy). Since the states reachable from y are referenced by AG it follows that
AG(EF(ϕy)) is true for y. So the transition system (SVp

, ↪→) with initial states
{y} satisfies |= AG(EF(ϕy)).

Let p be a trap space such that TS = (SVp , ↪→, {y}) |= AG(EF(ϕy)) where
y ∈ SVp

is the projection of some state x ∈ SV onto Vp. Then all states reachable
from y (AG) have a path back to y (EF(ϕy) and hence y belongs to a strongly
connected component A′ (all states of A′ are connected via y). A′ must also
be a trap set because the connectedness holds for every state reachable from y.
Hence A′ is an attractor. Note that A′ ⊆ SVp so far, but given p we can position
A′ in SV , call it A, by assigning values to the variables Dp according to p such
that A ⊆ SV is an attractor of (S ,→) and x ∈ A.
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Figure 3: Iff for every state z ∈ SVp there is a path to y then A is be the unique
attractor of S [p].

Proposition 3 (Univocality, Fig. 3). Let p be a trap space and x ∈ A such that
A ⊆ S [p] is an attractor of (S ,→). p is univocal in (S ,→) iff

TS = (SVp
,→, SVp

) |= EF(ϕy)

where y ∈ SVp
is the projection of x ∈ SV onto Vp.

Proof. If p is univocal in (S ,→) then A is the only attractor of (S ,→) and x ∈ A
can be reached from every state in SVp . Hence the transition system (SVp ,→)
with initial states SVp

satisfies EF(ϕy).
If the transition system TS = (SVp

,→, SVp
) satisfies EF(ϕy) then y belongs

to the unique attractor A′ ⊆ SVp
of (SVp

,→). As in the previous proof we can
use p to position A′ in the original transition system (S ,→) and this set A will
be the unique attractor A ⊆ S [p] and x ∈ A holds.
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∧
v∈Vp

EF(δv 6= 0)

Figure 4: The attractors of a trap space p are faithful iff for every y ∈ SVp and
v ∈ Vp there is a path to a state z that satisfies z |= δv 6= 0.

Proposition 4 (Faithfulness, Fig. 4). A trap space p is faithful in (S ,→) iff

TS = (SVp
,→, SVp

) |=
∧

v∈Vp

EF(δv 6= 0).

Proof. Let p be faithful and x ∈ SVp arbitrary. We want to prove that

x |=
∧

v∈Vp

EF(δv 6= 0). (1)
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Since p is faithful, every attractor A ⊆ S [p] satisfies Sub(A) = p. Let A be an
attractor of S [p] that is reachable from x. Since Sub(A) = p there are x1, x2 ∈ A
such that x1(v) 6= x2(v) for every v ∈ Vp. Since x1, x2 belong to A there is a
path between x1 and x2 and hence a transition in which the activity of v ∈ Vp
changes. Let x′1 → x′2 be such that x′1(v) 6= x′2(v). Hence δv(x′1) 6= 0. Since A
is reachable from x and x′1 from x it follows that x |= EF(δv 6= 0). Since v ∈ Vp
was chosen arbitrarily, Eq. 1 holds.

For the other direction let the transition system (SVp
,→) with initial states

SVp be such that Eq. 1 holds for every x ∈ SVp . The equation therefore holds
in particular for every x ∈ A where A is an attractor of S [p]. Hence, for every
v ∈ Vp and attractor A there is y ∈ A such that δv(y) 6= 0 and hence a transition
y → y′ such that y(v) 6= y′(v). Hence Sub(A) = p and so p is faithful.

S[p1]

S[p2]

S[p3]

full system (S,→)
P = {p1, p2, p3}

x

Figure 5: The trap spaces P := {p1, p2, p3} are complete iff for every initial
state x there is a path to some trap space p ∈ P .

Proposition 5 (Completeness, Fig. 5). A set of trap spaces P is complete in
(S ,→) iff

TS = (S ,→,S ) |=
∨

p∈P

EF(ϕp).

Proof. Let P be a complete set or trap spaces of (S ,→) and x ∈ S arbitrary.
We want to show that

x |=
∨

p∈P

EF(ϕp). (2)

Let A be an arbitrary attractor that is reachable from x. Since P is complete
there is p ∈ P such that A ⊆ S [p]. Since there is a path from x to A it follows
that x |= EF(ϕp) and therefore Eq. 2 holds.

For the other direction note that if Eq. 2 holds for all x ∈ S that it holds
in particular for all states of every attractor. But if for every attractor A there
is a p ∈ P such that there is a path from A to S [p] then A ⊆ S [p] and P is
complete.

Proposition 6 (Refinement of Complete Sets, Fig. 6). Let P ⊆ S?
F be complete

in (S ,→) and p ∈ P some trap space. If Q ⊆ S?
Fp

is complete in (SVp
,→) then

P ′ := (P \ {p}) ∪ {q u p | q ∈ Q} is complete in (S ,→).
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S[p3]
S[p1]

Figure 6: Refinement works by replacing a trap space p by some set of trap
spaces that is complete in SVp .

Proof. Let P be a complete set of trap spaces of (S ,→) and p ∈ P arbitrary.
Consider the reduced system (Fp, Vp) and its trap spaces S?

Fp
and let Q ⊆ S?

Fp
be

complete in (SVp ,→). Note that we defined subspaces as mappings p : Dp → B.
Hence, although a trap space q of (Vp, Fp) is well-defined when considered as a
subspace of (V, F ), we need to intersect it with p to assign values to the variables
that are implicitly fixed in q when considered as a subspace of (Vp, Fp). The
completeness of P ′ then follows from the completeness of Q in (SVp

,→) because
the dynamics inside p is identical with the dynamics of the reduced system
(Vp, Fp).

full system (S,→)

S[q1] S[q2]

reduced system (SVp ,→)

S[p3]
S[p1]

x

Q = {q1, q2} min(S?
F ) = {p1, p2, p u q1, p u q2}

A

Figure 7: .

Proposition 7 (Failure Criterion, Fig. 7). If there is a trap space p such that
min(S?

Fp
) is not complete in (SVp

,→) then min(S?
F ) is not complete in (S ,→).

Proof. Suppose p is such that Q := min(S?
Fp

) is not complete in (SVp ,→). The

main observation is that P := {p u q | q ∈ min(S?
Fp

)} ⊆ min(S?
F ). That is, if

the subspace Q are positioned correctly within (S ,→), i.e., intersected with p,
then they are also minimal trap spaces of (Vp, Fp). The statement then follows
because if Q is not complete in (SVp

,→) then there is a state x ∈ S [p] that can
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not reach any trap space in P . But, since p is a trap space x must reach some
attractor A which is therefore outside of P and hence outside of min(S?

F ) which
implies that min(S?

F ) is not complete in (S ,→).

U

Figure 8: A schematic drawing of the interaction graph, enclosed are SCCs, and
an autonomous set U .

Proposition 8 (Fig. 8). Let U be autonomous and Q := min(S?
F|U

) the minimal

trap spaces of the restriction (U,F|U ).

(a) If Q is complete in (SU ,→) then Q is also complete in (S ,→).
(b) If Q is not complete in (SU ,→) then min(S?

F ) is not complete in (S ,→).

Proof. Observations: The dynamics in the restricted and full transition sys-
tems can be related to each other. For any path (y0, y1, . . . , yk) of (SU ,→) and
any x0 ∈ S [y0] there is a path (x0, x1, . . . , xk) of (S ,→) such that xi(u) = yi(u)
for all u ∈ U and 1 ≤ i ≤ k. Also, for any path (x0, x1, . . . , xk) of (S ,→) there is
a unique path (y0, y1, . . . , yr) in (SU ,→) with r ≤ k, x0 ∈ S [y0] and xk ∈ S [yr]
that describes the projected dynamics. It follows that a trap space q of (U,F|U )
is also a trap space of (V, F ) because otherwise we could consider the projection
of the path that proves that q is not a trap space in (V, F ) and deduce that q is
not a trap space in (U,F|U ), a contradiction. Hence Q is a set of trap spaces of
(V, F ).

Proof of (a): Let Q be complete in (SU ,→) and x ∈ S an arbitrary state.
We want to show that there is a path from x to some q ∈ Q. Let y be the
projection of x onto U . Since Q is complete there is a path (y0, y1, . . . , yk) such
that y0 = y and yk ∈ S [q] for some q ∈ Q. By the observations above there
is therefore a path (x0, x1, . . . , xk) with x0 = x and xk ∈ S [q]. Hence Q is
complete in (S ,→).

Proof of (b): The main observation is that since U is autonomous and
since Q = min(S?

F|U
) it follows that for any p ∈ min(S?

F ) there is q ∈ Q such

that p ≤ q. If Q is not complete in (SU ,→) then there is y ∈ SU that can not
reach any q ∈ Q. Any x whose projection on U is equal to y can therefore not
reach any q ∈ Q in (S ,→). Hence it can not reach any p ∈ min(S?

F ) (because
for any p there is a q ∈ Q with q ≤ p). Hence min(S?

F ) is not complete in
(S ,→).

Proposition 9 (Fig. 8). Let U ⊆ V . The following statements are equivalent:

(a) U is a minimal autonomous set of (V,→).
(b) U is autonomous and U ∈ SCCs(V,→).
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Proof. (a) ⇒ (b): Let U be minimal and autonomous in (V,→). We need to
show that U is strongly connected. Let u, v ∈ U be arbitrary. If there is no
path from u to v then u is not above v and so Above(v) is a proper autonomous
subset U , a contradiction to minimality. Hence, there is a path from u to v and
so U is stronlgy connected.

(b) ⇒ (a): Let U be autonomous and strongly connected. We need to show
that U does not contain a smaller autonomous set. Assume there is U ′ ⊂ U with
U ′ 6= U and U ′ is autonomous. Let u ∈ U \ U ′. Since U is strongly connected
there is a path from u to any u′ ∈ U ′. Hence u is above u′ and so u ∈ U ′ which
contradicts u ∈ U \ U ′. Hence such U ′ does not exist and U is minimal.

A
p

q

p u q

(S,→)

Figure 9: For every attractor A there are p ∈ P and q ∈ Q such that A ⊆ S [p]
and A ⊆ S [q]. Hence p and q are consistent and A ⊆ S [p u q].

Proposition 10 (Fig. 9). If P,Q ⊆ S?
F are complete in (S ,→) then P uQ :=

{p u q | p ∈ P, q ∈ Q : p and q are consistent} is also complete in (S ,→).

Proof. Let A be an attractor of (S ,→). Since P and Q are complete there are
p ∈ P and q ∈ Q such that A ⊆ S [p] and A ⊆ S [q]. Hence, p and q are consistent
and (p u q) ∈ P uQ. Hence P uQ is complete in (S ,→).

Proposition 11. Let (Z,B) be the condensation graph of a constant-free net-
work (V, F ). A set U ⊆ V is minimal and autonomous iff U ∈ Z and Lay(U) =
1.

Proof. Let U be minimal and autonomous. It follows from Prop. 9 that U ∈
SCCs(V,→). We need to show that Lay(U) = 1. If Lay(U) > 1 then Above(U) ⊇
U with Above(U) 6= U which contradicts U being autonomous.

For the other direction assume that U ∈ Z and Lay(U) = 1. We will again
use Prop. 9. Note that Z = SCCs(V,→). Also, U is autonomous because if
Above(U) ⊃ U with U 6= Above(U) then Lay(U) > 1, i.e., there would have to
be an SCC above U . Note that the last deduction uses the fact that (V, F ) is
constant-free.

2 Update Functions

The update functions for the three Boolean networks are given in Fig. 10.
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Figure 10: The asynchronous STGs of the three Boolean networks given in
Fig. 1 of the main text.

f1 := v1 v2v3 + v1v2v3 + v1v2 v3 + v1v2v3

f2 := v1 v2 v3 + v1v2v3 + v1v2v3 + v1v2v3

f3 := v1 v2v3 + v1v2v3 + v1v2 v3 + v1v2v3

(a)

f1 :=v1 v2v3 + v1v2 v3

f2 :=v1 v2 + v1v3

f3 :=v1 v3 + v1v2

(b)

f1 :=v1 v2v3

f2 :=v1 + v3

f3 :=v1 v2v3

(c)
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