
Supplemental Material: The role of response bias in perceptual
learning

§S1: Global bias metric

Formally, bias is given by:

bias = λobs − λideal, (1)

where λideal is the ideal criterion location, and λobs is the ob-
server’s criterion location, which can be estimated from the
observer’s false-alarm, f , rates (Wickens, 2002), thus:

λ̂obs = Z(1 − f ) = −Z( f ), (2)

where Z is the inverse cumulative Gaussian function. With
two conditions, if one assumes that the internal responses to
both noise and noise+signal are distributed with equal vari-
ance (additive internal noise), then λideal = 1

2 d′. In which
case the amount of bias may be indexed by the term c:

c = λobs −
1
2

d′ = −
1
2

[Z( f ) + Z(h)], (3)

where h is the observed hit rate. More generally the ideal
criterion, λideal, is that which maximizes the probability of a
correct response, PC . In turn, PC , is the sum of the probabil-
ity of a hit and the probability of a correct rejection,

PC = P(hit) + P(correct re jection). (4a)

In turn, the probability of a hit is the joint probability of a
signal trial occurring, P(S ), and observer responding ‘yes’,
P(‘yes’). Likewise, the probability of a correct rejection is
the joint probability of a noise trial occurring, P(N), and the
observer responding ‘no’, P(‘no’):

= P(S, ‘yes’) + P(N, ‘no’). (4b)

Using the chain rule, this probability can be calculated from
the conditional probability of a correct response given that
trial type, together with the probability of that trial type oc-
curring:

= P(S)P(‘yes’ | S) + P(N)P(‘no’ | N). (4c)

Given a Gaussian detection model, the conditional probabil-
ity of a correct response can be derived from the cumulative
Gaussian distribution, Φ, thresholded at a particular criterion
value, λ:

= P(S)
[
1 − Φ(λ; µsignal, σsignal)

]
+ P(N)

[
Φ(λ; µnoise, σnoise)

]
.

(4d)

For the equal, unit variance model this becomes:

= P(S)
[
1 − Φ(λ; d′, 1)

]
+ P(N)

[
Φ(λ; 0, 1)

]
. (4e)

Finally, when using m signal conditions, this generalises to:

=

m∑
i=1

(
P(S)i

[
1 − Φ(λ; d′i , 1)

])
+ P(N)

[
Φ(λ; 0, 1)

]
. (4f)

When the observer’s goal is to maximize percent correct,
the ideal criterion location is therefore given by:

λideal = arg max
λ

( m∑
i=1

(
P(S)i

[
Φ(λ; d′i , 1)

])
+ P(N)

[
Φ(λ; 0, 1)

])
.

(5)
And combining Eq 5 with the basic bias formula given in

Eq 1 yields:

cglobal = λobs−arg max
λ

( m∑
i=1

(
P(S)i

[
Φ(λ; d′i , 1)

])
+P(N)

[
Φ(λ; 0, 1)

])
.

(6)
The subscript in cglobal serves to highlight the fact that bias
is here computed using a single criterion applied to multi-
ple signals, and to differentiate this, more general measure of
bias, from c, which implicitly assumes only one signal+noise
distribution.

Note that Eq 5, unlike Eq 3, does not depend on an as-
sumption of equal variance. However, in practice it may be
helpful to make this assumption, in which case λobs and d′i
can again be estimated directly from the hit, h, and false
alarm, f, data, thus:

cglobal = −Z( f ) − arg max
λ

( m∑
i=1

(
P(S)i

[
Φ(λ; Z(hi) − Z( f ), 1)

])
+ P(N)

[
Φ(λ; 0, 1)

])
. (7)

§S2: The sampling distribution of c

Small sample sizes have been shown to statistically bias
estimates of sensitivity, d′, given a fixed (ideal) criterion, λ.
For example, Miller (1996) showed that with small numbers
of observations, low values of d′ tend to be overestimated,
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while high values tend to be underestimated. An analogous
statistical bias for estimates of bias, c, could pose a confound
for the present study, since the number of samples tended to
vary with N presponses. Thus, changes in bias as a func-
tion of N presponses may be an artifact of changes in sample
sizes, rather than observers shifting their criterion based on
previous trials.

To examine how sample size affects the sampling distribu-
tion of c, numerical simulations analogous to those of Miller
(1996) were run. Monte Carlo estimates of c were made
as both d′, c, and the number of trials were independently
varied. For each combination of values, 10,000 simulations
were run, from which the mean and standard deviation of ĉ
were computed. The results are shown in Fig 1. From indi-
vidual panels, it can be seen that with small numbers of ob-
servations, bias tends to be underestimated. Moreover, mov-
ing down the first column, this effect can be seen to interact
with the level of bias, with greater levels of bias being un-
derestimated more by small samples. Moving left-to-right
across the panels, one also sees how this pattern varies with
sensitivity. As d′ increases, expected values of bias are in-
creasingly underestimated. Variance in c estimates also tend
to decrease as the number of observations increase, and as
values of c and/or d′ increase.

These findings suggest that statistical bias is unlikely to
have qualitatively affected the conclusion that bias increases
as a function of N. In fact, they suggest that the effects of bias
may have been underestimated, particularly at higher levels
of N, where observations were fewer and true values of c ap-
peared to be greater. Thus, levels of bias in naïve observers,
and reductions in bias elicited by practice, may be greater
than evidenced by the present study.

§S3: χ2 analyses of sequential dependencies

Chi-square contingency tables were used in Experiment
III to further assess response dependencies. Responses were
categorized according to the selected interval [1 or 2], the
selected presponse interval [1 or 2], and whether or not the
presponse was correct [0 or 1]. A chi-square test was used
to test whether the 4x2 contingency table of observed values
differed significantly from the table of uniformly distributed
values that would be predicted by independent trial-by-trial
responses.

Naïve observers. The group-aggregate contingency ta-
ble for Experiment II is given in Table 1. It indicates that
the responses of naïve observers were conditional on the
immediately preceding trial. Specifically, observers tended
to alternate after incorrect presponses, and perseverate af-
ter correct presponses. These deviations from a uniform re-
sponse pattern were significant [χ2(3, 14883) = 303.3, p <
.001,V = 0.14].

At the individual level significant contingencies were also
found in 23 of 30 observers [p < .01]. These deviations
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Figure 1. Mean (± 1 S D) estimates of bias, ĉ, as a function of sen-
sitivity (d′, columns), true bias (c, rows), and the number of samples
(abscissa). True bias is shown by the horizontal dashed red lines. N
Samples gives the total number of observations used to compute ĉ,
of which half contained the signal in the first interval.

Presponse Response Interval

Group Best Median Worst
Interval Correct 1 2 1 2 1 2 1 2

1 no 1633 2048 10 82 42 69 160 36
yes 2074 1527 57 37 37 61 152 33

2 no 2044 1728 93 56 71 65 40 17
yes 1531 2298 26 139 58 96 29 32

Table 1. Number of responses, contingent on presponse identity
(interval) and correctness (data from Experiment III). The group
data is aggregated over all observers. The Best, Median, and Worst
data show individual data, fitted to the idealized group-aggregate
response-pattern (see body text).

generally followed the same pattern as the group aggre-
gate responses, though to a varying degree. To quantify
the similarity between individual observers and the group-
aggregate profile, the observed responses of each observer
were compared, via the chi-square statistic, with those pre-
dicted by an observer who always alternated when incorrect
and perserverated when correct. For comparison, the values
for the best, median and worst fitting individuals are given
in Table 1. As per the group-aggregate, the best and median
fitting individuals alternated after incorrect presponses, and
perseverated after correct presponses. The worst fitting indi-
vidual exhibited a more general ‘Interval 1’ preference.
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§S4: Simulations

Monte Carlo simulations were used to derive a threshold-
correction for nonstationary bias. An ideal observer was sim-
ulated, that responded ‘Interval 2’ if the decision variable
(DV) exceeded criterion, DV > λ, and ‘Interval 1’ other-
wise. The DV was simply the difference in signal magni-
tude between the two intervals, S 2 − S 1, corrupted by an
additive internal noise, drawn from a zero-mean, Gaussian
distribution: DV = (S 2 − S 1) + N(0, σ2). On the first trial
of each block, and after any response that differed from the
preceding, λ was reset to zero (no bias). After every correct
response (including those where λ had been reset to zero), λ
was cumulatively shifted ∆c (z-score units) towards the re-
sponded interval (i.e., making repetition more likely). Con-
versely, after every incorrect response, λ was cumulatively
shifted ∆c away from the responded interval (i.e., making al-
ternation more likely). The value of ∆c therefore corresponds
to the mean change in bias as N presponses increases. For
each combination of sensitivity (σ: 1 to 12, in 12 uniform
steps) and cumulative bias (∆c: 0 to 1.2, in 12 uniform steps)
1,000 simulations were run, during which thresholds and bias
were calculated in precisely the same way as in Experiment
III (e.g., via adaptive tracks, with the same starting value,
step sizes, n trials, n reversals, etc.). Increases in threshold,
relative to the zero bias condition, were calculated for each
simulation, and various predictive functions fitted.

Here we have taken the relatively crude approach of mod-
eling criterion shifts in a purely deterministic manner. In re-
ality, observers probably act more like weighted finite-state
automatons (cf. Speeth and Mathews, 1961), whereby a cri-
terion shift is a probabilistic event, and both the magnitude
and the relative likelihood (e.g., Thomas et al., 1982) are free
parameters. Such an approach would likely yield a picture in
which criterion shifts occur less frequently, but with greater
effect. However, more complex models such as these would
tend to be ill-constrained by perceptual learning datasets,
which tend to be small and/or, by definition, unstable.
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